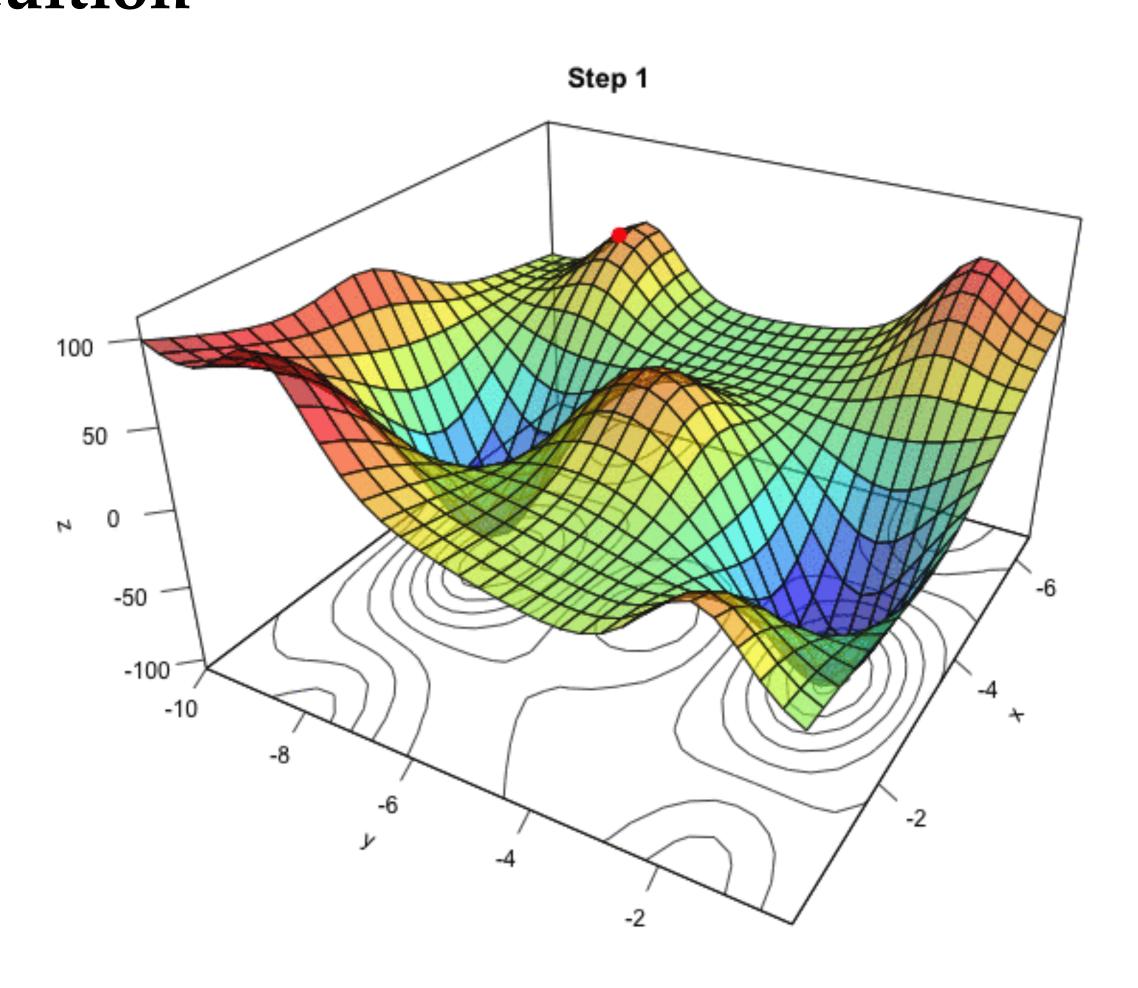
Lec 11: Unconstrained Optimization II

15-369/669/769: Numerical Computing

Instructor: Minchen Li

Multivariable Strategies Intuition



- In each step:
 - Pick a descent direction
 - Decide a step size

Table of Content

- Multivariable Strategies
 - Gradient Descent
 - Newton's Method
 - Quasi-Newton Methods

Table of Content

- Multivariable Strategies
 - Gradient Descent
 - Newton's Method
 - Quasi-Newton Methods

Gradient Descent with Line Search

• **Goal:** Minimize differentiable $f: \mathbb{R}^n \to \mathbb{R}$ by iteratively updating:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - t_k \nabla f(\mathbf{x}_k),$$

where t_k is determined by a line search.

- **Descent direction:** $-\nabla f(\mathbf{x}_k)$ ensures $f(\mathbf{x}_{k+1}) < f(\mathbf{x}_k)$ for small enough $t_k > 0$.
- Line search formulation: define one-dimensional function

$$g(t) = f(\mathbf{x}_k - t\nabla f(\mathbf{x}_k)),$$

and choose t_k to approximately minimize g(t).

• Convergence: If f bounded below and differentiable, gradient descent decreases $f(\mathbf{x}_k)$.

Pseudo-Code

```
function Gradient-Descent(f(\mathbf{x}), \mathbf{x}_0)

\mathbf{x} \leftarrow \mathbf{x}_0

for k \leftarrow 1, 2, 3, ...

Define-Function(g(t) \coloneqq f(\mathbf{x} - t\nabla f(\mathbf{x})))

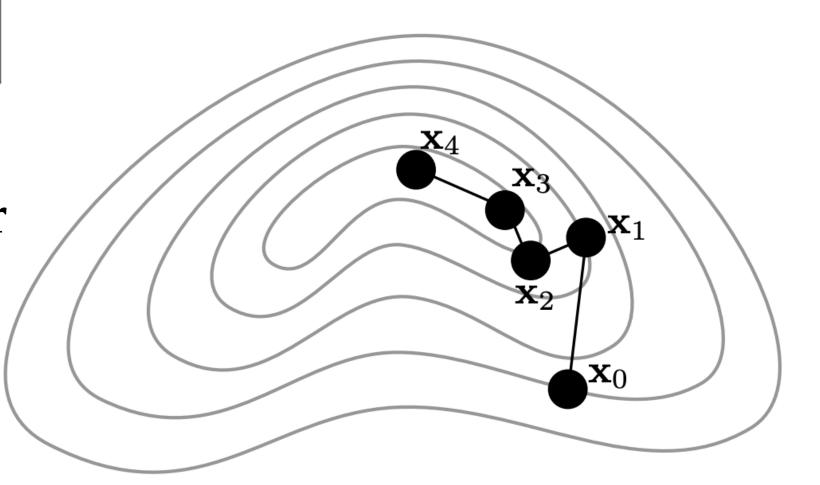
t^* \leftarrow \text{Line-Search}(g(t), t \ge 0)

\mathbf{x} \leftarrow \mathbf{x} - t^* \nabla f(\mathbf{x}) \Rightarrow \text{Update estimate of minimum}

if \|\nabla f(\mathbf{x})\|_2 < \varepsilon then

\mathbf{return} \ x^* = \mathbf{x}
```

• The gradient points perpendicular to the level sets of the function:



Inexact Line Search

• **Inexact line search:** Instead of exact minimization, can iteratively halve t_k starting from 1 until it satisfy the **Wolfe conditions:**

$$f(\mathbf{x}_k + t_k \mathbf{d}_k) \leq f(\mathbf{x}_k) + c_1 t_k \mathbf{d}_k^T \nabla f(\mathbf{x}_k),$$

$$-\mathbf{d}_k^T \nabla f(\mathbf{x}_k + t_k \mathbf{d}_k) \geq -c_2 \mathbf{d}_k^T \nabla f(\mathbf{x}_k),$$
where $0 < c_1 < c_2 < 1$.

- Again, these ensure that the gradient norm converges to zero starting from **arbitrary** $x_0 a$ property called **global convergence**.
- In practice, can use a parameter-free, simplified version to just ensure energy decrease:

$$f(\mathbf{x}_k + t_k \mathbf{d}_k) \leq f(\mathbf{x}_k),$$

which still guarantees global convergence.

Example: Violation of Wolfe Conditions

- Consider $f(x, y) = \frac{1}{2}(x^2 + y^2)$, starting from $(x_0, y_0) = (1, 0)$.
- Gradient: $\nabla f(x, y) = (x, y)$.
- Update rule with step size t_k :

$$x_{k+1} = (1 - t_k)x_k,$$

 $y_{k+1} = (1 - t_k)y_k.$

- If we take $t_k = 2$, gradient descent diverges: $(x_k, y_k) = (1, 0), (-1, 0), (1, 0), \dots$
- If we take $t_k = (1/2)^k$, $(x_k, y_k) \to (0.288788..., 0)$, which is not the minimum at (0, 0).
- Poor choices of t_k can lead to convergence problems for gradient descent.

Gradient Descent without Line Search

- **Motivation:** Line search can be computationally expensive each iteration requires multiple function (and gradient) evaluations.
- Constant step size: fix $t_k = t$, also called the *learning rate* in machine learning.
- Trade-off:
 - Large *t*: fast progress but possible oscillation or divergence.
 - Small *t*: guaranteed descent but slow convergence.
- If f is convex, twice differentiable, and ∇f is L-Lipschitz: $\|\nabla f(\mathbf{x}) \nabla f(\mathbf{y})\|_2 \le L\|\mathbf{x} \mathbf{y}\|_2$, and $t \le 1/L$, then $f(\mathbf{x}_k) f(\mathbf{x}^*) \le \frac{\|\mathbf{x}_0 \mathbf{x}^*\|_2^2}{2tk}$.
 - **Implication:** Constant step size yields O(1/k) convergence rate for convex functions.

Learning Rate Schedule

- For more general f, choose t_k as a function of iteration k, not of current gradient.
- Two key desiderata:
 - Diminishing step size: $t_k \to 0$ as $k \to \infty$ (avoids overshooting).
 - Infinite travel: $\sum_{i=0}^{k} t_i \to \infty$ as $k \to \infty$ (ensures progress can be made).
- Example: *Harmonic sequence* $t_k = 1/k$ satisfies both.
- Practical schedules:
 - Step decay: reduce t_k by factor every few epochs.
 - Cyclic or warm restarts: alternate between large and small steps.
- Used widely in machine learning to balance convergence speed and stability.

Table of Content

- Multivariable Strategies
 - Gradient Descent
 - Newton's Method
 - Quasi-Newton Methods

Newton's Method

Newton's Method in Multiple Variables

- Goal: Extend Newton's method to multivariable functions $f: \mathbb{R}^n \to \mathbb{R}$.
- **Idea:** Use both first- and second-order derivatives:
 - Gradient: $\nabla f(\mathbf{x})$; Hessian: $H_f(\mathbf{x}) = \nabla^2 f(\mathbf{x})$
- Taylor expansion near \mathbf{x}_k : $f(\mathbf{x}) \approx f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^{\top} (\mathbf{x} \mathbf{x}_k) + \frac{1}{2} (\mathbf{x} \mathbf{x}_k)^{\top} H_f(\mathbf{x}_k) (\mathbf{x} \mathbf{x}_k)$.
- Optimization step: Set gradient of RHS to zero:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - [H_f(\mathbf{x}_k)]^{-1} \nabla f(\mathbf{x}_k).$$

- \bullet Converges quadratically when x_0 is close to a local minimum.
- Cost: computing and storing H_f requires $O(n^2)$ memory; best for small or medium n.

Newton's Method

Practical Considerations

• Geometric intuition:

- Gradient descent uses local slope "walk downhill."
- Newton's method uses curvature "estimate where the valley floor is."

• When H_f is nearly singular:

- Large, unstable steps possible.
- Use a damping factor $\gamma > 0$: $\mathbf{x}_{k+1} = \mathbf{x}_k \gamma [H_f(\mathbf{x}_k)]^{-1} \nabla f(\mathbf{x}_k)$.
- Or perform a line search along direction $\mathbf{d}_k = -[H_f(\mathbf{x}_k)]^{-1} \nabla f(\mathbf{x}_k)$.
- Computational cost: Each iteration requires forming and inverting H_f. Often more expensive than gradient descent, but faster convergence.

Newton's Method

Handling Indefinite Hessians

• If H_f is **not positive definite**, local region may resemble a saddle or peak rather than a minimum, possibly leading to a non-descent search direction.

• Remedies:

- Check if H_f is positive definite before using it. If not, revert to gradient descent step: $\mathbf{x}_{k+1} = \mathbf{x}_k \gamma \nabla f(\mathbf{x}_k)$.
- Similar to Tikhonov regularization, compute $\mathbf{d}_k = -[H_f(\mathbf{x}_k) + \mu I]^{-1} \nabla f(\mathbf{x}_k)$ instead.
- Modify H_f , e.g., project it to the nearest positive definite matrix (the **projected Newton's method**): Given the Eigendecomposition $H_f(\mathbf{x}_k) = Q\Lambda Q^T$, compute $\mathbf{d}_k = -[H_f^+(\mathbf{x}_k)]^{-1}\nabla f(\mathbf{x}_k)$, where $H_f^+(\mathbf{x}_k) = Q\Lambda^+Q$ and $\Lambda_{ij}^+ = \max(\Lambda_{ij}, \epsilon)$, with $\epsilon > 0$.

In practice, directly projecting H_f can be expensive. If $f = \sum_i f_i$, can separately project $\nabla^2 f_i$ (possibly with smaller sizes, e.g. a spring in the mass-spring system only associates with 2 nodes).

Table of Content

- Multivariable Strategies
 - Gradient Descent
 - Newton's Method
 - Quasi-Newton Methods

Overview

- **Motivation:** Newton's method converges rapidly but requires computing and inverting the full Hessian $H_f(\mathbf{x}_k)$, which is $O(n^2)$ in size and thus expensive.
- Idea: Approximate H_f using cheaper computations, leading to quasi-Newton methods.
- **Approximation:** near current iterate \mathbf{x}_k , $f(\mathbf{x}_k + \delta \mathbf{x}) \approx f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^\top \delta \mathbf{x} + \frac{1}{2} \delta \mathbf{x}^\top B_k \delta \mathbf{x}$, where $B_k \approx H_f(\mathbf{x}_k)$ is a symmetric positive-definite approximation.
- Update step: $\mathbf{x}_{k+1} = \mathbf{x}_k \alpha_k B_k^{-1} \nabla f(\mathbf{x}_k)$, with α_k determined via line search.
- Special cases:
 - $B_k = H_f(\mathbf{x}_k)$: Newton's method.
 - $B_k = I$: Gradient descent.

Secant Condition

• To update B_k without computing a new Hessian, impose the secant condition:

$$B_{k+1}(\mathbf{x}_{k+1} - \mathbf{x}_k) = \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k).$$

• Define:

$$\mathbf{s}_k := \mathbf{x}_{k+1} - \mathbf{x}_k, \quad \mathbf{y}_k := \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k),$$

so that $B_{k+1}\mathbf{s}_k = \mathbf{y}_k$.

- This ensures B_k behaves like the local Hessian along the line connecting x_k and x_{k+1} .
- Additional constraints (e.g., symmetry) narrow the possible B_{k+1} .

Symmetric Quasi-Newton Update

• We seek the symmetric matrix B_{k+1} that:

$$\min_{B_{k+1}} \|B_{k+1} - B_k\|$$
 s.t. $B_{k+1}^{\top} = B_{k+1}$, B_{k+1} s_k = y_k.

- This "lazy" update preserves as much of the old approximation as possible while enforcing the secant condition.
- Using the Frobenius norm $||A||_F^2 = tr(A^T A)$ gives a least-squares-type solution.
- But since B_k models curvature, mismatched units across variables can distort the update.
- Remedy: use a weighted Frobenius norm with a positive-definite weighting matrix W:

$$||A||_W^2 := \operatorname{tr}(A^\top W^\top AW).$$

DFP Update

- Using the weighted Frobenius norm yields the Davidon-Fletcher-Powell (DFP) update.
- **Proposition:** For symmetric $B_0 \in \mathbb{R}^{n \times n}$ and vectors \mathbf{s} , $\mathbf{y} \in \mathbb{R}^n$, if $W\mathbf{y} = \mathbf{s}$ and W is positive definite, then:

$$\min_{B} \|B - B_0\|_{W}$$
 s.t. $B^{\top} = B$, $B\mathbf{s} = \mathbf{y}$

has solution

$$B = (I - \rho \mathbf{y} \mathbf{s}^{\top}) B_0 (I - \rho \mathbf{s} \mathbf{y}^{\top}) + \rho \mathbf{y} \mathbf{y}^{\top},$$

where $\rho = 1/(\mathbf{s}^{\top}\mathbf{y})$.

- This formula defines the DFP quasi-Newton update.
- Ensures symmetry and secant condition while improving numerical stability.

DFP Derivation Outline

- Assume *W* is positive definite, $W = LL^{\top}$ (Cholesky factorization).
- Substitute $B = B_0 + L^{-\top}DL^{-1}$ and reduce problem to:

$$\min_{D} \frac{1}{2} \operatorname{tr}(D^{\top}D) \quad \text{s.t. } D^{\top} = D, \ D\mathbf{w} = \mathbf{z},$$

where **w** = L^{-1} **s**, **z** = L^{\top} (**y** - B_0 **s**).

- Apply Lagrange multipliers: $\Lambda(D; A, \lambda) = \frac{1}{2} \operatorname{tr}(D^{\top}D) + \operatorname{tr}(A^{\top}(D D^{\top})) + \lambda^{\top}(\mathbf{z} D\mathbf{w})$.
- Optimize to find: $D = \frac{1}{2}(\lambda \mathbf{w}^{\top} + \mathbf{w}\lambda^{\top})$, $\lambda = \frac{2\mathbf{z}}{\|\mathbf{w}\|_2^2} \frac{\mathbf{z} \cdot \mathbf{w}}{\|\mathbf{w}\|_2^4} \mathbf{w}$.
- Substitute back to obtain final DFP formula.

DFP Algorithm Implementation

- The **Davidon–Fletcher–Powell (DFP)** update is: $B \leftarrow (I \rho \mathbf{y} \mathbf{s}^{\top}) B(I \rho \mathbf{s} \mathbf{y}^{\top}) + \rho \mathbf{y} \mathbf{y}^{\top}$, where $\rho = 1/(\mathbf{s}^{\top} \mathbf{y})$.
- This resembles Newton's method but replaces the Hessian with the updated approximation B.
- The main cost per iteration: solving $B\mathbf{d} = -\nabla f(\mathbf{x})$.
- Using the Sherman–Morrison formula, we can update the **inverse** B^{-1} efficiently without explicit inversion:

$$B^{-1} = B_0^{-1} - \frac{\mathbf{q}\mathbf{q}^{\top}}{\mathbf{y}^{\top}\mathbf{q}} + \rho \mathbf{s}\mathbf{s}^{\top}$$
, where $\mathbf{q} = B_0^{-1}\mathbf{y}$.

• Runtime: reduces from $O(n^3)$ to $O(n^2)$ for dense problems.

From DFP to BFGS

- DFP maintains B^{-1} , an approximation of the inverse Hessian.
- Directly storing and updating B^{-1} is computationally efficient but may introduce numerical instability.
- To mitigate instability, a more stable alternative the BFGS
 (Broyden–Fletcher–Goldfarb–Shanno) method updates the inverse Hessian directly.
- BFGS update constraint: $C_{k+1}y_k = s_k$, $s_k = x_{k+1} x_k$, $y_k = \nabla f(x_{k+1}) \nabla f(x_k)$.
- Optimization formulation: $\min_{C_{k+1}} \|C_{k+1} C_k\|_{W'}$ s.t. $C_{k+1}^\top = C_{k+1}$, $C_{k+1}\mathbf{y}_k = \mathbf{s}_k$.
- The result (flipping the roles of **s** and **y**) gives: $C \leftarrow (I \rho sy^{\top})C(I \rho ys^{\top}) + \rho ss^{\top}$.

L-BFGS

• **BFGS update:** $C_{k+1} = (I - \rho_k \mathbf{s}_k \mathbf{y}_k^\top) C_k (I - \rho_k \mathbf{y}_k \mathbf{s}_k^\top) + \rho_k \mathbf{s}_k \mathbf{s}_k^\top$. with $C_k \approx H_f(\mathbf{x}_k)^{-1}$ an approximation of the inverse Hessian.

Advantages:

- Avoids explicit computation/inversion of H_f .
- Empirically converges faster and more stably than DFP.
- Guarantees positive definiteness if C_k is SPD and $\mathbf{s}_k^{\top}\mathbf{y}_k > 0$.
- **Cost:** still requires $O(n^2)$ storage for C_k .
- L-BFGS (Limited-memory BFGS): Stores only a few recent (s_i , y_i) pairs. Applies updates recursively to approximate C_k . Greatly reduces memory cost and is widely used in large-scale ML optimization.

Summary

- Both DFP and BFGS are quasi-Newton methods.
- **DFP**: updates approximation of Hessian B_k .
- **BFGS**: updates approximation of inverse Hessian $C_k = B_k^{-1}$.
- Their updates are structurally similar but inversely related:

$$B_{k+1} = (I - \rho y s^{\top}) B_k (I - \rho s y^{\top}) + \rho y y^{\top},$$

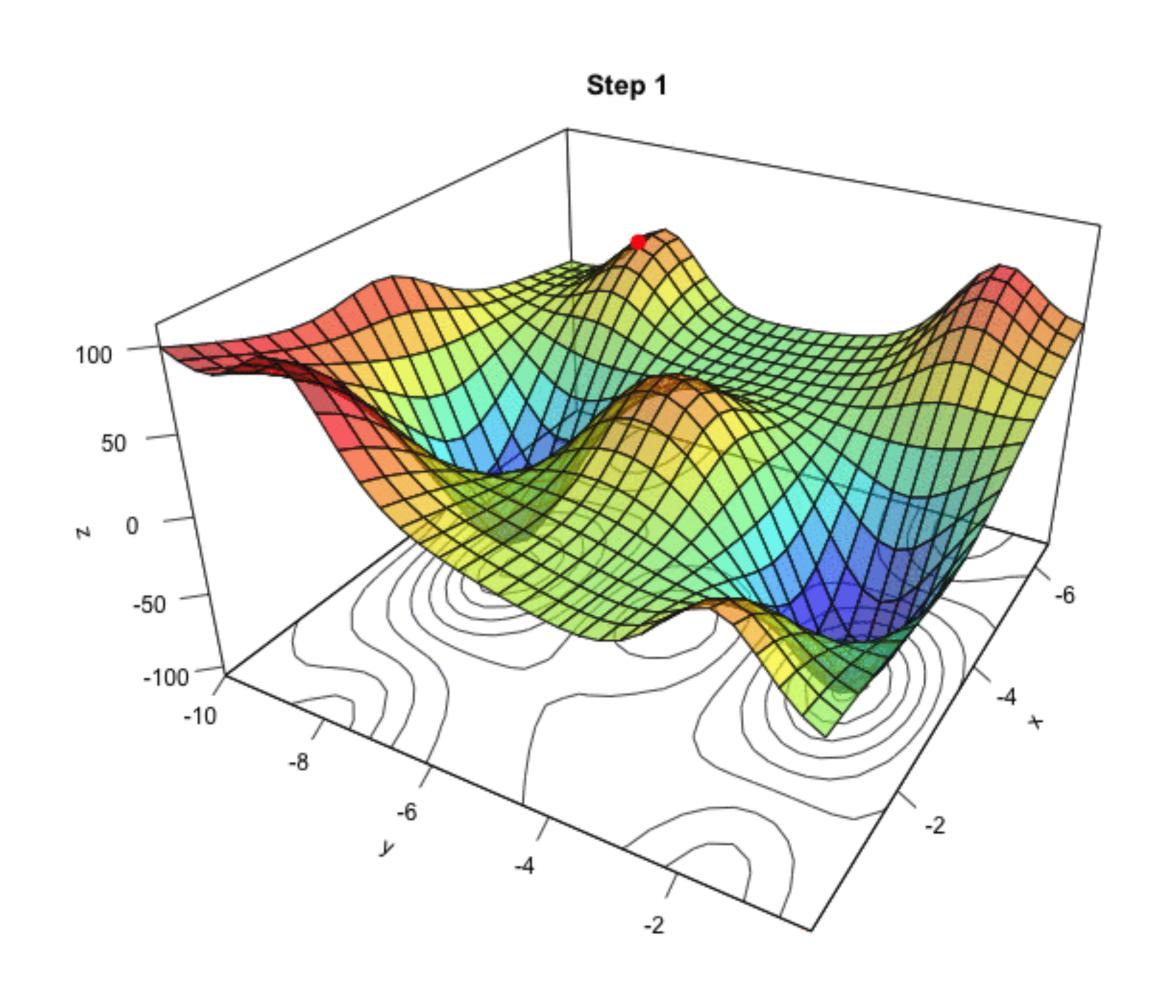
$$C_{k+1} = (I - \rho s y^{\top}) C_k (I - \rho y s^{\top}) + \rho s s^{\top}.$$

- BFGS tends to outperform DFP in practice due to better numerical stability.
- L-BFGS remains one of the most popular large-scale optimization algorithms today.

Table of Content

- Multivariable Strategies
 - Gradient Descent
 - Newton's Method
 - Quasi-Newton Methods

Gradient-Based Optimization Methods



- In each step:
 - Pick a descent direction
 - Gradient Descent/Newton's Method/Quasi-Newton Methods/...
 - Decide a step size
 - Line Search/Scheduled Step Sizes/...