Lec 12: Constrained Optimization
15-369/669/769: Numerical Computing

Instructor: Minchen Li



Table of Content

® Motivation and Examples
e Optimality Conditions
e Optimization Algorithms

e Convex Programming Problems



Table of Content

® Motivation and Examples



Motivation and Examples

Constrained Optimization: General Form

e General problem:
min f(x)

s.t. g(x) =0, h(x)>0.
o f:R" — R — objective function; g : R" —+ R™, h: R" — RP — constraints.
e Includes many special cases:
e f(x) = h(x) =0 — root-finding.
e g(x) = h(x) = 0 — unconstrained optimization.

e Practical goals: Find feasible x improving f even if global optimality is hard.



Motivation and Examples

Applications and Examples

e Constrained optimization appears in nearly every applied field:
e Engineering: equilibrium, dynamics.
e Al machine learning, computer vision.

e Graphics: geometry processing, deformation.
e Example — eigenvalue problem:
minx' Ax s.t. ||x|[> = 1.
X

Constrains the solution to the unit sphere.

e Other examples below illustrate different classes of constraints.



Motivation and Examples

Example 1: Geometric Projection

e Many shapes S C R” can be represented implicitly as g(x) = 0.

e Examples:

e Sphere: g(x) = ||x||5 — 1.

o Cube: g(x) = ||x||1 — 1.

e Blobby shapes: g(x) = ¢ + ¥; aje™ Pillx=xill3.

e To project a point y onto S:
min |x —y|[2 s.t. g(x) =0.

e Modern use: neural implicit representations of 3D shapes.

3D model Neural signed distance function



Motivation and Examples

Example 2: Manufacturing (Linear Programming)

e Goal: Maximize total profit by deciding production plan subject to resource constraints:.

k k
mxax Z pixj st. x; >0, . Ciixj < Sj, V1.
J=1 J=1

e x=(x1,..., Xk ): number of units to produce for each product.

e p;: profit per unit of product j.

e ¢;;: amount of resource / consumed by one unit of product ;.

e s;: total available amount of resource i.

e This is a linear program (LP) with linear objective and constraints.

e Applications: Resource allocation, supply chain optimization, and factory scheduling.



Motivation and Examples
Example 3: Bundle Adjustment (Computer Vision)

e Reconstruct 3D points y; and camera matrices P; from 2D observations x;;:

. 9 :
mllgz |Piy; — xjil|5 s.t. P € SV,

Y Fi i

where § denotes valid projection matrices.

e Applications:

e 3D reconstruction and SLAM.

e Camera calibration and motion recovery.




Table of Content

e Optimality Conditions



Optimality Conditions
Lagrange Multipliers (Dual Variables)

e We assume f, g, h are differentiable.

e The general constrained optimization problem:

min f(x) s.t. g(x) =0, h(x) > 0.

x -

e Lagrange multipliers: ignoring h(x) for now, we can introduce auxiliary variables A to
convert the equality constraints into an unconstrained problem.

A(x,A) = f(x) — A - g(x)
Critical points of f subject to g(x) = 0 are given by stationary points of A w.r.t. both x and A.

e But how to deal with the inequality constraints?



Optimality Conditions

Feasibility and Critical Points

e Definition 10.1 (Feasible point and feasible set): A feasible point x satisfies g(x) = 0 and
h(x) > 0. The feasible set is the set of all such x.

e Definition 10.2 (Critical point of constrained optimization) A critical point satisfies the
constraints and is a local minimum, maximum, or saddle point of f within the feasible set.

e Finding a feasible x can already be difficult before optimizing f.

e Equality-constrained critical points can be found via the Lagrangian A(x, A).



Optimality Conditions . 020/
KKT Conditions: Motivation

e Constrained problems combine: C

e Root-finding (g(x) = 0),

e Feasibility (h(x) > 0), h(x) = —/ h(x) = 0/
e Minimization (f (X)) ACti}sz%xi())ritgaint Inacl;i\(/}e; *(;oist(;)raint

e Active constraint: h;(x*) = 0; Inactive constraint: h;(x*) > 0.

e Equality constraints are always active, while inequality constraints can be active or inactive at
optimality, which we do not know a priori.

e If all inequality constraints are active, optimality can be found by finding the critical point of:

A%, A1) = F(x) — A~ g(x) — - h(x).



Optimality Conditions
Complementary Slackness and Dual Feasibility

e Add complementary slackness condition to allow inactive inequality constraints:

,ujhj(x*) — 0
e This ensures either:

e h;(x*) = 0 = constraint is active,

e or yj = 0 = constraint is inactive, and thus ignored in A(x, A, u).

e Recall Vi (x*) points in the direction of steepest increase of /1( - ) at X*, so infinitesimal
displacements & from x* move into the feasible set when Vh(x*) -6 > 0.

e So for X* to be optimal, any 6 moving into the feasible set should increase flocally ( Vf(x*) - 6 > 0).

e Then from 0 = V_ (x*, 4, u) = Vf(x*) = 1V hi(x*), we have u; >0 — dual feasibility.



Optimality Conditions
Karush—-Kuhn-Tucker (KKT) Conditions

e Theorem 10.1: Under suitable regularity conditions, a local optimum x* for

min f(x) s.t. g(x) =0, h(x) >0

X

satisfies the existence of multipliers A € R™, u € RP such that:

0=VIF(x*)—L;AiVgi(x*) — L #jVhj(x*) (stationarity)

g(x*) =0, h(x*) >0 (primal feasibility)
uihi(x*) =0, Vj (complementary slackness)
u; >0, Vj (dual feasibility)

e When his absent, this reduces to the standard Lagrange multiplier condition.



Optimality Conditions
Example: Applying KKT Conditions
e Problem: max Xy st.x+y*<2, x,y>0

e Here f(x,y) = —xy (converted to minimization), with constraints:

hi(x,y) =2—x—y? h(xy)=x, h(xy)=y.

e KKT Conditions:

0= —y+ui — u (stationarity in x),

0= —x+2u1y — us (stationarity in y),

x+y* <2 x,y>0 (primal feasibility),
u1(2—x—y?) =0, puox=0, u3y=0 (complementary slackness),
Ui, o, u3 >0 (dual feasibility).

e This system characterizes all optimal candidates under KKT.



Optimality Conditions
2nd-Order Conditions

e KKT is only a set of 1st-order conditions — x* satisfying the KKT conditions can be local
minimum, maximum, or saddle points.

® Similar to unconstrained optimization, one can further perform 2nd-order checks on

VRAGEH, 2%, p%) = V9) = Y - VER(x™) = ) A% V2gi(x%)
i J

to classify the critical point.
o If VZA(X*, A*, u*) is SPD/SND/Indefinite, x* is a local minimum /maximum /saddle point.

® But in practice, this is often not needed.
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Optimization Algorithms

Overview

e Many robust methods for constrained optimization exist in modern software libraries.
e We can treat these as “clients” instead of implementing them from scratch.

e Nonetheless, understanding common strategies helps interpret solver behavior.

e Two major families:

e Sequential Quadratic Programming (SQP)

e Barrier Methods



Optimization Algorithms
Sequential Quadratic Programming (SQP)

e SQP approximates nonlinear constrained problems by simpler quadratic subproblems.

e Given a current guess x,, use a Taylor expansion:

Xk+1 7= X+ argmin | 5d T He (xi)d + V1 (x¢) "d + F(xy)

subject to:

gi(x) +Vgi(x)'d=0, hij(xg)+ Vhi(xc)'d>0.
e Each step solves a quadratic program (QP): quadratic objective, linear constraints.

e Works best near a good initial point xq; far from optimum, may fail.

e Uses second-order model for f, first-order for g, h.



Optimization Algorithms
Equality-Constrained SQP

e When only equality constraints are present, define:

A(d,A) = 3d" He(x)d + VF(x) "d+ A" (g(xk) + Dg(xi)d) .

N

e Setting derivative to zero gives: 0 = H¢(x,)d + V£ (xx) + [Dg(xx)] ' A.

e Combined system for d and A: (g; (():(’; )) Dg (3" )]T> (;) = (__Vglz)(::i)) .

e Each iteration solves this linear system to obtain x,,1 = x, +d.

e Extensions (e.g., BFGS) can approximate Hy to avoid inverting large matrices.



Optimization Algorithms

Inequality Constraints and Active-Set Methods

e SQP for inequalities uses quadratic programs (QP) with linearized inequality constraints.

e To solve inequality-constrained QP, an active-set strategy maintains constraints currently
“active” at the estimated solution, and so equality-constrained QP solvers can be applied.

e Violated constraints are added, and h; with Vf - Vh; < 0 are removed dynamically.

/ | General SQP method:
While not converged:
Quadratically approximate f, linearize g and &
/ | solve general QP:
Fork=1,2,...: // can be inexact, e.g. only run 1 iteration
Update active set
Solve equality-constrained QP




Optimization Algorithms

Barrier (Penalty) Methods for Equality Constraints

e Replace constraints with penalty terms in the objective:

fo(x) = f(x) +pllg(x) 3.

e Asp — oo, violations of g(x) = 0 are penalized, forcing feasibility.

e Barrier method: iteratively solve unconstrained problems for increasing p.

e Steps:

1. Optimize f, as unconstrained problem.
2. Check feasibility tolerance.
3. If constraints not satisfied, increase p and repeat.

e Pros: simple to implement; Cons: as p increases, Hessian becomes ill-conditioned.



Optimization Algorithms

Barrier Methods for Inequality Constraints

e For inequality constraints h;(x) > 0, add a barrier term preventing infeasibility:

fv (X) = F(X) 4 Z h-zx) (inverse barrier),
flog(X) = f(x) —p Z log hi(x) (logarithmic barrier).

e Barrier terms go to +o0 as h;j(x) — 0, keeping iterates feasible.

e When solving the “unconstrained” proxy problem using gradient-based methods, needs
filtered line search to avoid infeasibility.

e Accuracy increases as p — 0, but the problem becomes worse-conditioned.



Optimization Algorithms

Comparison Between SQP and Barrier Methods
e 5QP

¢ [-| No convergence guarantee (line search cannot be applied).
® Barrier Methods

¢ [+] Guarantees convergence with line search.

e [-] Can become ill-conditioned when requesting high accuracy.

¢ [-| Needs to maintain feasibility for inequality constraints (when diverging barriers are
applied).
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Convex Programming Problems =~ ...

Convex Programming

Q.
o~

Convex Nonconvex

e Convex programming guarantees a unique global minimum if both the objective f and the
feasible set are convex.

e Definition 10.3 (Convex set): A set S C R” is convex if for any x,y € S,
tx+ (1—t)ye S Vtel0,1].

e Example 10.9: The disc {x : ||x||2 < 1} is convex, but the circle {x : ||x||> = 1} is not.

e Key theorem: A convex function cannot have suboptimal local minima, even on a convex
domain. Thus, convex optimization guarantees convergence to a global minimum.

e If a convex function had two local minima, all points between them would have smaller or equal
objective values — contradicting local minimality.



Convex Programming Problems

Convexity

e Always check convexity — it greatly improves robustness and interpretability.

e Disciplined Convex Programming (DCP):

e Provides compositional rules for combining convex objectives and constraints.

e Ensures the resulting problem remains convex.

e Example rules:

e Intersection of convex sets is convex.
e Sum of convex functions is convex.
e h(x) = max{f(x), g(x)} is convex if f, g are convex.

e Sublevel set {x: f(x) < c} is convex if f is convex.



Convex Programming Problems

Convex Programming Applications

e Nonnegative least squares:
min ||Ax — b||3
x>0

Both objective and feasible set are convex.
e Linear programs: Linear objectives + linear constraints = convex.

e Including |[x||; in convex objectives:

e Introduce auxiliary variable y s.t. y; > x;, y; > —X;.

- — /

e Then ||x||; = }; y; at optimum.

e Convex libraries like CVX automatically handle such substitutions.



Convex Programming Problems

More Examples

* Second-Order Cone Programming (SOCP)
minimizex b - X
subject to ||A;x — b;|la < d;+c;-xforalli=1,...,k.
* Semidefinite Programming (SDP)
e Matrix variable, with semi-definiteness constraints.

¢ “Integer programming problems can be relaxed to convex programming with continuous
variables, which can be more conveniently solved to construct the original solution.
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