Lec 12: Constrained Optimization

15-369/669/769: Numerical Computing

Instructor: Minchen Li

- Motivation and Examples
- Optimality Conditions
- Optimization Algorithms
- Convex Programming Problems

- Motivation and Examples
- Optimality Conditions
- Optimization Algorithms
- Convex Programming Problems

Constrained Optimization: General Form

• General problem:

$$\min_{\mathbf{x}} f(\mathbf{x})$$
s.t. $g(\mathbf{x}) = 0$, $h(\mathbf{x}) \ge 0$.

- $f: \mathbb{R}^n \to \mathbb{R}$ objective function; $g: \mathbb{R}^n \to \mathbb{R}^m$, $h: \mathbb{R}^n \to \mathbb{R}^p$ constraints.
- Includes many special cases:
 - $f(x) = h(x) \equiv 0 \rightarrow \text{root-finding}$.
 - $g(x) = h(x) \equiv 0 \rightarrow \text{unconstrained optimization}$.
- Practical goals: Find feasible x improving f even if global optimality is hard.

Applications and Examples

- Constrained optimization appears in nearly every applied field:
 - Engineering: equilibrium, dynamics.
 - AI: machine learning, computer vision.
 - Graphics: geometry processing, deformation.
- Example eigenvalue problem:

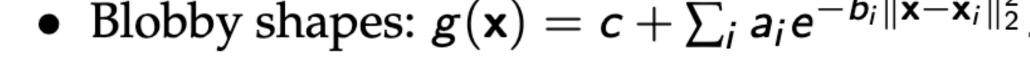
$$\min_{\mathbf{x}} \mathbf{x}^{\top} A \mathbf{x} \quad \text{s.t. } \|\mathbf{x}\|_2 = 1.$$

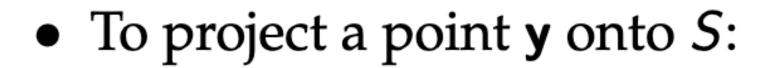
Constrains the solution to the unit sphere.

• Other examples below illustrate different classes of constraints.

Example 1: Geometric Projection

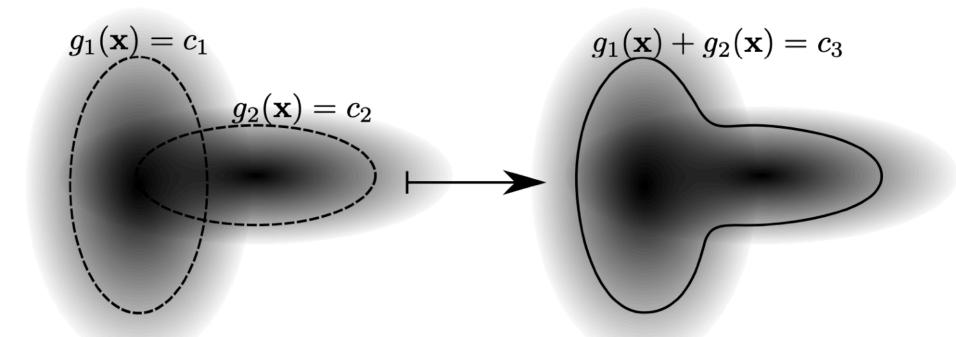
- Many shapes $S \subset \mathbb{R}^n$ can be represented implicitly as $g(\mathbf{x}) = 0$.
- Examples:
 - Sphere: $g(x) = ||x||_2^2 1$.
 - Cube: $g(x) = ||x||_1 1$.
 - Blobby shapes: $g(\mathbf{x}) = c + \sum_i a_i e^{-b_i \|\mathbf{x} \mathbf{x}_i\|_2^2}$.

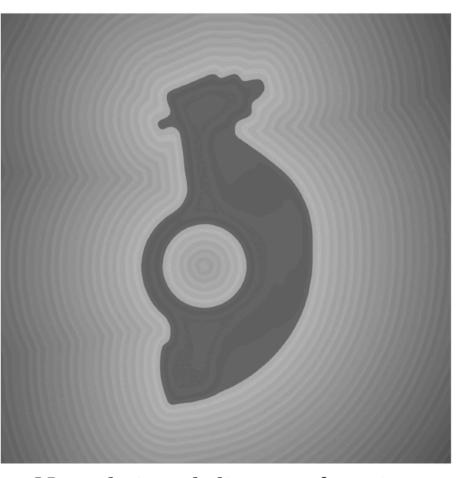




$$\min_{\mathbf{x}} \|\mathbf{x} - \mathbf{y}\|_2 \quad \text{s.t. } g(\mathbf{x}) = 0.$$

• Modern use: neural implicit representations of 3D shapes.





Neural signed distance function

Example 2: Manufacturing (Linear Programming)

• Goal: Maximize total profit by deciding production plan subject to resource constraints:.

$$\max_{\mathbf{x}} \sum_{j=1}^k p_j x_j \quad \text{s.t.} \quad x_j \geq 0, \quad \sum_{j=1}^k c_{ij} x_j \leq s_i, \ \forall i.$$

- $\mathbf{x} = (x_1, \dots, x_k)$: number of units to produce for each product.
- p_i : profit per unit of product j.
- c_{ij} : amount of resource i consumed by one unit of product j.
- s_i : total available amount of resource i.
- This is a linear program (LP) with linear objective and constraints.
- Applications: Resource allocation, supply chain optimization, and factory scheduling.

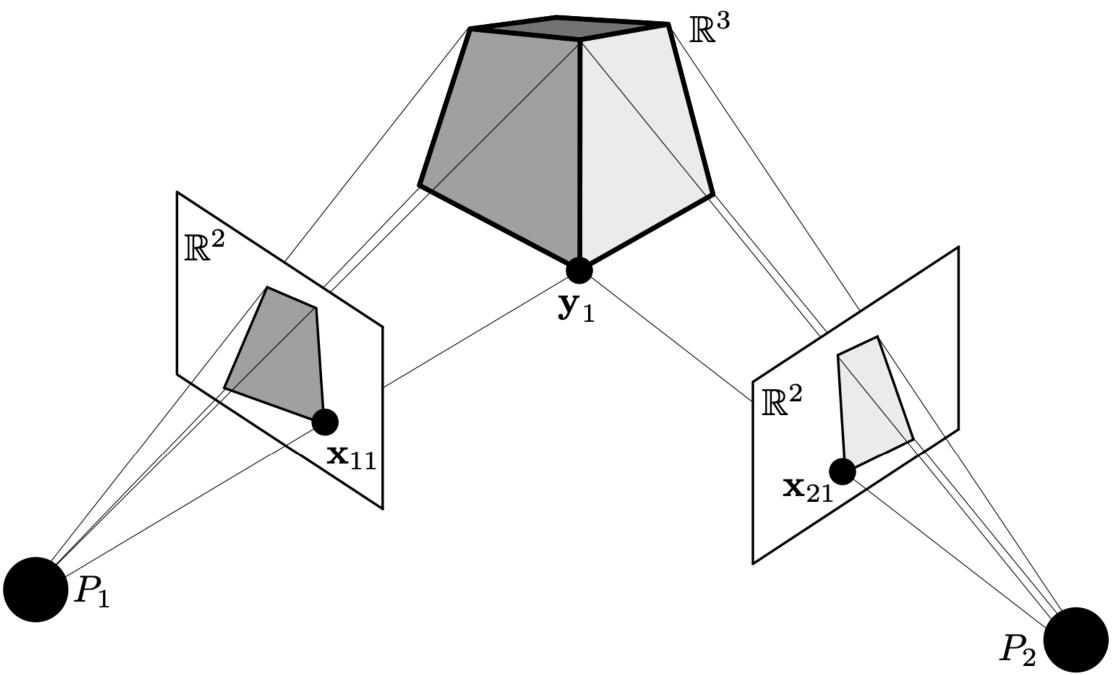
Example 3: Bundle Adjustment (Computer Vision)

• Reconstruct 3D points y_j and camera matrices P_i from 2D observations x_{ij} :

$$\min_{\mathbf{y}_j, P_i} \sum_{i, i} \|P_i \mathbf{y}_j - \mathbf{x}_{ij}\|_2^2 \quad \text{s.t. } P_i \in \mathcal{S} \ \forall i,$$

where S denotes valid projection matrices.

- Applications:
 - 3D reconstruction and SLAM.
 - Camera calibration and motion recovery.



- Motivation and Examples
- Optimality Conditions
- Optimization Algorithms
- Convex Programming Problems

Lagrange Multipliers (Dual Variables)

- We assume f, g, h are differentiable.
- The general constrained optimization problem:

$$\min_{\mathbf{x}} f(\mathbf{x})$$
 s.t. $g(\mathbf{x}) = 0$, $h(\mathbf{x}) \ge 0$.

• **Lagrange multipliers:** ignoring $h(\mathbf{x})$ for now, we can introduce auxiliary variables λ to convert the equality constraints into an unconstrained problem.

$$\Lambda(\mathbf{x},\lambda) = f(\mathbf{x}) - \lambda \cdot g(\mathbf{x})$$

Critical points of f subject to $g(\mathbf{x}) = 0$ are given by stationary points of Λ w.r.t. both \mathbf{x} and λ .

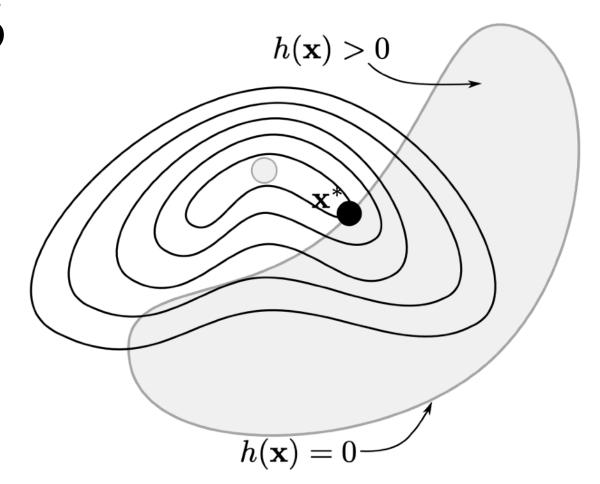
• But how to deal with the inequality constraints?

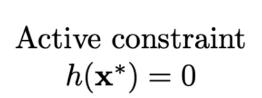
Feasibility and Critical Points

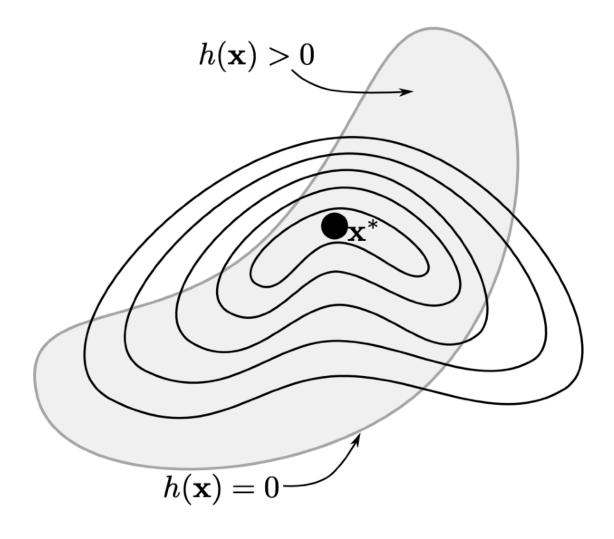
- **Definition 10.1 (Feasible point and feasible set)**: A feasible point **x** satisfies $g(\mathbf{x}) = 0$ and $h(\mathbf{x}) \ge 0$. The feasible set is the set of all such **x**.
- **Definition 10.2 (Critical point of constrained optimization)** A critical point satisfies the constraints and is a local minimum, maximum, or saddle point of *f* within the feasible set.
- Finding a feasible x can already be difficult before optimizing f.
- Equality-constrained critical points can be found via the Lagrangian $\Lambda(\mathbf{x}, \lambda)$.

KKT Conditions: Motivation

- Constrained problems combine:
 - Root-finding $(g(\mathbf{x}) = 0)$,
 - Feasibility $(h(x) \ge 0)$,
 - Minimization (f(x)).







Inactive constraint $h(\mathbf{x}^*) > 0$

- Active constraint: $h_j(\mathbf{x}^*) = 0$; Inactive constraint: $h_j(\mathbf{x}^*) > 0$.
- Equality constraints are always active, while inequality constraints can be active or inactive at optimality, which we do not know a priori.
- If all inequality constraints are active, optimality can be found by finding the critical point of:

$$\Lambda(\mathbf{x}, \lambda, \mu) = f(\mathbf{x}) - \lambda \cdot g(\mathbf{x}) - \mu \cdot h(\mathbf{x}).$$

Complementary Slackness and Dual Feasibility

Add complementary slackness condition to allow inactive inequality constraints:

$$\mu_j h_j(\mathbf{x}^*) = 0.$$

- This ensures either:
 - $h_i(\mathbf{x}^*) = 0 \Rightarrow \text{constraint is active}$,
 - or $\mu_j = 0 \Rightarrow$ constraint is inactive, and thus ignored in $\Lambda(\mathbf{x}, \lambda, \mu)$.
- Recall $\nabla h_j(\mathbf{x}^*)$ points in the direction of steepest increase of $h_j(\cdot)$ at \mathbf{x}^* , so infinitesimal displacements δ from \mathbf{x}^* move into the feasible set when $\nabla h_j(\mathbf{x}^*) \cdot \delta > 0$.
- So for \mathbf{x}^* to be optimal, any δ moving into the feasible set should increase f locally ($\nabla f(\mathbf{x}^*) \cdot \delta > 0$).
- Then from $0 = \nabla_{\mathbf{x}}(\mathbf{x}^*, \lambda, \mu) \Rightarrow \nabla f(\mathbf{x}^*) = \mu_j \nabla h_j(\mathbf{x}^*)$, we have $\mu_j > 0$ dual feasibility.

Karush-Kuhn-Tucker (KKT) Conditions

• Theorem 10.1: Under suitable regularity conditions, a local optimum x* for

$$\min_{\mathbf{x}} f(\mathbf{x})$$
 s.t. $g(\mathbf{x}) = 0$, $h(\mathbf{x}) \ge 0$

satisfies the existence of multipliers $\lambda \in \mathbb{R}^m$, $\mu \in \mathbb{R}^p$ such that:

$$\begin{cases} 0 = \nabla f(\mathbf{x}^*) - \sum_{i} \lambda_i \nabla g_i(\mathbf{x}^*) - \sum_{j} \mu_j \nabla h_j(\mathbf{x}^*) & \text{(stationarity)} \\ g(\mathbf{x}^*) = 0, \ h(\mathbf{x}^*) \geq 0 & \text{(primal feasibility)} \\ \mu_j h_j(\mathbf{x}^*) = 0, \ \forall j & \text{(complementary slackness)} \\ \mu_j \geq 0, \ \forall j & \text{(dual feasibility)} \end{cases}$$

• When *h* is absent, this reduces to the standard Lagrange multiplier condition.

Example: Applying KKT Conditions

- **Problem:** $\max_{x,y} xy$ s.t. $x + y^2 \le 2$, $x, y \ge 0$.
- Here f(x, y) = -xy (converted to minimization), with constraints: $h_1(x, y) = 2 x y^2$, $h_2(x, y) = x$, $h_3(x, y) = y$.

• KKT Conditions:

$$0 = -y + \mu_1 - \mu_2 \qquad \qquad \text{(stationarity in } x),$$

$$0 = -x + 2\mu_1 y - \mu_3 \qquad \qquad \text{(stationarity in } y),$$

$$x + y^2 \le 2, \quad x, y \ge 0 \qquad \qquad \text{(primal feasibility)},$$

$$\mu_1(2 - x - y^2) = 0, \quad \mu_2 x = 0, \quad \mu_3 y = 0 \qquad \qquad \text{(complementary slackness)},$$

$$\mu_1, \mu_2, \mu_3 \ge 0 \qquad \qquad \text{(dual feasibility)}.$$

• This system characterizes all optimal candidates under KKT.

2nd-Order Conditions

- KKT is only a set of 1st-order conditions \mathbf{x}^* satisfying the KKT conditions can be local minimum, maximum, or saddle points.
- Similar to unconstrained optimization, one can further perform 2nd-order checks on

$$\nabla_{\mathbf{x}}^2 \Lambda(\mathbf{x}^*, \lambda^*, \mu^*) = \nabla^2 f(\mathbf{x}^*) - \sum_i \mu_i^* \cdot \nabla^2 h_i(\mathbf{x}^*) - \sum_j \lambda_j^* \nabla^2 g_j(\mathbf{x}^*)$$

to classify the critical point.

- If $\nabla_{\mathbf{x}}^2 \Lambda(\mathbf{x}^*, \lambda^*, \mu^*)$ is SPD/SND/Indefinite, \mathbf{x}^* is a local minimum/maximum/saddle point.
- But in practice, this is often not needed.

- Motivation and Examples
- Optimality Conditions
- Optimization Algorithms
- Convex Programming Problems

Optimization Algorithms Overview

- Many robust methods for constrained optimization exist in modern software libraries.
- We can treat these as "clients" instead of implementing them from scratch.
- Nonetheless, understanding common strategies helps interpret solver behavior.
- Two major families:
 - Sequential Quadratic Programming (SQP)
 - Barrier Methods

Sequential Quadratic Programming (SQP)

- SQP approximates nonlinear constrained problems by simpler quadratic subproblems.
- Given a current guess \mathbf{x}_k , use a Taylor expansion:

$$\mathbf{x}_{k+1} := \mathbf{x}_k + \arg\min_{\mathbf{d}} \left[\frac{1}{2} \mathbf{d}^\top H_f(\mathbf{x}_k) \mathbf{d} + \nabla f(\mathbf{x}_k)^\top \mathbf{d} + f(\mathbf{x}_k) \right]$$

subject to:

$$g_i(\mathbf{x}_k) + \nabla g_i(\mathbf{x}_k)^{\top} \mathbf{d} = 0, \quad h_i(\mathbf{x}_k) + \nabla h_i(\mathbf{x}_k)^{\top} \mathbf{d} \geq 0.$$

- Each step solves a quadratic program (QP): quadratic objective, linear constraints.
- Works best near a good initial point x_0 ; far from optimum, may fail.
- Uses second-order model for *f* , first-order for *g* , *h*.

Equality-Constrained SQP

• When only equality constraints are present, define:

$$\Lambda(\mathbf{d}, \boldsymbol{\lambda}) = \frac{1}{2} \mathbf{d}^{\top} H_f(\mathbf{x}_k) \mathbf{d} + \nabla f(\mathbf{x}_k)^{\top} \mathbf{d} + \boldsymbol{\lambda}^{\top} (g(\mathbf{x}_k) + Dg(\mathbf{x}_k) \mathbf{d}).$$

- Setting derivative to zero gives: $0 = H_f(\mathbf{x}_k)\mathbf{d} + \nabla f(\mathbf{x}_k) + [Dg(\mathbf{x}_k)]^\top \lambda$.
- Combined system for **d** and λ : $\begin{pmatrix} H_f(\mathbf{x}_k) & [Dg(\mathbf{x}_k)]^\top \\ Dg(\mathbf{x}_k) & 0 \end{pmatrix} \begin{pmatrix} \mathbf{d} \\ \lambda \end{pmatrix} = \begin{pmatrix} -\nabla f(\mathbf{x}_k) \\ -g(\mathbf{x}_k) \end{pmatrix}$.
- Each iteration solves this linear system to obtain $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{d}$.
- Extensions (e.g., BFGS) can approximate H_f to avoid inverting large matrices.

Inequality Constraints and Active-Set Methods

- SQP for inequalities uses quadratic programs (QP) with linearized inequality constraints.
- To solve inequality-constrained QP, an **active-set strategy** maintains constraints currently "active" at the estimated solution, and so equality-constrained QP solvers can be applied.
- Violated constraints are added, and h_i with $\nabla f \cdot \nabla h_i \leq 0$ are removed dynamically.

```
    // General SQP method:
    While not converged:
        Quadratically approximate f, linearize g and h
        // solve general QP:
        For k = 1, 2, ...: // can be inexact, e.g. only run 1 iteration
            Update active set
            Solve equality-constrained QP
```

Barrier (Penalty) Methods for Equality Constraints

• Replace constraints with penalty terms in the objective:

$$f_{\rho}(\mathbf{x}) = f(\mathbf{x}) + \rho \|g(\mathbf{x})\|_{2}^{2}$$

- As $\rho \to \infty$, violations of $g(\mathbf{x}) = 0$ are penalized, forcing feasibility.
- Barrier method: iteratively solve unconstrained problems for increasing ρ .
- Steps:
 - 1. Optimize f_{ρ} as unconstrained problem.
 - 2. Check feasibility tolerance.
 - 3. If constraints not satisfied, increase ρ and repeat.
- Pros: simple to implement; Cons: as ρ increases, Hessian becomes ill-conditioned.

Barrier Methods for Inequality Constraints

• For inequality constraints $h_i(\mathbf{x}) \geq 0$, add a barrier term preventing infeasibility:

$$f_{\text{inv}}(\mathbf{x}) = f(\mathbf{x}) + \rho \sum_{i} \frac{1}{h_{i}(\mathbf{x})}$$
 (inverse barrier),
 $f_{\text{log}}(\mathbf{x}) = f(\mathbf{x}) - \rho \sum_{i} \log h_{i}(\mathbf{x})$ (logarithmic barrier).

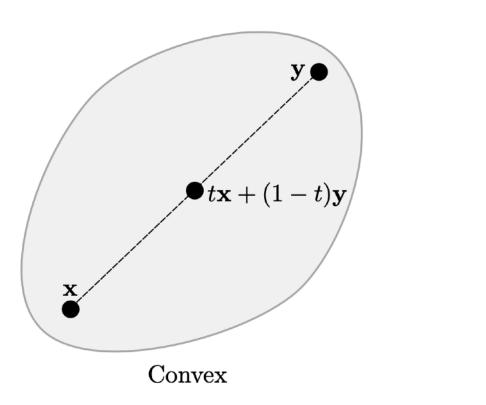
- Barrier terms go to $+\infty$ as $h_i(\mathbf{x}) \to 0$, keeping iterates feasible.
- When solving the "unconstrained" proxy problem using gradient-based methods, needs filtered line search to avoid infeasibility.
- Accuracy increases as $\rho \to 0$, but the problem becomes worse-conditioned.

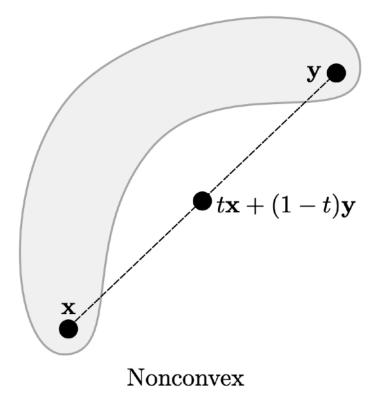
Comparison Between SQP and Barrier Methods

- SQP
 - [-] No convergence guarantee (line search cannot be applied).
- Barrier Methods
 - [+] Guarantees convergence with line search.
 - [-] Can become ill-conditioned when requesting high accuracy.
 - [-] Needs to maintain feasibility for inequality constraints (when diverging barriers are applied).

- Motivation and Examples
- Optimality Conditions
- Optimization Algorithms
- Convex Programming Problems

Convex Programming





- **Convex programming** guarantees a unique global minimum if both the objective *f* and the feasible set are convex.
- **Definition 10.3 (Convex set):** A set $S \subseteq \mathbb{R}^n$ is convex if for any $x, y \in S$,

$$t\mathbf{x} + (1-t)\mathbf{y} \in S \quad \forall t \in [0,1].$$

- Example 10.9: The disc $\{x : ||x||_2 \le 1\}$ is convex, but the circle $\{x : ||x||_2 = 1\}$ is not.
- Key theorem: A convex function cannot have suboptimal local minima, even on a convex domain. Thus, convex optimization guarantees convergence to a global minimum.
 - If a convex function had two local minima, all points between them would have smaller or equal objective values – contradicting local minimality.

Convexity

- Always check convexity it greatly improves robustness and interpretability.
- Disciplined Convex Programming (DCP):
 - Provides compositional rules for combining convex objectives and constraints.
 - Ensures the resulting problem remains convex.
- Example rules:
 - Intersection of convex sets is convex.
 - Sum of convex functions is convex.
 - $h(x) = \max\{f(x), g(x)\}\$ is convex if f, g are convex.
 - Sublevel set $\{x : f(x) \le c\}$ is convex if f is convex.

Convex Programming Applications

• Nonnegative least squares:

$$\min_{\mathbf{x} \geq 0} \|A\mathbf{x} - \mathbf{b}\|_2^2$$

Both objective and feasible set are convex.

- Linear programs: Linear objectives + linear constraints \Rightarrow convex.
- Including $||x||_1$ in convex objectives:
 - Introduce auxiliary variable **y** s.t. $y_i \ge x_i$, $y_i \ge -x_i$.
 - Then $\|\mathbf{x}\|_1 = \sum_i y_i$ at optimum.
- Convex libraries like CVX automatically handle such substitutions.

More Examples

Second-Order Cone Programming (SOCP)

```
minimize<sub>x</sub> \mathbf{b} \cdot \mathbf{x}
subject to ||A_i\mathbf{x} - \mathbf{b}_i||_2 \le d_i + \mathbf{c}_i \cdot \mathbf{x} for all i = 1, \dots, k.
```

- Semidefinite Programming (SDP)
 - Matrix variable, with semi-definiteness constraints.
- *Integer programming problems can be relaxed to convex programming with continuous variables, which can be more conveniently solved to construct the original solution.

- Motivation and Examples
- Optimality Conditions
- Optimization Algorithms
- Convex Programming Problems