
Computer Architecture: Design and Simulation
CMU 15-346, Spring 2021

Superscalar

CMU 15-346, Spring 2021

How to go below 1 CPI

▪ Pipelining has its limitations

- Latch delays

- Dependencies

▪ Fundamentally, fetching 1 per cycle is a limitation

CMU 15-346, Spring 2021

Simple first

▪ Duplicate the pipeline

- VLIW

- Compiler groups multiple instructions into bundles

- Can the compiler make big enough bundles?

- (maybe more on this later)

CMU 15-346, Spring 2021

Fetching More

▪ To execute more than 1, the processor needs to fetch more

▪ P1: Instruction bundle crosses cache line

- Multiport cache

- Banking

▪ P2: Branches

- Access predictor / BTB for all four instructions (banking)

- Chain results to determine fetch bundle

- Trace cache

CMU 15-346, Spring 2021

New Pipeline

Old ID

▪ Fetch -> Decode -> Schedule -> Execute -> State Update

▪ Welcome to queuing theory ;)

CMU 15-346, Spring 2021

The new ID stage(s)

▪ In-order flow of fetched instructions

- Checks dependencies

- Dispatches instructions to specific function units

CMU 15-346, Spring 2021

Modern CPU Design

Execution

Functional
Units

Instruction Control

Branch Arith Arith Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Prediction OK?

DataData

Addr. Addr.

Arith

Operation Results

Retirement
Unit

Register
File

Register Updates

CMU 15-346, Spring 2021

Dynamic Scheduling

▪ Can processors find independence in the instruction stream?
(ILP)

- Especially, can we hide memory latency?

▪ Interesting things:

- Dependencies / Registers

- Exceptions

CMU 15-346, Spring 2021

Approaches

▪ Fire (or issue) in-order or out-of-order

▪ Complete in-order or out-of-order

▪ FICI 5-stage from before

▪ FICO Coming up

▪ FOCO Stay tuned

▪ FOCI No.

CMU 15-346, Spring 2021

FICO picture

▪ Still combined dispatch / schedule stage

▪ Register file with busy and value

▪ Scoreboard for each FU with busy

CMU 15-346, Spring 2021

A dynamic scheduling algorithm:
Simple interlocking (FICO)

1. [Dispatch/Scheduling unit (combined unit)]

(a) for all FU s do:

if (FU[i] is pipelined) then Scoreboard[i].Busy = False

(b) for each Inst in SchedQueue do:

if (!Regs[Inst.Src1].Busy

AND !Regs[Inst.Src2].Busy

AND !Regs[Inst.Dest].Busy

AND !Scoreboard[Inst.FU].Busy)

then

Scoreboard[Inst.FU].Busy = True

Regs[Inst.Dest].Busy = True

// Issue instruction to function unit Inst.FU

else

exit loop // halt issuing

2. [Execution unit, at completion of instruction Inst]

(a) Regs[Inst.Dest].Busy = False

(b) if (Inst.FU pipeline advances and now first stage is free) then

Scoreboard[Inst.FU].Busy = False

CMU 15-346, Spring 2021

Examples

▪ ADD R1, R2, R3

▪ MUL R4, R1, R5

▪ ADD R3, R1, R2

▪ ADD R2, R4, R1

▪ MUL R1, R2, R3

▪ ADD R2, R3, R1

▪ ADD R4, R5, R6

CMU 15-346, Spring 2021

FOCO

▪ Split ID

- Dispatch in-order

- Schedule out-of-order

▪ Common Data Bus (or result bus(es))

- Broadcast completed results to all waiting instructions

CMU 15-346, Spring 2021

Renaming Registers

▪ Robert Tomasulo had a problem

- IBM 360 architecture had 4 FP registers

- Lots of hazards

- Not necessarily superscalar (hence one CDB)

- Everything scheduled gets a tag

CMU 15-346, Spring 2021

Tomasulo Hardware

CMU 15-346, Spring 2021

Tomasulo algorithm, part 1
For each cycle of execution…

[Dispatch unit] for all instructions I in DispatchQueue do:

if (SchedQueue is not full) then

(a) Add I to first free slot of SchedQueue (=“RS”) // Call this RS below

(b) Delete I from DispatchQueue // Insttruction I is now “dispatched”

(c) RS.FU = I.FU

(d) RS.Dest = I.Dest

(e) for all source registers, i, of I do

if (Regs[I.Src[i]].Ready = True) then

RS.Src[i].Value = Regs[I.Src[i]].Value

RS.Src[i].Ready = True

else

RS.Src[i].Tag = Regs[I.Src[i]].Tag // Copy the tags from the RF

RS.Src[i].Ready = False

(f) Regs[I.Dest].Tag = unique tag id // tag (rename) the source

(g) RS.DestRegTag = Regs[I.Dest].Tag

(h) Regs[I.Dest].Ready = False // value ready only after execution

else exit loop // stop dispatching if scheduling queue is full

CMU 15-346, Spring 2021

Tomasulo algorithm, part 2

[Scheduling unit]

for each RS = entry in SchedQueue do:

(a) for all source registers, i, of RS do:

if (CDB.Tag = RS.Src[i].Tag) then // broadcast on CDB matches stored tag

RS.Src[i].Ready = True

RS.Src[i].Value = CDB.Value

(b) if ((for all i: RS.Src[i].Ready = True) // WAKEUP: If all registers are ready...

and Scoreboard[RS.FU].Busy = False) then

Scoreboard[RS.FU].Busy = True // …reserve the FU and issue

Issue the instruction at RS on FU

step (b) is called “wake-up”

when more than one instruction is ready, picking between them is called “select” (here we’re using

FIFO as a select algorithm)

CMU 15-346, Spring 2021

Tomasulo Algorithm, part 3
[Execution unit, for function unit FU]

if (FU pipeline advances and now first stage is free) then Scoreboard[FU].Busy = False

[Execution unit, at completion of instruction I]

if (CDB.Busy = False) then // Broadcast the instruction results

(a) CDB.Busy = True

(b) CDB.Tag = I.Tag

(c) CDB.Value = I.Value

(d) CDB.Reg = I.Dest

(e) if (I.FU is not pipelined) then

Scoreboard[I.FU].Busy = False

(f) Delete I from Sched Queue

[State update unit]

if (CDB.Busy = True)

(a) CDB.Busy = False

if (CDB.Tag = Regs[CDB.Reg].Tag) then

(a) Regs[CDB.Reg].Ready = True // Update the RF contents

(b) Regs[CDB.Reg].Value = CDB.Value

CMU 15-346, Spring 2021

Tomasulo and Speculation

▪ This approach does not handle speculation

- I.e. branch prediction

▪ Add a reorder buffer

- CDB still updates reservation stations, but not RF

- New stage

- Oldest instruction(s) update RF

CMU 15-346, Spring 2021

ROB Designs

▪ Future file (Smith / Pleszkun

-
- Architectural register file updated by ROB

▪ Checkpoint Repair (Patt / Hwu

- Pick one or more instruction points / barriers (IB)

-
- Other RF are updated by CDB if older than IB

- On exception, copy oldest RF to architectural file

- If everything older than IB successful, then copy to older
RF

