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Vector Spaces

Definition

A member v € V is known as a vector; arrows will be used to indicate vector variables.

Definition 1.1 (Vector space over R). A wvector space over R is a set V closed under
addition and scalar multiplication satisfying the following axioms:

o Additive commutativity and associativity: For all u,v,w € V, v+ w = w + v and
(€ + 7))+ W =u+ (V+ W).

o Distributivity: For all v,w € V and a,b € R, a(v'+ W) = av+aw and (a+b)v = av+bv.

o Additive identity: There exists 0 € V with 0+ ¢ = ¥ for all 7 € V.

o Additive inverse: For all ¥ € V, there exists & € V with ¥+ @ = 0.

o Multiplicative identity: For allv e V, 1-v = 0.

o Multiplicative compatibility: For all ¥ € V and a,b € R, (ab)v = a(bv).




Vector Spaces

Examples

Example 1.1 (R" as a vector space). The most common example of a vector space is R".
Here, addition and scalar multiplication happen component-by-component:

(1,2) + (—3,4) = (1 — 3,2+ 4) =
10-(—1,1) = (10-—1,10- 1)

(_27 6)
= (—10, 10).

Example 1.2 (Polynomials). A second example of a vector space is the ring of polynomials
with real-valued coefficients, denoted R|z]. A polynomial p € R[] is a function p: R — R

taking the form™
p(z) = Z aRpT”.
k

Addition and scalar multiplication are carried out in the usual way, e.g., if p(z) = z?+2z—1
and q(r) = z°, then 3p(z) + 5q(z) = 52° + 3z + 62 — 3, which is another polynomial.




Vector Spaces
Span

Definition 1.2 (Span). The span of a set S C V of vectors is the set A weighted sum ¥, a;7;, where a; € R and @; € V

span S = {alﬁ'l + -+ arvr : U; €5 and a; € R for all z} is known as a linear combination of the vU;’s.

vla ’Ug S RQ span {vla ’Ug (C) Spall {1—)’17 ’5’27 173}

Figure 1.1 (a) Vectors ¥1,72 € R? (b) their span is the plane R?; (c)
span {¥1, U2, U3} = span {1, Us} because U3 is a linear combination of v, and .

< The set {71, 72, 73} is linearly dependent

span S is a subspace of V, a subset of V that is itself a vector space.



Vector Spaces

Linear Dependence

Definition 1.3 (Linear dependence). We provide three equivalent definitions. A set S C V
of vectors is linearly dependent if:

1. One of the elements of S can be written as a linear combination of the other elements,
or S contains zero.

Ezzzl c,Ur = 0 where c; # 0 for all &.

3. There exists ¥ € S such that span S = span S\{v}. That is, we can remove a vector

‘ 2. There exists a non-empty linear combination of elements vy, € S yielding
| from S without affecting its span.

If S is not linearly dependent, then we say it is linearly independent.



Vector Spaces

Dimensionality and Basis

Definition 1.4 (Dimension and basis). The dimension of V is the maximal size |S| of a
linearly independent set S C V such that spanS = V. Any set S satisfying this property
is called a basis for V.

Example 1.5 (R™). The standard basis for R™ is the set of vectors of the form

. =(0,...,0, 1, 0,...,0 ).

N N >y

~ "

k—1 elements n—k elements

That is, €, has all zeros except for a single one in the k-th position. These vectors are
linearly independent and form a basis for R"; for example in R® any vector (a,b,c) can be
written as ae; + bes + ces. Thus, the dimension of R™ is n, as expected.

Example 1.6 (Polynomials). The set of monomials {1, z,z%,z°,...} is a linearly inde-

pendent subset of R|x|. It is infinitely large, and thus the dimension of R|z] is co.



Vector Spaces

R"”, the n-Dimensional Euclidean Space

Definition 1.5 (Dot product). The dot product of two vectors @ = (aq,...,a,) and
b= (b,...,b,) in R™ is given by

n
a-b= E akbk.
k=1

| Example 1.7 (R?). The dot product of (1,2) and (—2,6)is1-—2+2-6 = —2+12 = 10.

the morm or length of a vector a |@]|2 = 1/ad+ -+ a2 =Vad-a.
the distance between two points @,b € R™ is ||b — @|».
- a: * g —
the angle 6 between a and b 6 = arccos il H5H When a = c¢b for some ¢ € R, we have § = arccos1 = 0
al|2]|0]|2

Definition 1.6 (Orthogonality). Two vectors a, b € R" are perpendicular, or orthogonal,
when @- b = 0.
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Linearity
Definition

Definition 1.7 (Linearity). Suppose V and )V’ are vector spaces. Then, £ : V — V' is
linear if it satisfies the following two criteria for all v, v7,v5 € V and ¢ € R:

o L preserves sums: L[U + Ua] = L[v7] + L[v5]

o L preserves scalar products: L|cv] = cL|v



Linearity
Example

Example 1.8 (Linearity in R™). The following map f : R? — R? is linear:

f(xay) — (3337 2x + Y, _y)'
We can check linearity as follows:

e Sum preservation:

flx1+ 22,91 +y2) = B3(x1 +22),2(x1 + x2) + (1 + y2), —(y1 + y2))
= (3271, 2:131 -+ Y1, —yl) -+ (3:[32, 2:272 + Yo, —yz)

f(z1,y1) + f(T2,92) vV

e Scalar product preservation:

f(ex,cy) = (3cz, 2cx + cy, —cy)
= ¢(3z,2x + y, —y)
=cf(z,y) v

Contrastingly, g(z,y) = xy? is not linear. For instance, g(1,1) = 1, but ¢(2,2) = 8 #
2-9(1,1), so g does not preserve scalar products.



Linearity
Example

Example 1.9 (Integration). The following “functional” £ from R[z]| to R is linear:

Llp(z)] = / p(z) da.

This more abstract example maps polynomials p(xz) € R[z] to real numbers L{p(z)| € R.
For example, we can write

1
1
£[3:1:2+a:—1]:/ (3:1:2+:1:—1)d:1:= 5
0

Linearity of £ is a result of the following well-known identities from calculus:

/c f(x d:v—c/ f(x
/01[ f(x) + g(x d:c—/ f(x dx-l—/o g(x) dx.



Linearity
Expanding a Linear Map

The vector @ = (a1, ...,ay) is equal to the sum ), ar€x, where €j is the k-th standard basis vector

if £ is linear we can expand:

Lla| =L Z ar€r | for the standard basis €}
Lk i

— Z L |ar€x| by sum preservation
k

= Z arL [€;] by scalar product preservation.
k

A linear operator £ on R" is completely determined by its action
on the standard basis vectors e;.

That is, for any vector @ € R™, we can use the sum above to determine L|a] by linearly
combining L[€é1],.. ., L[én].



Linearity
Matrices

The expansion of linear maps above suggests a context in which it is useful to store multiple
vectors in the same structure. More generally, say we have n vectors v1,...,v, € R™. We
can write each as a column vector:

V11 V12 Vin

. V21 . V22 . U2n
1 — ,’02 — . 9 ;’Un —

Umi Um2 Umn

Carrying these vectors around separately can be cumbersome notationally, so to simplify
matters we combine them into a single m X n matrix:

Vi1 V12 Vin

| | | V21 V292 Von
U1 Uy o Up | = .
I | :

Um1l Um?2 Umn

We will call the space of such matrices R™*",



Linearity
Identity Matrix

Example 1.11 (Identity matrix). We can store the standard basis for R™ in the n X n
“identity matrix” I,,x, given by:

—_ O
o O
o O

3

X

S

]
7
_Sbl_
_Sl_

D
— 3 d —
N

|

O
— O

o O
O =t e



Linearity
Matrix-Vector Product

a matrix in R™*™ can be multiplied by a column vector in R™

| | | Co

Ui V2 -t Up : = C1U1 + CoU2 + - -+ 4 CpUp.

Cn

Expanding this sum yields the following explicit formula for matrix-vector products:

V11 Vi2 ++°+ UVin C1 C1V11 T C2V12 T *** T CpVin
V21 (%% R V) V%) C2 C1U21 T C2V22 T *** T CpVU2np
Um1 Um2 e Umn Cn C1Um1 + CoUm2 + e + CnUmn

Example 1.12 (Identity matrix multiplication). For any & € R", we can write & = I,, xnZ,
where I,,«,, is the identity matrix from Example 1.11.



Linearity
Matrix-Matrix Product

We similarly define a product between a matrix M € R™*™ and another matrix in R"*?

with columns ¢; by concatenating individual matrix-vector products:

] | | |
M E]_ 82 * e Ep ME]_ MEQ e Mgp
] | | | |

We will use capital letters to represent matrices, like A € R™*"™, We will use the notation
A;; € R to denote the element of A at row ¢ and column j.



Linearity
Matrix Transpose

Definition 1.8 (Transpose). The transpose of a matrix A € R™*" is a matrix A' € R**™
with elements (A");; = Aj;.

Example 1.15 (Transposition). The transpose of the matrix

A=

Ot W
Sy = DN

is given by
+ (1 3 5
a=(214)

Geometrically, we can think of transposition as flipping a matrix over its diagonal.

(ANY'=4, (A+B)'=A4"+B", and (AB)' =B'A'




Linearity

Residual Norm

Example 1.16 (Residual norm). Suppose we have a matrix A and two vectors & and b.

If we wish to know how well AX approximates 5, we might define a residual 7 = b — Ax;
this residual is zero exactly when AZ = b. Otherwise, we can use the norm ||7]|2 as a proxy

for the similarity of AZ and b. We can use the identities above to simplify:

|73 = 116 — AZ]|3
(_’ AZT) - (b — AZT) as explained in §1.2.3

= (b— AZ) " (b — AZ) by our expression for the dot product above
=(b"

G“

— #T A7) (b— AZ) by properties of transposition
—b'b—b AF— 3 ATb+FT AT AZ after multiplication

All four terms on the right-hand side are scalars, or equivalently 1 X 1 matrices. Scalars
thought of as matrices enjoy one additional nice property ¢' = c, since there is nothing

to transpose! Thus,
ZTATb=(FTATb)T =b" Az

This allows us to simplify even more:
|FI2=b"b—2b" AT+ Z" AT A%
= || AZ||5 — 26" AZ + ||b]|5.



Linearity
Linear System: AX = b

For example:

— —>

A X b

3T + 2y + 92 =0 3 2 5 T 0
—4xr + 9y — 3z = -7 o -4 9 =3 y | = —7
20 — 3y — 3z = 1. 2 -3 -3 < 1

Write b as a linear combination of the columns of A

Definition 1.9 (Column space and rank). The column space of a matrix A € R™*" is
the span of the columns of A. It can be written as

col A ={A7: X € R"}.

The rank of A is the dimension of col A.

AZ = b is solvable exactly when b € col A.



Linearity
Inverse Matrix

— —
Suppose A is square and AX = b has a solution for all choices of b

l.

Then, we can substitute the standard basis e>1, e>2, e ?n to solve equations of the form A?i =¢;
. | L |
Al 1 Z2 -+ Zn | =\ Az Azy --- AZ,
. | I |
] |
=1 €61 €2 - €En = Inxn,

where I, is the identity matrix from Example 1.11. We will call the matrix with columns
T the inverse A=, which satisfies

AA Y = A7 A =1, 4.

By construction, (A71)"! = A. If we can find such an inverse, solving any linear system
AX = b reduces to matrix multiplication, since:

Z=1I,n@=(A"TA)Z = A" (AZ) = A 'b.
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Nonlinearity: Differential Calculus

Differentiation in One Variable

100 | 15 10
. 1
& ) 5
S~ 0 O
5 0 0
—4-20 24 -2-101 2 -=-1-050 05 1
€T ZT €T

Figure 1.4 The closer we zoom into f(z) = z° + z2 — 8z + 4, the more it looks like a
line.

The derivative f’(x) of a function f(x) : R — R is the slope of the approximating line,
computed by finding the slope of lines through closer and closer points to x:

y—zr Y —T




Nonlinearity: Differential Calculus

Approximating Derivatives

Rearranging terms and defining Ax = y — x shows:

from the relationship above

@bz - (1) - f@)] = | [ - 1)) dt

y
< |Az] / | f"(t)| dt, by the Cauchy-Schwarz inequality

Take z,y € R. Then, we can expand:
< D|Az|?, assuming |f”(t)| < D for some D > 0.

) — f(z) = / " #(t) dt by the Fundamental Theorem of Calculus
=yf'(y) —zf'(z) — /m ’ tf"(t) dt, after integrating by parts
— (-2 (@) + 9 W) - Fa) - [ e e
~-a)f@+y [ fOd- [ e

again by the Fundamental Theorem of Calculus
y

— (y—2)f' (@) + / (v — )" (t) dt.

T



Nonlinearity: Differential Calculus
Infinitesimal Big-O

Figure 1.5 Big-O notation; in the £ neighborhood of the origin, f(x) is dominated
by Cg(x); outside this neighborhood, C'g(x) can dip back down.

Definition 1.10 (Infinitesimal big-O). We will say f(xz) = O(g(x)) if there exists a
constant C' > 0 and some £ > 0 such that |f(x)| < C|g(x)| for all z with |z| < €.



Nonlinearity: Differential Calculus

Taylor’s Theorem

Our derivation above shows the following relationship for smooth functions f : R — R:

f(z + Az) = f(x) + f'(x)Az + O(Az?).

This is an instance of Taylor’s theorem, which we will apply copiously when developing
strategies for integrating ordinary differential equations. More generally, this theorem shows
how to approximate differentiable functions with polynomials:

Axk
k!

@+ A2) = (@) + [ (@)Az + (@) S+ o+ 1D (a)

- O(AzFT).



Nonlinearity: Differential Calculus

Differentiation in Multiple Variables

If a function f takes multiple inputs, then it can be written f(Z) : R® — R for £ € R".

In other words, to each point £ = (z1,...,x,) in n-dimensional space, f assigns a single
number f(x1,...,%n).

Definition 1.11 (Partial derivative). The k-th partial derivative of f, notated %, 1S
given by differentiating f in its k-th input variable:

f d

_(xlw . wxn) = (mla .. '7mk—l7t7xk+17° y '7:En)|t::1;k-

833k o dt



Nonlinearity: Differential Calculus
Gradient

Using single-variable calculus, for a function f : R" — R,
f(f—l_ Af) — f(xl + AZBl,ZCQ + Aw?a covy Ty T A.’L’n)

= f(z1,22 + Azs,...,x, + Az,) A (,i‘:f A$1+O(Aﬂ3%)
1

by single-variable calculus in x;

p ]
f(z1, ..., +Z 83;’;Aa:k +O(A:ck)
by repea,tmg this n — 1 times in x5, ..., 2,

= f(@) + V(@) - AZ + O(||AZ])3),

where we define the gradient of f as

V@) = (g @ @ (@) €R™



Nonlinearity: Ditferential Calculus
Gradient

Graph of f(Z) Steepest ascent Level sets of f(ZX)

Figure 1.6 We can visualize a function f(x1,z3) as a three-dimensional graph; then
V f(Z) is the direction on the (x1,z2) plane corresponding to the steepest ascent
of f. Alternatively, we can think of f(x,,z3) as the brightness at (x1,zs) (dark
indicates a low value of f), in which case Vf points perpendicular to level sets
f(Z) = c in the direction where f is increasing and the image gets lighter.



Nonlinearity: Differential Calculus
Directional Derivative

We can differentiate f in any direction v via the directional derivative Dz f:

if(a_ﬂ‘ tV)|t=0 = Vf(Z) - V.

Dz f(Z) 7

Example 1.18 (R?). Take f(z,y) = zy°. Then,

6_f — 2$y3 a_f — 3x2y2.

ox oy

Equivalently, V f(z,y) = (2zy°,3z%y?). So, the derivative of f at (z,y) = (1,2) in the
direction (—1,4) is given by (—1,4) - Vf(1,2) = (—1,4) - (16,12) = 32.



Nonlinearity: Differential Calculus

Quadratic Forms

Example 1.20 (Quadratic forms). Take any matrix A € R"*", and define f(Z) = #' AZ.
Writing this function element-by-element shows

vJ

Expanding f and checking this relationship explicitly is worthwhile. Take some k €
{1,...,n}. Then, we can separate out all terms containing x:

f(:l—f) = AkaIJi + Tk ZAszEZ + ZAijBj + Z Aisz’xj.

17k J7#k 1,7k
8 n
a—f = 2Apezi + [ Y Auxi+ Y Agiz; | =) (A + Agi)zi.
Lk itk £k i=1

This sum looks a lot like the definition of matrix-vector multiplication! Combining these
partial derivatives into a single vector shows Vf(Z) = (A+ A")Z. In the special case when

‘ With this factorization,
‘ A is symmetric, that is, when A" = A, we have the well-known formula V f (%) = 2AZ.



Nonlinearity: Differential Calculus
Jacobian

we should consider f : R®™ — R™. That is, f inputs n numbers and outputs m numbers

Definition 1.12 (Jacobian). The Jacobian of f : R™ — R™ is the matrix Df(x) € R™*™
with entries
0fi

533]'.

(Df)ij =

Example 1.21 (Jacobian computation). Suppose f(z,y) = (3z, —zy?, z + y). Then,

3 0
Df(z,y)=| —v* —2zy |.

1 1

Example 1.22 (Matrix multiplication). Unsurprisingly, the Jacobian of f(Z) = AX for
matrix A is given by D f(Z) = A.
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