15326 - Computational Microeconomics
Programming Assignment 2: combinatorial
auctions and expressive securities markets (due
February 19 before 5pm)

Please read the rules for assignments on the course web page (http://wuw.
cs.cmu.edu/~15326-s26/). Use Piazza for questions and Gradescope to turn
this in. For all questions, always hand in both code and output, typically .mod
and .out files (and do not simply put everything in a .pdf).

Please use clear variable names and write comments in your code where ap-
propriate (you can put comments between /* and */, or start a line with #).

Please see Homework 1 for details about getting set up with GLPK, making
a directory for this homework, etc.

Note: in these questions, there is an example instance that you are asked to
solve. However, just getting this example right is not enough to get full credit:
your formulation should work on all instances. The example is just there to give
you something to test your formulation on.

There are some parenthetical questions in the below; you do not need to turn
in answers to these, they are just there to help you think about the questions.

1. (20 points.) Don’t accept small fractions of bids.

While it may be reasonable to accept bids partially in some cases, accepting
too small a fraction may not be reasonable. For example, if we accept only a
fraction 0.01 of a bid, then the bidder may prefer to pull out altogether, rather
than deal with the overhead of the transaction (setting up payment, etc.) just
for that tiny fraction. For this reason, it may make sense to let bidders specify a
minimum acceptable fraction of their bid. If f; is the minimum fraction specified
by bidder j, then this means we can accept any fraction in {0} U[f;, 1] of bidder
J’s bid (i.e., either accept between f; and 1, or not at all).

Complete the below mixed integer linear program formulation for this prob-
lem and code it up in the MathProg language. (Hint: is this an easier or harder
problem than the case where it is not allowed to accept only a fraction of a bid?
What does this tell you about whether you need integer variables?)


http://www.cs.cmu.edu/~15326-s26/
http://www.cs.cmu.edu/~15326-s26/

set ITEMS;

set BIDS;

param v {BIDS};

param f {BIDS};

param A {BIDS, ITEMS};

var x {BIDS} >= 0, <= 1;

# Value of each bid
# Minimum fraction for each bid
# Bidder’s requests for items (A[b, i])

# Fraction of bid accepted

# YOUR TASK IS TO COMPLETE THIS: YOU MAY ADD ADDITIONAL (BINARY) VARIABLES

maximize total_value: sum {b in BIDS} v[b] * x[b];

s.t. # YOUR TASK IS TO COMPLETE THIS

For the data; portion, first test your code on the following instance (Instance

1).

data;
set ITEMS := il i2 i3;
set BIDS := bl b2 b3 b4;
param v :=

bl 20

b2 30

b3 25

b4 35;

param f
bl 0.3

b2 0.6



b3 0.4

b4 0.2;

param A: il i2 i3 :=
b1l 1 0 1
b2 1 1 0
b3 o 1 1
b4 1 1 1

end;

One optimal solution to Instance 1 is to accept the first three bids with
fractions 0.4, 0.6, 0.4, respectively, yielding a total value of 36.

When you submit your code, please do so with the following instance (In-
stance 2).

data;
set ITEMS := i1 i2 i3 i4 ib i6;
set BIDS := bl b2 b3 b4 b5 b6 b7;
param v :=

bl 40

b2 55

b3 45

b4 60

b5 50

b6 30

b7 70;



param f
b1l 0.3
b2 0.3
b3 0.2
b4 0.2
b5 0.2
b6 0.3

b7 0.2;

param A: i1 i2 i3 i4 ib5 16 :=
b1l i o0 o0 o 1 O
b2 1 0 1 0 0 O
b3 0 i 0 o0 1 0
b4 0 0 1 1 1 0
b5 1 0 0 1 0 O
b6 0 0 1 0 O 1
b7 0 1 1 0 O 1;

end;

2. (40 points.) A different bidding language for combinatorial
auctions.

In this question, we will study a bidding language that is different from the
OR and XOR bidding languages that we saw in class. A “bid” in this language
consists of a graph, whose vertices are the items in the auction. Each vertex has
a number associated with it, which is the bidder’s value for receiving the item by
itself. To represent complementarities and substitutabilities, the bidder places
values on the edges of the graph. If the bidder receives both items on the edge,



then the bidder’s valuation is the sum of the values of the individual items on
the edge, plus the value on the edge. Thus, if the value on the edge is positive,
the items are complements; if it is negative, they are substitutes. We also allow
for hyperedges, which are edges that can link 3 or more vertices together. In
this case, the value on the hyperedge is added to the bidder’s valuation if and
only if the bidder receives all the vertices that the hyperedge connects.

Here is an example bid:




For example, this bidder has a value of 2 + 2 for the bundle {4, C}, a value
of 24+ 2+ 3 for {A,FE}, avalueof 2+1+2+4+2+3—2 for {A,B,C, E}, and
a value of 2+ 1 — 2 for {C,D}. (This bid does not satisfy the free disposal
assumption—can you see why?)

Here are two more bids:

2 : 2
A E
-1
1 1
B D 3
-1
C
3
1 2
A 1 E
-1
3 0
B D 1
-3
C
1



(It may be useful to ask yourself: What is strange about this last bid? And let’s
assume we have the option to keep some items (not allocate them to anyone);
would we want to make use of this option? What about if we change the values?)

You will solve the winner determination problem for these three bids. Most
of the file for doing this is already complete, but you will have to add some lines
to make it work (indicated by “you need to fill this in”). You can get the file

by typing
wget http://www.cs.cmu.edu/~15326-s26/graphbidding.mod

The following describes the formulation in the graphbidding.mod file.

Conceptually, we can think of regular edges (that connect only two vertices)
as a special case of a hyperedge; moreover, we can even think of the individual
items as a hyperedge—one that connects only one vertex. So, every value in the
bid graph corresponds to a hyperedge.

Note that at least in this example, the bidders agree on whether each hyper-
edge has a negative or positive (to be precise, nonnegative) value. So, we can
classify the hyperedges as “positive” or “negative”. Each hyperedge consisting
of a single item is positive.

The graphbidding.mod file has the following parameters: num_items, the
number of items; positive_valuation[b,e], bidder b’s valuation for positive hy-
peredge e; occurs_in_positive[i,e], whether item (vertex) i is adjacent to positive
hyperedge e; and similarly for the negative hyperedges (since we already know
that the negative hyperedges have negative values, we will drop the minus sym-
bol for those values).

The file has the following binary variables: assigned[b,i] (set to 1 if b receives
i), positive_applies[b,e| (set to 1 if b receives all items in positive hyperedge e),
and negative_applies[b,e] (set to 1 if b receives all items in negative hyperedge
e).

We need to have some constraints on these variables. For example, the solver
will always “want” to set positive_applies[b,e] to 1 to maximize welfare, but this
is only legitimate if all of the items in positive hyperedge e are in fact assigned
to b. So we add the constraint:

num_items * positive_applies[b,e] + sum{i in ITEMS} occurs_in_positivel[i,e]
- sum{i in ITEMS} occurs_in_positive[i,e] * assigned[b,i] <= num_items;

Here’s why this constraint works. If b in fact receives all items in e, then

sum{i in ITEMS} occurs_in_positive[i,e] - sum{i in ITEMS}
occurs_in_positive[i,e] * assigned[b,i]

will equal 0, hence positive_applies[b,e] can be set to 1 without violating the
constraint. However, if b does not receive all items in e, then

sum{i in ITEMS} occurs_in_positive[i,e] - sum{i in ITEMS}
occurs_in_positive[i,e] * assigned[b,i]



will be positive, hence positive_applies[b,e] cannot be set to 1 without violating
the constraint (but setting it to 0 will always satisfy the constraint (ask yourself
why?)). Note that this constraint does not work for the negative hyperedges,
because there the solver “wants” to set the variable negative_applies[b,e| to 0.
So a different trick is necessary here, one that only lets the solver set nega-
tive_applies[b,e| to 0 if there is at least one item in e that b does not get. You
need to come up with such a trick. To hand in this assignment, fill in all the
parts that say “you need to fill this in” within the graphbidding.mod file, solve
it using glpk into output file graphbidding.out, and hand in the resulting two
files. Check whether the answer you get makes sense.

3. (40 points.) Solving the auctioneer’s problem for an expressive
securities market.

In this question, you will write (from scratch) a .mod file for solving the
auctioneer’s (winner determination) problem for an expressive securities market.
Remember that the auctioneer’s problem is to maximize her profit in the worst
case (state).

You can write this .mod file in any way you like, except for the following
requirements:

e You should have a set STATES (of states that the world can be in) and a
set of BIDS;

e For every bid b, there should be a parameter v[b], the amount that the
bidder is bidding (is willing to pay);

e For every bid b, for every state s, there should be a parameter p[b,s],
which is the amount that the bidder must receive in that state if the bid
is accepted;

e For every bid b, there should be a variable accepted[b] that is 1 if the bid
is accepted, 0 if it is not accepted (and, perhaps, something inbetween if
it is partially accepted, IF you are allowing for this);

e There should be a variable called worst_case_profit (which is your objec-
tive); the auctioneer’s profit in any particular state should be no less than
this variable.

Now, use your formulation to solve the “A bigger instance” example from the
course slides. Solve it both with and without partially acceptable bids. Make
sure that the solution makes sense.



