
Computer Architecture: Design and Simulation
CMU 15-346, Spring 2021

Benchmarking and
Simulation

CMU 15-346, Spring 2021

Why design a computational device?

▪ Achieve a particular function or goal

- Computer architecture is about designing something more
efficient

▪ So how do you know your idea is good?

CMU 15-346, Spring 2021

Benchmarks

▪ Run program(s) on lots of machine configurations

- Know where your program runs best

▪ Why is this difficult?

- Expensive hardware

- Load may not be representative

- Code may be proprietary

-

▪ Thus benchmarks are proxy programs for

- Architects, marketing, users

CMU 15-346, Spring 2021

Benchmarks Suites

▪ SPEC

▪ PARSEC / SPLASH

▪ EEMBC / dhrystone

▪ TPC-

CMU 15-346, Spring 2021

Different Metrics of Efficiency

Plane

Boeing 747

Concorde

Top
Speed

DC to Paris Passen-gers Throughput (pmph)

610 mph6.5 hours 470 286,700

1350 mph3 hours 132 178,200

CMU 15-346, Spring 2021

Performance of Benchmarks (comp arch)

▪ MIPS

- ISAs are not equal

▪ GFLOPS

- Code is not equal

CMU 15-346, Spring 2021

Run time

▪ CPU Time

- Cycle count x cycle time (i.e., inverse of clock rate)

- Cycle count = CPI x IC

▪ Improvements

- IC (instruction count)

- Compiler, algorithms

- CPI

- ILP

- Cycle time

- More pipelining, device improvements, simpler ISA

Cycles per instruction CPI
clock cycle count

Instruction Count

 clock cycle count CPI IC

 CPU time IC CPI CT

= =

 = 

 =  

CMU 15-346, Spring 2021

RISC vs CISC

▪ Reduced instruction set computers

- Impact on CPU time (udd)

▪ Complex instruction set computers

- Impact on CPU time (duu)

▪ Which is best?

- It depends

CMU 15-346, Spring 2021

CPU Time lies

▪ Synchronization and parallel code

▪ Speedup

Speedup =
Time baseline

Time with X

CMU 15-346, Spring 2021

Law

▪ 1- s a component of the program

▪ p speedup of that component

▪ The more time something takes

- The more speedup small improvements make

▪ Example:

- $1 Billion for computer that does foo 100,000x faster

- Foo is 90% of your workload

CMU 15-346, Spring 2021

▪ Maybe faster components can do more rather than less
(time)

▪ How many more foo can we run in a day?

CMU 15-346, Spring 2021

Example of means

▪ Which is faster, A or B?

- Consider running an average instruction from prog 1 followed by one from prog 2:

- for A: (1/4 + 1/4) = 1/2

- for B: (1/2 + 1/7) = 9/14

- A runs the two instructions faster (1/2 < 9/14), thus A is better

- Now look at the harmonic mean (Hmean) vs. the arithmetic mean (Amean).

- Hmean says A has a higher rate than B (4 vs. 3.11) so A is better

- Amean says B has a higher rate than A (4.5 vs. 4) so B is better, but that’s wrong!

▪ If you used the wrong method to combine the numbers, you would buy the slower machine!

▪ Note also that the definition of harmonic mean is just the average of the rates converted to
times, then converted back to rates

A B

Prog 1 4 2

Prog 2 4 7

Hmean 4 3.11

Amean 4 4.5

Table holds rates in
instructions per second

Convert rates to times then we can add the times together

CMU 15-346, Spring 2021

Simulation

▪ How do we evaluate an idea?

CMU 15-346, Spring 2021

Evaluating an architectural idea: simulation
▪ Architects evaluate architectural decisions quantitatively using chip simulators

-
- Architect runs simulations with new feature, runs simulations without new

feature, compare simulated performance

- Simulate against a wide collection of benchmarks

▪ Design detailed simulator to test new architectural feature

- Very expensive to simulate a parallel machine in full detail
- Often cannot simulate full machine configurations or realistic problem sizes

(must scale down workloads significantly!)
- Architects need to be confident scaled down simulated results predict reality

(otherwise, why do the evaluation at all?)

CMU 15-346, Spring 2021

Level of detail

▪ Transistor

▪ Gate

▪ Circuit

▪ Functional

▪ Simulations always have to assume some things work

CMU 15-346, Spring 2021

Execution-driven simulator

▪ Executes simulated program in software
- Simulated processors generate memory references, which are processed by the

simulated memory hierarchy

▪ Performance of simulator is typically inversely proportional to level of simulated detail

- Simulate every instruction? Simulate every bit on every wire?

Memory Reference Generator Memory Hierarchy Simulator

CMU 15-346, Spring 2021

Trace-driven simulator
▪ Instrument real code running on real machine to record a trace of all memory accesses

- Statically (or dynamically) modify program binary
- www.pintool.org)

Contech (http://bprail.github.io/contech/)
- May also need to record timing information to model contention in subsequent

simulation

▪ Or generate trace using an execution-driven simulator

▪ Then play back trace on simulator

Trace
log

http://www.pintool.org/

CMU 15-346, Spring 2021

Event-driven Simulation

▪ Does the simulation happen on time or events?

- Cache simulator

- Does the simulator check each cycle if the current
memory request is complete?

- Does the simulator skip in time to when the request
completes?

- Can be complicated when different simulator components

CMU 15-346, Spring 2021

Architectural simulation state space
▪ Another evaluation challenge: dealing with large parameter space of machines

- Num processors, cache sizes, cache line sizes, memory bandwidths, etc.

Pareto Curve: (here: plots energy/perf trade-off)

Performance Density (ops/nS/mm2)

En
er

gy
 P

er
 O

pe
ra

ti
on

 (n
J/

op
) Maximum performance

per unit chip area
(but high energy consumption)

High energy efficiency
(but lower performance density)

CMU 15-346, Spring 2021

