Memory Consistency

Computer Architecture: Design and Simulation
CMU 15-346, Spring 2022

Simple Example

= (Can we print Hello World

X =1 Y =1
if (Y ==0) print “Hello” if (X==0) print “World”

* Lots of examples will have global variables
- assume each variable is initialized to 0
- assume each column is a separate thread

CMU 15-346, Spring 2022

Simple Example

= Are the two code sequences equivalent?

X=0

X=1
fo)r((l(1—0,Y< N; Y++) for(Y=0;Y<N;Y++)
ntX print X

= What if another thread does X = 2?

CMU 15-346, Spring 2022

Where can we reorder?

= Processor pipelines for ILP

- 12=r4/r5;// expensive
*rM+r2)=1;
=1,

= Branch prediction

- if (r2>0)
3 =*(r1+r2);

" |nterconnection Network

- *A=1;// remote while (B ==0);
*B=1;//Local printA; CMU 15-346, Spring 2022

What do we “expect™?

" |ntuitive model
- Oneinstruction at a time, in order

= “Sequential Consistency” (Lamport 79)

- Each processor / thread follows program order
- Each processor / thread access can interleave

CMU 15-346, Spring 2022

How might SC happen?

= (ache coherence is present

= Delay start of any memory access until the previous one is
complete

= Whatis complete?

- Read value “bound”
- Write committed to a hypothetical serial order (HS0)

CMU 15-346, Spring 2022

Describing Memory Consistency Constraints

= Maintain ordering between accesses in a processor

READ

l

READ

READ

l

WRITE

WRITE

= Let’s talk about two small relaxations

WRITE

l

READ

revious access
completes

on’t start until
! 2on
WRITE

CMU 15-346, Spring 2022

Write Buffering -> TS0

= Write buffers reduce write time
- But this impacts our “hello world” example

CMU 15-346, Spring 2022

Write Buffering -> TS0

100

oo
(e

60
B Write
B Read
B Synch
B Busy

Normalized Execution Time
N
o

b
o

Base WR Base WR Base WR
MP3D LU PTHOR

CMU 15-346, Spring 2022

Write Coalescing -> PSO

= Common writes to the same line could be merged

CMU 15-346, Spring 2022

Alternatives to Sequential Consistency

READ READ WRITE WRITE
READ WRITE READ WRITE

Total Store Ordering (TSO) (Similar to Intel)

See Section 8.2 of “Intel® 64 and 1A-32 Architectu are Developer” al, Volume 3A: System Programming Guide, Part 17,
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf

READ READ WRITE WRITE
READ WRITE READ WRITE

Partial Store Ordering (PSO)

CMU 15-346, Spring 2022

Relaxing further

= When we write parallel code, how do we make it “safe”?

READ/WRITE
READ/WRITE

Overly > *

Conservative

LOCK

v

READ/WRITE
READ/WRITE

k:N*OCK
v

READ/WRITE
READ/WRITE

Weak Ordering (WO)

3

READ/WRITE Acaniet
READ/WRITE| 1 [READ/WRIE
k READ/WRITE
B
RELEASE

READ/WRITE
READ/WRITE

Release Consistency (RC)

CMU 15-346, Spring 2022

Proving Memory Consistency

= @Given a set of instructions and initial state, is there a valid
ordering to reach a final state

- What are the ordering constraints?
- Barriers / fences
- Explicit ordering of some or all instructions
- Dependencies
- Addr/data
- Control dependencies
- Should a branch matter?

CMU 15-346, Spring 2022

Initial Example

= Two threads
- Thread 0 writes to locations X, Y

- Thread 1 reads from locations X, Y

MP Pseudocode
Thread 0 Thread 1
X=1 r1=y
y=1 r2=x
Initial state: x=0 » y=0

= What values can be observed? Canr1=1and r2 =0?
- sQ
- NO
- TS0?
- NO
- Release Consistency?

- Yes! https://www.d.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf

CMU 15-346, Spring 2022

Barriers

* Placing a full barrier between the operations in threads 0
and 1

- All examples are release consistency now

MP+dmb/syncs Pseudocode

Thread 0 Thread 1
x=1 r=y
dmb/sync dmb/sync
y=1 r2=x
Initial state: x=0 » y=0

Thread 0 | Thread 1
a: W[x]=1 C: R[_v] 1
dmb/sync rf dmbfsg,rnc &
b WIyI=1 i d RIx= D\““
o

CMU 15-346, Spring 2022

Adding a dependency between reads

= Replacing the barrier with an address dependency
- (Can thread 1 read *r1 and get 0?

MP+dmb/sync+addr’ Pseudocode

Thread 0 Thread 1
x=1 r1=y
dmb/sync
y=&x r2=*r1

Initial state: x=0 » y=0

Thread 0 Thread 1
a: W[x]=1 c: R[y]=&x
rf
dmb/sync P I addr
.-'""--'. ‘-“'"L
b: W[y]= « d: R[X]=0 ““®

CMU 15-346, Spring 2022

Extending dependencies

= Programmers can force the value to still be a dependency

without *using® it

- The read of x “depends” on the value of y

MP+dmb/sync+addr Pseudocode
Thread 0 Thread 1
x=1 r1=y
dmb/sync r3=(r1 xor r1)

y=1

r2=*(&x + r3)

Initial state: x=0 » y=0

Thread 0

dmb/sync

b: W[y]=1

a W[x]=1
f

/

Thread 1
C: 2 RlyI=1
~ addr

g

CMU 15-346, Spring 2022

Control Dependencies

= Rather than using the value in the address, can we control

the order using branches?

- If there is a branch or loop between the two operations,

ham?
does that Order tMP+dmbfsync+ctr| Pseudocode
Thread 0 Thread 1
x=1 r1=y
dmb/sync if (r1==r1){}
y=1 r2=x
Initial state: x=0 » y=0

Thread 0

a: W[x]=1
dmb/sync

b: WIy]=1

Thread 1

o R
ctrl
L

' d: RIxI=0 ‘»
ot

CMU 15-346, Spring 2022

Less Control Dependence

= isb —instruction barrier

MP+dmb/sync+ctrlisb/ctrlisync

Thread O Thread 1
x=1 ri=y
dmb/sync if (r1==r1) {}

isb/isync
y=1 r2=x
Initial state: x=0 » y=0
Forbidden: 1:r1=1 » 1:r2=0

Thread 0 Thread 1
a: Wix]=1 c: R[y]=1
I.f

dmb/sync ctrlisb/isync

-

b: Wyl=1 1 d: R[x]=0 ““Q

CMU 15-346, Spring 2022

Coherence Ordering of Writes

= Before adding the branch...

S+dmb/sync+po Pseudocode

Thread 0 Thread 1
X=2 ri=y
dmb/sync X=1
y=1
Initial state: x=0 » y=0
Forbidden: 1:r1=1 » x=2

| Thread 0 Thread 1

CMU 15-346, Spring 2022

Control Dependencies Matter

= Writes respect the branch
- Without the branch, thread 1 can write before its read

- With the branch (or a direct value dependence), the write
Ordering iS fOI‘C(S:dmbfsyncwtrl Pseudocode

Thread 0 Thread 1
X=2 r1=y
dmb/sync if (r1==r1){ }
y=1 x=1
Initial state: x=0 ~ y=0

Thread 0 Thread 1
a w x]iE c: R[y]=1
r ~yfco—" l
dmb/sync e ctrl
b: WiyJ=1 d: Wx]=1 “%
\V
N

CMU 15-346, Spring 2022

Are these orderings common?

= Testing on ARM verifies that the orderings occur as expected.

ARM
Kind Tegra2 Tegra3 | APQBOG0 | ASX
MP Allow | 40M/3.8G | 138K/16M | 61k/552M | 437k/185M
MP+dmb/synct+po Allow | 3.1M/3.9G 50/28M | 69k/7T43M | 249k/195M
MP+dmb/synctaddr Forbid 0/29G 0/39G 0/26G 0/2.2G
MP+dmb/sync+tctrl Allow | 5.7TM/3.9G 1.5k/53M | 556/748M | 1.5M/207TM
MP-+dmb/sync+ctrlsib/isync | Forbid 0/29G 0/39G 026G 0/2.2G
S+dmb/synctpo Allow | 271k/4.0G 84/58M 357/1.8G | 211k/202M
S+dmb/sync+ctrl Forbid 0/24G 0/39G 0/26G 0/2.2G
S+dmb/sync+data Forbid 0/24G 0/39G 0/26G 0/2.2G

CMU 15-346, Spring 2022

Three threads interact

* How do written values propagate to multiple threads?
- Isitpossible forr3 =0, whiler1 and r2 are 17
- Adding a barrier in thread 1 makes this result forbidden

WRC+addrs Pseudocode
Thread 0 Thread 1 Thread 2
x=1 r1=x r2=y
(&y+r1-r1) =1 | r3 =&x +r2 -r2)

Initial state: x=0 » y=0

| Thread 1 | | Thread 2 |

a: Wx)=1 p = b: R[x]=1 d: R[y]=1
addr] f addr
c: Wly]=1 ‘H--Le: RTx]=ﬂ$¥“
U

CMU 15-346, Spring 2022

Threads propagate differently

IRIW+addrs Pseudocode
Thread 0 Thread 1 Thread 2 Thread 3
x=1 ri=x y=1 r3=y

r2="(&y+r1-r1)

rd="(&x+r3-r3)

Initial state: x=0 » y=0 » z=0

Allowed: 1:11=1 » 112=0 » 3:r3=1 » 3:r14=0

|Threado| |Thread 1| |Thread 2|
a: W[x]=1 T b: R[x]=1
addr [
-\-_"'IA
rf c: Rly]=0

Test IRIW+addrs: Allowed

Only experimentally observed on Power, not on ARM

d: W[y]=1 T e: R[y]=1
addr

v\x\““‘@

CMU 15-346, Spring 2022

s there anything left?

= Yes! Cache coherence must still work.
* Threads must agree on an order of writes.
* And remember that coherence is per-block

|Threadﬂ| |Thread 1| rf [Thread2| |Thread 3|
a: Wixj=1.=—3 EWW__ Ez— e: R[x]=1
I rf F'“i(lF'“ %
" d: R[x]=1 “f R[x]=2 "
goP
O

CMU 15-346, Spring 2022

Coherence is per-block

2+2W Pseudocode
Thread 0 Thread 1
x=1 y=1
y=2 x=2

Initial state: x=0 » y=0
Allowed: x=1 » y=1

Thread 0 Thread 1
a: W[x]=1 c: Wlyl=1
Tg0c0
PO - N po

b: Wly)= d: Wix]=2
Test 2+2W: Allowed \‘““\‘»
\$

-

CMU 15-346, Spring 2022

Coherent Memory Interface

INSIN
Out-of-order : _____________________ Critical word bypass |
Processor |
core :
|
|
|
l LoadQ y StoreQ y |
|
Level 1 tag array —> Level 1 data array —l :
|
l T + | T T I
| | Y WB |
_____ L |
| m—
Level 2 tag array i > Level 2 data array :
X | K
l T | WB buffer Fill buffer |
MSHR Snoop !
quenc -

Y { v Y

System address and response bus System data bus
https:/ece752.ece.wisc.edu/lect11-advanced-caches.pdf CMU 15-346, Spring 2022

Coherent Memory Interface

Load Queue - Tracks inflight loads for aliasing, coherence
Store Queue — Defers stores until commit, tracks aliasing

Storethrough Queue or Write Buffer or Store Buffer — Defers
stores, coalesces writes, must handle RAW

MSHR - Tracks outstanding misses, enables lockup-free
caches [Kroft ISCA 91]

Snoop Queue - Buffers, tracks incoming requests from
coherent |/0, other processors

Fill Buffer — Works with MSHR to hold incoming partial lines

Writeback Buffer — Defers writeback of evicted line (demand
miss handled first)

https:/ece752.ece.wisc.edu/lect11-advanced-caches.pdf CMU 15-346, Spring 2022

