Accelerators

What is an accelerator?

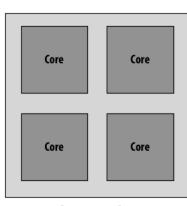
- Additional hardware to "offload" common software operations
 - Recall a Turing machine can do anything
 - Explain Turing machines
 - Past accelerators:
 - x87 series floating point and math operations
 - Otherwise emulate in software (c.f., datalab)
 - GPUs
 - Always present, role / capabilities changed

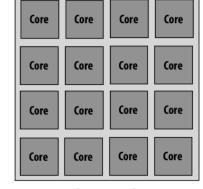
Rewrite Amdahl's law in terms of resource limits

$$\operatorname{speedup}(f,n,r) = rac{1}{rac{1-f}{\operatorname{perf}(r)} + rac{f}{\operatorname{perf}(r) \cdot rac{n}{r}}}$$

Assume perf(1) = 1

f = fraction of program that is parallelizable

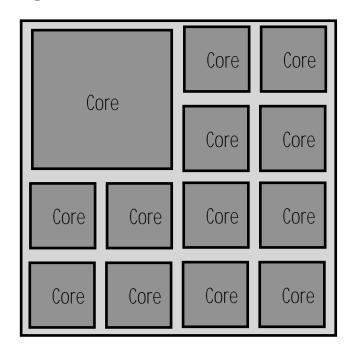

n = total processing resources (e.g., transistors on a chip)


r = resources dedicated to each processing core, (each of the n/r cores has sequential performance perf(r) More general form of **Amdahl's Law in terms** of f, n, r

Two examples where n=16

$$r_A = 4$$

$$r_B = 1$$

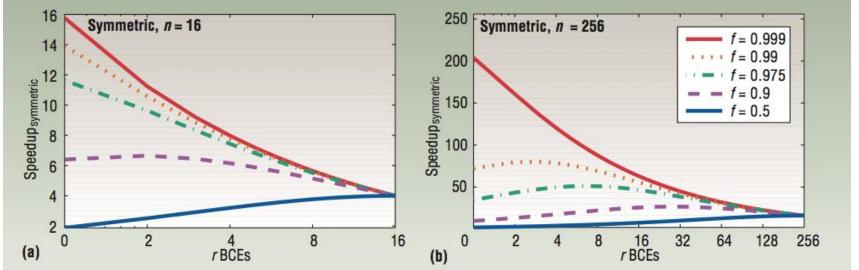


Processor A

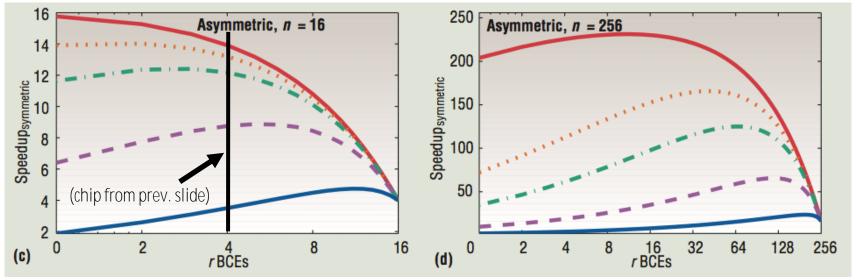
Processor B

Asymmetric set of processing cores

Example: n=16One core: r=4Other 12 cores: r=1



$$speedup(f, n, r) =$$


(of heterogeneous processor with n recourses, relative to uniprocessor with one unit worth of resources, n=1)

$$\frac{1}{\frac{1-f}{\operatorname{perf}(r)} + \frac{f}{\operatorname{perf}(r) + (n-r)}}$$

one perf(r) processor + (n-r) perf(1)=1 processors

X-axis for symmetric architectures gives r for all cores (many small cores to left, few "fat" cores to right)

X-axis for asymmetric architectures gives r for the single "fat" core (assume rest of cores are r = 1)

Multiamdahl Takeaway

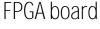
Heterogeneous CPUs

Saving Energy, Winning Performance

- 16b int add ~ 32 fJ
 - ARM add ~ 250 pJ
- Sending a word from local cache ~ 5pJ
 - Sending a word from DRM ~ 640 pJ

Where is energy being spent?

- Bitcoin
- DNNs
- Search


How FPGAs work (briefly)

- Key component is LUTs
 - Each is n-bit input and output (often 5)
 - Can compute any arbitrary n-bit Boolean function

Project Catapult

- Microsoft Research investigation of use of FPGAs to accelerate datacenter workloads
- Demonstrated offload of part of Bing Search's document ranking logic
- Now widely used to accelerate DNNs across Microsoft services

1U server (Dual socket CPU + FPGA connected via PCle bus)

- Two 8-core Xeon 2.1 GHz CPUs
- 64 GB DRAM
- 4 HDDs @ 2 TB, 2 SSDs @ 512 GB
- · 10 Gb Ethernet
- · No cable attachments to server

Air flow

200 LFM

68 °C Inlet

DNNs

Can approximate other functions