
Computer Architecture: Design and Simulation
CMU 15-346, Spring 2021

Pipelining

CMU 15-346, Spring 2021

Outline

▪ Pipelines

▪ Hazards (data, control, structural)

▪ Superscalar

CMU 15-346, Spring 2021

Instruction Execution

▪ Five steps

- Next slide w/o latches (drawn at start)

- How long do instructions take?

- Is the whole circuit in use during this time?

CMU 15-346, Spring 2021

Figure from Comp Arch: Quantitative Approach

CMU 15-346, Spring 2021

Pipeline Speedup

▪ Pipelines are an improvement

▪ What are the ideal values in this equation?

- CPI unpipelined is depth (see pipeline figure)

▪ What practical limitations exist?

- Stalls

- Overhead

CMU 15-346, Spring 2021

Stalls

▪ Program characteristics => Hazards => Stalls

- But not always

CMU 15-346, Spring 2021

Hazards

▪ Structural hazard

- Limitation of hardware resources

- E.G. Single-ported memory delaying IF / MEM

- Trade-offs in resources to avoid this hazard

▪ Data hazard

- Dependency related

CMU 15-346, Spring 2021

Types of Dependencies

▪ True dependency

ADD R1, R2, R3
LD R4, 0(R1)

▪ Anti-dependency
ADD R1, R2, R3
SUB R3, R2, R4

▪ Output dependency

ADD R1, R2, R3
SUB R1, R2, R3

CMU 15-346, Spring 2021

Data Hazards becoming Stalls

▪ RAW Hazard

- Add forwarding / bypass logic

Load R1, 0(R2) // load delay slot option...

ADD R3, R1, R4

▪ WAW and WAR Hazard

- Add more registers

- Mostly a problem in out-of-order

▪ RAR Hazard

- Problem if not enough read ports on reg file

CMU 15-346, Spring 2021

CPI and Registers

▪ If CPI is proportional to stalls,
then adding more registers reduces CPI

▪ Stay tuned for register renaming

CMU 15-346, Spring 2021

Consider the following

http://stackoverflow.com/questions/11227809/why-is-
processing-a-sorted-array-faster-than-an-unsorted-array

http://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-array-faster-than-an-unsorted-array

CMU 15-346, Spring 2021

Branch Prediction

▪ When, where, whether

▪ Delay slots

▪ 1-bit

▪ 2-bit

▪ Gselect, gshare, Yeh/patt

▪ Tournament

CMU 15-346, Spring 2021

Control Hazards

▪ When does a processor know that there is a branch?

▪ Where might the branch go?

▪ When does a processor know whether the branch is taken?

▪ How frequent are branches?

CMU 15-346, Spring 2021

When is there a branch?

▪ When does the processor fetch the next instruction?

- Start of IF stage

▪ Decode a branch

- End of ID stage

CMU 15-346, Spring 2021

Delay Slots

▪

▪ When is the next instruction to execute the one after the
branch?

CMU 15-346, Spring 2021

Whether a branch is taken

▪ Static

- Forward not-taken

- Backward taken

▪ Dynamic

- Index a table using low-order instruction bits

▪ 1-bit

- Store the last result, predict using it

▪ 2-bit

- James E Smith, 1981

CMU 15-346, Spring 2021

Correlating Predictions

▪ Branch History Register

- Shift in the most recent branch outcome

▪ Gshare

- Use the BHR to select which table to index for the entry

▪ Gselect

- XOR the BHR and index bits to select which entry

CMU 15-346, Spring 2021

Yeh-Patt (1991)

▪ Keep histories for each branch

- Insight: Similar histories have similar predictions

▪ Index a history table

- Use the history entry to select the predictor

▪ About 96-98% accurate for integer codes (SPEC?)

CMU 15-346, Spring 2021

Tournament Predictors

▪ Why have one, when you can have more than one

- Aliasing problem in a predictor

▪ Meta predictor or majority vote

▪ What else?

- Machine learning

CMU 15-346, Spring 2021

Where a branch goes

▪ Branch target buffer

- Simple cache for branch targets

▪ Return address stack

CMU 15-346, Spring 2021

Summary

▪ CPI = 1 + stalls

▪ Is ideal CPI 1?

