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Motivation and Examples
Constrained Optimization: General Form



Motivation and Examples
Applications and Examples



Motivation and Examples
Example 1: Geometric Projection



Motivation and Examples
Example 2: Manufacturing (Linear Programming)



Motivation and Examples
Example 3: Bundle Adjustment (Computer Vision)



Table of Content

• Motivation and Examples


• Optimality Conditions


• Optimization Algorithms


• Convex Programming Problems



Optimality Conditions
Lagrange Multipliers (Dual Variables)



Optimality Conditions
Feasibility and Critical Points



Optimality Conditions
KKT Conditions: Motivation



Optimality Conditions
Complementary Slackness and Dual Feasibility

• Recall  points in the direction of steepest increase of  at , so infinitesimal 
displacements  from  move into the feasible set when . 


• So for  to be optimal, any  moving into the feasible set should increase  locally ( ).


• Then from , we have    — dual feasibility.

∇hj(x*) hj( ⋅ ) x*
δ x* ∇hj(x*) ⋅ δ > 0

x* δ f ∇f(x*) ⋅ δ > 0

0 = ∇x(x*, λ, μ) ⇒ ∇f(x*) = μj ∇hj(x*) μj > 0



Optimality Conditions
 Karush–Kuhn–Tucker (KKT) Conditions



Optimality Conditions
Example: Applying KKT Conditions



Optimality Conditions
2nd-Order Conditions
• KKT is only a set of 1st-order conditions —  satisfying the KKT conditions can be local 

minimum, maximum, or saddle points.


• Similar to unconstrained optimization, one can further perform 2nd-order checks on


 


to classify the critical point. 


• If  is SPD/SND/Indefinite,  is a local minimum/maximum/saddle point.


• But in practice, this is often not needed.

x*
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Optimization Algorithms
Overview



Optimization Algorithms
 Sequential Quadratic Programming (SQP)



Optimization Algorithms
 Equality-Constrained SQP



Optimization Algorithms
Inequality Constraints and Active-Set Methods

// General SQP method:

While not converged:


Quadratically approximate , linearize  and 
// solve general QP:

For k = 1, 2, …: // can be inexact, e.g. only run 1 iteration


Update active set

Solve equality-constrained QP

f g h



Optimization Algorithms
Barrier (Penalty) Methods for Equality Constraints



Optimization Algorithms
Barrier Methods for Inequality Constraints



Optimization Algorithms
Comparison Between SQP and Barrier Methods
• SQP


• [-] No convergence guarantee (line search cannot be applied).


• Barrier Methods


• [+] Guarantees convergence with line search.


• [-] Can become ill-conditioned when requesting high accuracy.


• [-] Needs to maintain feasibility for inequality constraints (when diverging barriers are 
applied).
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Convex Programming Problems
Convex Programming



Convex Programming Problems
Convexity



Convex Programming Problems
Convex Programming Applications



Convex Programming Problems
More Examples
•  Second-Order Cone Programming (SOCP)


• Semidefinite Programming (SDP)


• Matrix variable, with semi-definiteness constraints.


• *Integer programming problems can be relaxed to convex programming with continuous 
variables, which can be more conveniently solved to construct the original solution.
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