

1 Definitions

1. Conditional Probability: $P(A | B) =$

$$P(A | B) = \frac{P(A, B)}{P(B)}$$

2. Product Rule: $P(A, B) =$

$$P(A, B) = P(A | B)P(B)$$

3. Bayes' Theorem: $P(A | B) =$

$$P(A | B) = \frac{P(B | A)P(A)}{P(B)}$$

4. Normalization: $P(A | B) =$

$$P(A | B) = \frac{P(A, B)}{P(B)} = \frac{P(A, B)}{\sum_a P(a, B)}$$

5. Chain Rule: $P(A, B, C) =$

$$P(A, B, C) = P(A | B, C)P(B | C)P(C)$$

6. Law of Total Probability: [using only $P(B)$ and $P(A | B)$] $P(A) =$

$$P(A) = \sum_{b \in B} P(A | b)P(b)$$

For binary B :

$$P(A) = P(A | b_1)P(b_1) + P(A | b_2)P(b_2)$$

7. Independence: A, B independent, $P(A, B) =$

If A and B are independent, then $P(A, B) = P(A)P(B)$

8. Conditional Independence: If A and B are conditionally independent given C , then $P(A, B | C) =$

If A and B are conditionally independent given C , then $P(A, B | C) = P(A | C)P(B | C)$

2 Warm Up

(a) State the two ways to write the chain rule (conditional probability decomposition) for $P(A, B)$

$$P(A)P(B | A) = P(B)P(A | B)$$

(b) Rearrange the above equation to find $P(A | B)$

$$P(A | B) = \frac{P(A)P(B|A)}{P(B)}$$

(c) Find $P(a)$ in terms of the joint $P(a, b)$ for any $a \in A, b \in B$ (Hint: these are specific values, answer should include a sum)

$$P(a) = \sum_{b \in B} P(a, b)$$

(d) Find $P(b | a)$ in terms of the joint $P(a, b)$ for any $a \in A, b \in B$

$$P(b | a) = \frac{P(a, b)}{\sum_{b' \in B} P(a, b')}$$

(e) Find $P(b | a)$ in terms of the distributions $P(b)$, $P(a | b)$, for any $a \in A, b \in B$

$$P(b | a) = \frac{P(a|b)P(b)}{\sum_{b' \in B} P(a|b')P(b')}$$

(f) Assume we had some fixed a and wanted to find each element of $P(b | a)$ (i.e. wanted to find $P(B | a)$). Would the numerator of the fraction in the previous question change for each value of b ? What about the denominator? How could you use this to do the calculation with less steps?

The numerator changes because the value of b changes. The denominator is constant because $P(a)$ will be the same for every value of b that we change. We can calculate all the numerators first, then normalize/equivalently compute the denominator at the end.

(g) Assume A is a random variable that can take 3 values, B is a random variable that can take 2 values, and C is a random variable that can take 5 values. What do the following probability tables sum to? Also, how many entries are in the following probability tables?

- (a) $P(A | b)$
- (b) $P(A | C)$
- (c) $P(C | B)$
- (d) $P(B | a)$
- (e) $P(B | A)$

(a) $P(A | b)$ definitely sums to 1 and has three entries.

(b) $P(A | C)$ definitely sums to five and has fifteen entries.

(c) $P(C | B)$ definitely sums to 2 and has 10 entries. B can take 2 values (b_1 and b_2). $P(C | b_1)$ and $P(C | b_2)$ each has five entries that sum to 1, so if we add them, we get 2.

(d) $P(B | a)$ definitely sums to 1 and has 2 entries.

(e) $P(B | A)$ definitely sums to 3 and has 6 entries. A can take 3 values (a_1 , a_2 , and a_3). Each of $P(B | a_1)$, $P(B | a_2)$, and $P(B | a_3)$ has two entries that sum to 1, so the total sums to 3.

3 Cake

Consider the above cake with 12 slices. Let s_1 indicate a slice with no sprinkles and s_2 be a slice with sprinkles. Let c_1 indicate a slice with no candles and c_2 be a slice with candles. Let S be a random variable indicating sprinkles and C be a random variable indicating candles. Calculate the following probabilities.

1. $P(C = c_1)$

By counting the number of slices that don't have candles, we can see that the probability of getting a slice with no candles is $4/12$.

2. $P(S = s_1, C = c_2)$

By counting the number of slices that don't have sprinkles but have candles, we can see that the probability of getting a slice with candles and no sprinkles is $4/12$.

3. $P(C = c_2 | S = s_1)$

We first constrain our world to only include the slices that contain no sprinkles which is 6 slices. 4 of those slices contain candles, so this probability becomes $4/6$. Another way to calculate this probability is by using the definition of conditional probability, $P(C = c_2 | S = s_1) = \frac{P(C=c_2, S=s_1)}{P(S=s_1)} = \frac{4/12}{6/12} = \frac{4}{6}$

4. $\sum_{s \in \{s_1, s_2\}} \sum_{c \in \{c_1, c_2\}} P(s, c)$

$P(s_1, c_1) + P(s_1, c_2) + P(s_2, c_1) + P(s_2, c_2) = 1$. Because we are summing up all possible disjoint combinations of the given sample space, the answer is 1.

5. $\sum_{c \in \{c_1, c_2\}} \sum_{s \in \{s_1, s_2\}} P(s | c)$

$P(s_1 | c_1) + P(s_2 | c_1) + P(s_1 | c_2) + P(s_2 | c_2) = 2/4 + 2/4 + 4/8 + 4/8 = 2$. Intuitively, we are summing up two different complete probability distributions, $P(S | c_1)$ and $P(S | c_2)$: one world where there are no candles, and another world where there are definitely candles.

$$6. \sum_{s \in \{s_1, s_2\}} \sum_{c \in \{c_1, c_2\}} P(c | s)$$

$P(c_1 | s_1) + P(c_2 | s_1) + P(c_1 | s_2) + P(c_2 | s_2) = 2/6 + 4/6 + 2/6 + 4/6 = 2$. Intuitively, we are summing up two different complete probability distributions, $P(C | s_1)$ and $P(C | s_2)$: one world where there is no sprinkles, and another world where there is definitely sprinkles.

4 Queries on a Large Joint Distribution

Consider binary (two outcomes) random variables A, B, C, D , and the following joint distribution table of all four variables.

A	B	C	D	$P(A, B, C, D)$
$+a$	$+b$	$+c$	$+d$	12/64
$+a$	$+b$	$+c$	$-d$	4/64
$+a$	$+b$	$-c$	$+d$	2/64
$+a$	$+b$	$-c$	$-d$	2/64
$+a$	$-b$	$+c$	$+d$	8/64
$+a$	$-b$	$+c$	$-d$	4/64
$+a$	$-b$	$-c$	$+d$	2/64
$+a$	$-b$	$-c$	$-d$	4/64
$-a$	$+b$	$+c$	$+d$	6/64
$-a$	$+b$	$+c$	$-d$	3/64
$-a$	$+b$	$-c$	$+d$	4/64
$-a$	$+b$	$-c$	$-d$	6/64
$-a$	$-b$	$+c$	$+d$	2/64
$-a$	$-b$	$+c$	$-d$	1/64
$-a$	$-b$	$-c$	$+d$	3/64
$-a$	$-b$	$-c$	$-d$	1/64

1. Calculate the following probabilities:

(a) $P(+c)$

Sum all the entries that contain $+c$ to get: $P(+c) = \sum_a \sum_b \sum_d P(a, b, +c, d) = 40/64$

(b) $P(+a, -b)$

Sum all the entries that contain both $+a$ and $-b$ to get: $P(+a, -b) = \sum_c \sum_d P(+a, -b, c, d) = 18/64$

(c) $P(-b | +a)$

1) Sum all entries with both $+a$ and $-b$ to get: $P(+a, -b) = \sum_c \sum_d P(+a, -b, c, d) = 18/64$

2) Sum all entries with $+a$ to get: $P(+a) = \sum_b \sum_c \sum_d P(+a, b, c, d) = 38/64$

3) Use definition of conditional probability to compute: $P(-b | +a) = \frac{P(+a, -b)}{P(+a)} = 18/38$

(d) $P(-a, +b, -d)$

Sum all entries with $-a, +b$, and $-d$ to get: $P(-a, +b, -d) = \sum_c P(-a, +b, c, -d) == P(-a, +b, +c, -d) + P(-a, +b, -c, -d) = 9/64$

$$(e) P(+c \mid -a, +b, -d)$$

1) Find entry with $-a, +b, +c, -d$ to get: $P(-a, +b, +c, -d) = 3/64$

2) Sum all entries with $-a, +b, -d$ to get: $P(-a, +b, -d) = \sum_c P(-a, +b, c, -d) = 9/64$

3) Use definition of conditional probability to compute: $P(+c \mid -a, +b, -d) = \frac{P(-a, +b, +c, -d)}{P(-a, +b, -d)} = 3/9$

$$(f) P(+c, +d \mid +a, +b)$$

1) Find entry with $+a, +b, +c, +d$ to get: $P(+a, +b, +c, +d) = 12/64$

2) Sum all entries with $+a, +b$ to get: $P(+a, +b) = \sum_c \sum_d P(+a, +b, c, d) = 20/64$

3) Use definition of conditional probability to compute: $P(+c, +d \mid +a, +b) = \frac{P(+a, +b, +c, +d)}{P(+a, +b)} = 12/20$

2. What value do the following probability tables sum to?

(a) $P(B)$

The short answer is that we are considering the entries for all the possible values of B , so this should sum to 1. You could calculate both entries in this table to convince yourself, $P(+b)$ and $P(-b)$.

(b) $P(+b \mid C, +d)$

Sadly, there is no shortcut here. The two entries in this table come from two different worlds that are unrelated: one world where $+c$ and $+d$ are given; and another world where $-c$ and $+d$ are given.

Important note: There is no real reason to add these numbers together in this strange probability table. This is primarily a counterexample to show that these do *not* sum to one.

We compute these two values similar to the methods in the previous questions, and then add them together.

$$P(+b \mid +c, +d) = \frac{P(+b, +c, +d)}{P(+c, +d)} = 9/14$$

$$P(+b \mid -c, +d) = \frac{P(+b, -c, +d)}{P(-c, +d)} = 6/11$$

When we add these two values together, we get 1.1883.

(c) $P(C, D \mid +a, +b)$

The short answer is that we are considering all possible entries for a single world where $+a$ and $+b$ are given, so this should sum to 1. You could calculate all four entries in this table to convince yourself, $P(+c, +d \mid +a, +b)$, $P(+c, -d \mid +a, +b)$, $P(-c, +d \mid +a, +b)$, $P(-c, -d \mid +a, +b)$.

5 Dancing With The Stars: Ilona, Stephen, and Chandler

“Obviously you can’t please everyone. I’m sure some people say, ’Bloody old Len Goodman gets on my nerves.’” –*Len Goodman*

You are given the following probability tables for binary random variables I, S, C :

C	$P(C)$
$+c$	0.33
$-c$	0.67

C	S	$P(S C)$
$+c$	$+s$	0.5
$+c$	$-s$	0.5
$-c$	$+s$	0.14
$-c$	$-s$	0.86

S	C	I	$P(I S, C)$
$+s$	$+c$	$+i$	0.25
$+s$	$+c$	$-i$	0.75
$+s$	$-c$	$+i$	0.42
$+s$	$-c$	$-i$	0.58
$-s$	$+c$	$+i$	0.15
$-s$	$+c$	$-i$	0.85
$-s$	$-c$	$+i$	0.3
$-s$	$-c$	$-i$	0.7

1. Write the probability of I in terms of $P(C)$, $P(S|C)$, and $P(I|S, C)$

$$\sum_s \sum_c P(c) * P(s|c) * P(I|s, c)$$

2. What should all the joint probabilities $P(I, S, C)$ add up to?

S	C	I	$P(S, C, I)$
$+s$	$+c$	$+i$	$0.33 * 0.5 * 0.25 = 0.04125$
$+s$	$+c$	$-i$	$0.33 * 0.5 * 0.75 = 0.12375$
$+s$	$-c$	$+i$	$0.67 * 0.42 = 0.14 * 0.039396$
$+s$	$-c$	$-i$	$0.67 * 0.58 = 0.14 * 0.054404$
$-s$	$+c$	$+i$	$0.33 * 0.5 * 0.15 = 0.02475$
$-s$	$+c$	$-i$	$0.33 * 0.5 * 0.85 = 0.14025$
$-s$	$-c$	$+i$	$0.67 * 0.86 * 0.3 = 0.17286$
$-s$	$-c$	$-i$	$0.67 * 0.86 * 0.7 = 0.40334$