Superscalar

Computer Architecture: Design and Simulation
CMU 15-346, Spring 2021

How to go below 1 CPI

= Pipelining has its limitations
- Latch delays
- Dependencies

* Fundamentally, fetching 1 per cycle is a limitation

(MU 15-346, Spring 2021

Simple first

* Duplicate the pipeline
- Increases hazards, but possible
- Also VLIW
- Compiler groups multiple instructions into bundles
- (Can the compiler make big enough bundles?
- Stay tuned for this approach

(MU 15-346, Spring 2021

Fetching More

" To execute more than 1, the processor needs to fetch more
* Problem 1: Instruction bundle crosses cache line
- Multiport cache
- Banking
* Problem 2: Branches
- Access predictor / BTB for all four instructions (banking)
- Chain results to determine fetch bundle
- Trace cache

(MU 15-346, Spring 2021

New Pipeline

* Fetch-> Execute -> State Update

= Welcome to queuing theory ;)

(MU 15-346, Spring 2021

The new ID stage(s)

* In-order flow of fetched instructions
- Checks dependencies
- Dispatches instructions to specific function units

(MU 15-346, Spring 2021

Modern CPU Design

_ Fetch Address
Retirement Control i
Unit Instruction

Register
File

BT Instructions
Decode |

Instruction Control

Cache

Operations

Register Updates

Prediction OK?

S Functional
Units

Operation Results

Addr. Addr.

Data Data

xecution

CMU 15-346, Spring 2021

Dynamic Scheduling

= (an processors find independence in the instruction stream?
(ILP)

- Especially, can we hide memory latency?
" Interesting things:

- Dependencies / Registers
- Exceptions

(MU 15-346, Spring 2021

Approaches

= Fire (orissue) in-order or out-of-order
= Complete in-order or out-of-order

" FICl - 5-stage from before
" FICO - Coming up

= FOCO - Stay tuned

= FOCI - No.

(MU 15-346, Spring 2021

FICO picture

= Still combined dispatch / schedule stage
= Register file with busy and value
= Scoreboard for each FU with busy

(MU 15-346, Spring 2021

A dynamic scheduling algorithm:
Simple interlocking (FICO)

1. [Dispatch/Scheduling unit (combined unit)]
(a) for all FU’s do:
if (FU[i] is pipelined) then Scoreboard[i].Busy = False
(b) for each Inst in SchedQueue do:
if (1Regs[Inst.Src1].Busy
AND !Regs[Inst.Src2].Busy
AND !Regs[Inst.Dest].Busy
AND !Scoreboard[Inst.FU].Busy)

then
Scoreboard[Inst.FU].Busy = True
Regs[Inst.Dest].Busy = True
// Issue instruction to function unit Inst.FU
else

exit loop // halt issuing

2. [Execution unit, at completion of instruction Inst]
(a) Regs[Inst.Dest].Busy = False
(b) if (Inst.FU pipeline advances and now first stage is free) then
Scoreboard[Inst.FU].Busy = False

CMU 15-346, Spring 2021

Examples

ADD R1, R2, R3
MUL R4, R1, R5
ADD R3, R1, R2
ADD R2, R4, R1

MUL R1, R2, R3
ADD R2, R3, R1
ADD R4, R5, R6

(MU 15-346, Spring 2021

FOCO

= SplitID
- Dispatch in-order
- Schedule out-of-order

= Common Data Bus (or result bus(es))
- Broadcast completed results to all waiting instructions

(MU 15-346, Spring 2021

Renaming Registers

= Robert Tomasulo had a problem
- IBM 360 architecture had 4 FP registers
- Lots of hazards
- Not necessarily superscalar (hence one CDB)

- Everything scheduled gets a tag

" Recall:
- IPC~ #regs
- S0 how do we increase IPC without changing the ISA

(MU 15-346, Spring 2021

Tomasulo Hardware

From instruction unit

l

Instruction FP registers |
gueue
Load/store
operations
¥ Floating-point Operand
Address unit operations buses
Store buffers
¥ ¢ v Lload buffers
Y
Operation bus
L J L | I b I
3 1 2
2 Reservation 1
1 stations
Data y Address
Memory unit 'FP adders | _
Common data bus (CDB)

(MU 15-346, Spring 2021

Note half cycles

= Sometimes things can take place on “half cycles”
- For example: (in FICl design)
- Update the register file on rising edge
- Read register file on falling edge

(MU 15-346, Spring 2021

Tomasulo algorithm, part 1

For each cycle of execution...

[Dispatch unit] for all instructions | in DispatchQueue do:
If (SchedQueue is not full) then
(@) Add | to first free slot of SchedQueue (="RS") // Call this RS below

(b) Delete | from DispatchQueue I/ Instruction | is now “dispatched”

(c) RS.FU =1.FU
(d) RS.Dest = I.Dest
(e) for all source registers, i, of | do
if (Regs[l.Src[i]].Ready = True) then
RS.Src[i].Value = Regs[l.Src[i]].Value
RS.Src[i].Ready = True
else
RS.Src[i].Tag = Regs[1.Src[i]].Tag // Copy the tags from the RF
RS.Src[i].Ready = False

() Regs[l.Dest].Tag = unique tag id /l tag (rename) the source
(g) RS.DestRegTag = Regs[l.Dest].Tag
(h) Regs|l.Dest].Ready = False Il value ready only after execution

else exit loop // stop dispatching if scheduling queue is full

CMU 15-346, Spring 2021

Tomasulo algorithm, part 2

[Scheduling unit]
for each RS = entry in SchedQueue do:
(a) for all source registers, i, of RS do:
iIf (CDB.Tag = RS.Src[i].Tag) then // broadcast on CDB matches stored tag
RS.Src[i].Ready = True
RS.Src[i].Value = CDB.Value
(b) if ((for all i: RS.Src[i].Ready = True) // WAKEUP: If all registers are ready...
and Scoreboard[RS.FU].Busy = False) then
Scoreboard[RS.FU].Busy = True // ...reserve the FU and issue
Issue the instruction at RS on FU

step (b) is called “"wake-up”
when more than one instruction is ready, picking between them is called “select” (here we’re using
FIFO as a select algorithm)

CMU 15-346, Spring 2021

Tomasulo Algorithm, part 3

[Execution unit, for function unit FU]
if (FU pipeline advances and now first stage is free) then Scoreboard[FU].Busy = False
[Execution unit, at completion of instruction |]
if (CDB.Busy = False) then // Broadcast the instruction results
(a) CDB.Busy = True
(b) CDB.Tag = 1.Tag
(c) CDB.Value = I.Value
(d) CDB.Reg = I.Dest
(e) if (I.LFU is not pipelined) then
Scoreboard[l.FU].Busy = False
(f) Delete | from Sched Queue /// Note: in write-up, SU does the delete

[State update unit]
if (CDB.Busy = True)
(a) CDB.Busy = False
iIf (CDB.Tag = Regs[CDB.Reg].Tag) then
(@) Regs[CDB.Reg].Ready = True // Update the RF contents
(b) Regs[CDB.Reg].Value = CDB.Value

CMU 15-346, Spring 2021

Tomasulo and Speculation

= This approach does not handle speculation
- l.e. branch prediction

= Add areorder buffer
- (DB still updates reservation stations, but not RF
- New stage “commit”
- Oldest instruction(s) update RF

(MU 15-346, Spring 2021

ROB Designs

How does dispatch know where the result is?
Future file (Smith / Pleszkun ‘88)

“messy” register file updated by CDB
Architectural register file updated by ROB

Checkpoint Repair (Patt / Hwu ‘88)

Pick one or more instruction points / barriers (IB)
“messy” updated by (DB

Other RF are updated by CDB if older than IB

On exception, copy oldest RF to architectural file

If everything older than IB successful, then copy to older

(MU 15-346, Spring 2021
[a Y

Another Alternative

= Maybe the processor really has N registers

= Add an alias table to identify which physical register is the
architectural one

* Tradeoff less broadcasting but lookups into the register file

(MU 15-346, Spring 2021

multipath

* |fabranchis hard to predict, execute both paths

(MU 15-346, Spring 2021

