Lec 11: Unconstrained Optimization II
15-369/669/769: Numerical Computing

Instructor: Minchen Li

Multivariable Strategies

Intuition

Step 1

LHPRASEL552277]] :
"I;; NSyl ® In each step:

4
f

® ’ick a descent direction

® Decide a step size

Image source: https: / /medium.com /@pau.moskwa / eli5-ml-optmization-algorithms-9ba6305b1190

https://medium.com/@pau.moskwa/eli5-ml-optmization-algorithms-9ba6305b1190

Table of Content

® Multivariable Strategies
® Gradient Descent
e Newton’s Method

e Quasi-Newton Methods

Table of Content

® Multivariable Strategies

® Gradient Descent

Gradient Descent

Gradient Descent with Line Search

e Goal: Minimize differentiable f : R” — R by iteratively updating:
Xk+1 = Xk — te VI (xk),
where t; is determined by a line search.
e Descent direction: —Vf(x,) ensures f(x,1) < f(xx) for small enough t, > 0.
e Line search formulation: define one-dimensional function
g(t) = f(xx —tVF(xg)),
and choose t; to approximately minimize g(t).

e Convergence: If f bounded below and differentiable, gradient descent decreases f(xy).

Gradient Descent
Pseudo-Code

function GRADIENT-DESCENT(f(xX), Xo)
X «— X
for Kk 1,2,3,...
DEFINE-FUNCTION(g(t) == f(x —tV f(x)))
t* < LINE-SEARCH(g(t),t > 0)
X ¢+ x — t*V f(x) > Update estimate of minimum
if |V f(x)||2 < € then

return z* = x

® The gradient points perpendicular
to the level sets of the function:

Gradient Descent

Inexact Line Search

e Inexact line search: Instead of exact minimization, can iteratively halve t; starting from 1
until it satisty the Wolfe conditions:

f(xk + tedy) < F(xi) + crted] VF(x),

- - where 0 < ¢1 < ¢ < 1.
—d, Vf(xk + tkdk) > —cod Vf(xk),

e Again, these ensure that the gradient norm converges to zero starting from arbitrary xg —a
property called global convergence.

e In practice, can use a parameter-free, simplified version to just ensure energy decrease:
f(xk + tidi) < f(xk),

which still guarantees global convergence.

Gradient Descent

Example: Violation of Wolfe Conditions

1

e Consider f(x,y) = 5(x* + y?), starting from (xp, yo) = (1,0).

N

e Gradient: Vf(x,y) = (x,y).

e Update rule with step size t;:
Xk+1 = (1 — ty) X,
Yi+1 = (1 — tk)yk.

o If we take t, = 2, gradient descent diverges: (xx, yx) = (1,0), (—1,0),(1,0),
o If we take t, = (1/2)%, (xk, yx) — (0.288788...,0), which is not the minimum at (0, 0).

e Poor choices of t; can lead to convergence problems for gradient descent.

Gradient Descent

Gradient Descent without Line Search

e Motivation: Line search can be computationally expensive — each iteration requires multiple
function (and gradient) evaluations.

e Constant step size: fix t, = t, also called the learning rate in machine learning.

e Trade-off:

e Large t: fast progress but possible oscillation or divergence.

e Small t: guaranteed descent but slow convergence.

e If f is convex, twice differentiable, and Vf is L-Lipschitz: ||V f(x) — Vf(y)||> < L||jx —y||2,
X2
and t < 1/L, then f(x)) — f(x*) < ”x°2t’; 2

e Implication: Constant step size yields O(1/ k) convergence rate for convex functions.

Gradient Descent
Learning Rate Schedule

e For more general f, choose t, as a function of iteration k, not of current gradient.

e Two key desiderata:

e Diminishing step size: t, — 0 as k — oo (avoids overshooting).
e Infinite travel: Y5 4 t; — 0o as k — oo (ensures progress can be made).
e Example: Harmonic sequence t, = 1/ k satisties both.

e Practical schedules:

e Step decay: reduce t; by factor every few epochs.

e Cyclic or warm restarts: alternate between large and small steps.

e Used widely in machine learning to balance convergence speed and stability.

Table of Content

® Multivariable Strategies

e Newton’s Method

Newton’s Method

Newton’s Method in Multiple Variables

e Goal: Extend Newton’s method to multivariable functions f : R” — IR.

e Idea: Use both first- and second-order derivatives:

e Gradient: Vf(x); Hessian: Hs(x) = V?f(x)
e Taylor expansion near x,: f(x) & f(xx) + VF(xx) " (x —xx) + 5 (x — xx) " He (x) (x — x).
e Optimization step: Set gradient of RHS to zero:

Xk+1 — X) — [Hf(xk)]_IVf(xk).
e Converges quadratically when xg is close to a local minimum.

e Cost: computing and storing Hy requires O(n?) memory; best for small or medium n.

Newton’s Method

Practical Considerations

e Geometric intuition:

e Gradient descent uses local slope — “walk downhill.”

e Newton’s method uses curvature — “estimate where the valley floor is.”
e When H; is nearly singular:

e Large, unstable steps possible.

e Use a damping factor v > 0: x,1 = xx — ¥[Hr (xk)] 1V F(x).

e Or perform a line search along direction dy = —[Hr(x,)] "1V F(x).

e Computational cost: Each iteration requires forming and inverting Hr. Often more expensive
than gradient descent, but faster convergence.

Newton’s Method

Handling Indefinite Hessians

o If H¢ is not positive definite, local region may resemble a saddle or peak rather than a
minimum, possibly leading to a non-descent search direction.

e Remedies:

o Check if Hy is positive definite before using it. If not, revert to gradient descent step:
Xk+1 = Xk — YVF(xg).

e Similar to Tikhonov regularization, compute d = —[H¢(xy) + ul] =1V f(x,) instead.

e Modify Hy, e.g., project it to the nearest positive definite matrix (the projected Newton’s method):
Given the Eigendecomposition Hf(xx) = QAQ', compute dy = —[H{ (xx)] 1V (xx), where
H;“(xk) = QAT Q and AZT = max(Ajj, €), with e > 0.

In practice, directly projecting Hf can be expensive. If f = }_; f;, can separately project V*f;
(possibly with smaller sizes, e.g. a spring in the mass-spring system only associates with 2 nodes).

Table of Content

® Multivariable Strategies

e Quasi-Newton Methods

Quasi-Newton Methods

Overview

e Motivation: Newton’s method converges rapidly but requires computing and inverting the
full Hessian Hy(x), which is O(n?) in size and thus expensive.

e Idea: Approximate Hr using cheaper computations, leading to quasi-Newton methods.

e Approximation: near current iterate x, f(xx + 0x) & f(x) + VF(xx) ' 6x + 36x' Bidx, where
Bx =~ Hf(xy) is a symmetric positive-definite approximation.

o Update step: x,1 = X —ay B, Iy (xy), with &, determined via line search.

e Special cases:

o B, = Hf(x,): Newton’s method.

e B, = I: Gradient descent.

Quasi-Newton Methods

Secant Condition

e To update By without computing a new Hessian, impose the secant condition:

Bit+1(Xk+1 — xk) = VF(xkq1) — VF(xk).

e Define:
Sk = Xk+1 — Xky Yk = Vf(ka) — V’r(xk),

so that By 1Sk = Y.

e This ensures B, behaves like the local Hessian along the line connecting x, and xj_ 1.

e Additional constraints (e.g., symmetry) narrow the possible By, 1.

Quasi-Newton Methods

Symmetric Quasi-Newton Update

e We seek the symmetric matrix By 1 that:

g]in ”Bk_|_1 — Bk” S.t. B/L_l — Bk_|_1, Bk—|—15k —= Yk-
k+1

e This “lazy” update preserves as much of the old approximation as possible while enforcing
the secant condition.

¢ Using the Frobenius norm ||A||2 = tr(A' A) gives a least-squares-type solution.
e But since By models curvature, mismatched units across variables can distort the update.

e Remedy: use a weighted Frobenius norm with a positive-definite weighting matrix W:

|A||%, :=tr(A" W' AW).

Quasi-Newton Methods
DFP Update

e Using the weighted Frobenius norm yields the Davidon-Fletcher-Powell (DFP) update.

e Proposition: For symmetric By € R"*" and vectors s,y € R", it Wy = s and W is positive

definite, then:

min [|B — Bollw s.t. B' =B, Bs=y

has solution

B = (I—pys)Bo(l —psy)+pyy ,
wherep =1/(s'y).

e This formula defines the DFP quasi-Newton update.

e Ensures symmetry and secant condition while improving numerical stability.

Quasi-Newton Methods

DFP Derivation Outline

e Assume W is positive definite, W = LL' (Cholesky factorization).

e Substitute B = By + L~ ' DL~ and reduce problem to:

min tr(D'D) st.D' =D, Dw =z

wherew = L71s,z= L' (y — Bgs).

e Apply Lagrange multipliers: A(D; A,A) = 5tr(D' D) +tr(A"(D—-D")) + A" (z— Dw).

e Optimize to find: D = %(/\wT wi'), A= ”f’sz Hfﬂ’"i‘l’llw.
2 2

e Substitute back to obtain final DFP formula.

Quasi-Newton Methods

DFP Algorithm Implementation

e The Davidon-Fletcher-Powell (DFP) updateis: B < (I —pys')B(I —psy ') + pyy', where
o=1/(s"y).

e This resembles Newton’s method but replaces the Hessian with the updated approximation B.

e The main cost per iteration: solving Bd = —Vf(x).

e Using the Sherman—Morrison formula, we can update the inverse B~ efficiently without
explicit inversion:

B—l . B—l qu T h . B—l
= by y_l_q 0SS , whereq — 0 y.

e Runtime: reduces from O(n3) to O(n?) for dense problems.

Quasi-Newton Methods
From DFP to BEGS

e DFP maintains B!, an approximation of the inverse Hessian.

e Directly storing and updating B~ is computationally efficient but may introduce numerical
instability.

e To mitigate instability, a more stable alternative — the BFGS
(Broyden-Fletcher-Goldfarb—Shanno) method — updates the inverse Hessian directly.

e BFGS update constraint: C, 1y, = Sk, Sk = Xkt1 — Xk, Yk = VF(Xpp1) — VF(Xk).

. T . .
e Optimization formulation: min¢, , ||Cxt1 — Cillwr st G 1 = Cey1, Cey1Yk = Sk

e The result (flipping the roles of s and y) gives: C <— (I —psy ')C(l — pys') + pss'.

Quasi-Newton Methods
L-BEFGS

e BFGS update: Ck+1 — (/ — pkskyZ)Ck(l — pkyksZ) +kakSZ. with Ck ~ Hf(xk)_l an
approximation of the inverse Hessian.

e Advantages:
e Avoids explicit computation/inversion of Hy.
e Empirically converges faster and more stably than DFP.

e Guarantees positive definiteness if C; is SPD and sZy Kk > 0.

e Cost: still requires O(n?) storage for Cy.

e L-BFGS (Limited-memory BFGS): Stores only a few recent (s;, y;) pairs. Applies updates
recursively to approximate Cj. Greatly reduces memory cost and is widely used in large-scale
ML optimization.

Quasi-Newton Methods

Summary

e Both DFP and BFGS are quasi-Newton methods.

e DFP: updates approximation of Hessian By.

e BFGS: updates approximation of inverse Hessian C, = B, L

e Their updates are structurally similar but inversely related:
Bi+1 = (I —pys ")Bi(I —psy") +pyy ",
Cir1= (I —psy")Ci(I —pys') + pss '
e BFGS tends to outperform DFP in practice due to better numerical stability.

e [-BFGS remains one of the most popular large-scale optimization algorithms today.

Table of Content

® Multivariable Strategies
® Gradient Descent
e Newton’s Method

e Quasi-Newton Methods

Gradient-Based Optimization Methods

Step 1

® In each step:

R\
L)

<SS AKX
S

“"'ll y ' ¢S o, --‘/ﬁ"_"-'i; :
XAz

® Pick a descent direction

50 “',(-’i”:‘" S, e Gradient Descent/Newton’s
S, Method /Quasi-Newton
Methods/ ...

-50
100 ® Decide a step size

® Line Search/Scheduled Step

’ B . Sizes/ ...

ps: / /medium.com / @pau.moskwa / eli5-ml-optmization-algorithms-9ba6305b1190

Image source: htt

https://medium.com/@pau.moskwa/eli5-ml-optmization-algorithms-9ba6305b1190

