Microarchitectural
Attacks

Row Hammer

= DRAM refreshes bits, default 64ms

- Refresh is necessary as each bit is a capacitor slowly
leaking

= Disturbance errors were known since 1970s in DRAM, with
the first modules

= ~2014 researchers showed that specially crafted execution
can induce errors

CMU 15-346, Spring 2021

Related - NVM Wearout

* Non-volatile memory
- Phase change memory (PCM)
- Writing requires physical change

(MU 15-346, Spring 2021

Side-channel Attacks

= SMT - shares some hardware

- What if the thing we wanted to attack is on the other
context / core?

= What data is accessed when?
- Setup dummy data and time accesses

= RSA secret key
- How does each bit flow through branches?
- How does each bit flow through FUs?

CMU 15-346, Spring 2021

Review: Superscalar

= Speculative execution
- Instructions might run on predicted paths
- Leave no side effects

= What about the cache?

CMU 15-346, Spring 2021

Spectre

Train the branch predictor

Prepare the cache

Put speculative code that accesses memory location
- Generally runs in JS (or similar) environment

Find which cache set had an eviction from the speculative
code

CMU 15-346, Spring 2021

Meltdown

* InSpectre, targeting VM sandboxes to learn about the
sandbox

= Meltdown targets the kernel

. . £ 500

1 raise_exception(); 2% a0 MM-«M&
. . 8 2 300
2 // the line below is never reached 2= 200

<
0 50 100 150 200 250

3 access(probe_array[data * 4096]); Page

CMU 15-346, Spring 2021

Microarchitectural Replay Attacks

= Suppose you do not entirely trust the software
- Can you still do computation?

- Yes. Hardware can fully prevent 0S from accessing a
running process’s memory

- Is hardware actually secure?

(MU 15-346, Spring 2021

How can an 0S observe?

= Side-channel attacks
- But those may be noisy

= Eliminate noise

- Rerun the secret code
- How? Force a page fault, but not fix

CMU 15-346, Spring 2021

Port Contention Attack™

Victim (in SGX): Attacker (controls OS):

if (secret) { while (true) {
// use shared resource start = time();

} else { // use shared resource
// don’t use shared resource latency = time() - start;

} }

Attacker can infer the secret based on the measured latency:
= |f latency > threshold: secret = 1;
= |f latency <= threshold: secret = 0;

However, this side-channel is noisy, attacker needs repeated victim execution to be confident

How to force victim to repeatedly execute vulnerable code?

*Aldaya et al. "Port contention for fun and profit.” (SP’19)

10

Squash Victim (in SGX): .

Microarchitectural Replay Attacks® (MRAS)

Insight: Attacker triggers a large or unlimited number of pipeline squashes in
the victim thread to replay vulnerable code

o~ Attacker clears page-table entry present bit of x

/ \ and flushes TLB

f \

if (secret) { I |

} /{ us::: shared resource lExeC“te ! " Page fault occurs in the victim thread. Victim
else . \ o
// don’t use shared resource ! squashes the pipeline

7} S “a Victim invokes OS (controlled by attacker)

load x; // x is public X Page fault

Victim speculatively executes vulnerable code

MRAs are beyond speculative execution side-channel attacks (e.g., Spectre)

* Skarlatos et al., “MicroScope: Enabling Microarchitectural Replay Attacks” (ISCA’19)

11

Near Threshold Computing

= Transistors normally run at Vnom
- Around 0.3, the transistor power is minimalized
- But Vdd has to be >0.2 (Vt) on a normal transistor

=
|
1 Ny
|
Tkl i _:_,.:r'

1 /
I -

= | —p

;.] # Lrgruaemi

B 1™ i #

£ i

Ll i &

i
| &
i F
i
j#
r L baleie. gy b
i
i
i
i
o —
1] ol 04 OE a2 1.0

https://www.techdesignforums.com/practice/quides/subthreshold-né4t-threshold-computing-logic-ntv/

CMU 15-346, Spring 2021

Approaching the Threshold

= As supply voltage drops
- Transistor frequency has increased variation
- Transistors may become unreliable

* For example, an adder may have some errors
= A cache or memory could
- Lower refresh rate
- Least significant floating point bits are dropped

CMU 15-346, Spring 2021

Approximate Computing

= (an a program benefit from computing near the threshold?
- Yes!
- Many algorithms are already approximations
- Increasing the error tolerance can permit
- Faster running time (less iterations)
- Using error-prone storage or ALUs

* (One example:

- K-means clustering could introduce 5% error to save 50x
energy

CMU 15-346, Spring 2021

Intermittent Computing

= We want to deploy many devices into the wild
- Simple sensors, etc

= Devices cannot be part of the electrical grid

- Derive power from ambient conditions (light, sound, RF,
etc)

= Device stores power into capacitor
- When capacitor is full, start computing

- When capacitor is nearly empty, save results to flash, NVM,
etc

CMU 15-346, Spring 2021

Making computation stop

* How do you design a processor that will be interruptible?

* How do you modify computation so that it can resume?

(MU 15-346, Spring 2021

