15-281: AI: Representation and Problem Solving

Spring 2026

Recitation 6

1 Vocabulary Check

Define each of the following terms:

1. Interference

One action’s effect deletes or negates a precondition of the other.

2. Inconsistent effects/Inconsistency

One action’s effect deletes or negates an effect of the other.

3. Competing Needs

One action’s precondition is the negation of a precondition of the other.

February 20

15-281: AI: Representation and Problem Solving Spring 2026

Recitation 6 February 20

2

Compare and Contrast

. What are some ways to find a plan using a classical planning environment model?

Naive search (BFS), linear planning/non-linear planning, graph plan.

. What classical planning assumptions are relaxed when using the GraphPlan heuristic? Why is this

helpful compared to naive search?

We are assuming we can take multiple non-mutex actions at the same time.

This is useful since in this environment, taking multiple steps at a time will allow us to add multiple
goals, finishing the search problem much quicker than the tradidional one action method

(Also, if we return a plan that requires we take multiple actions at the same time, we can take them in
any order with the same effect since they are non-mutex)

15-281: AI: Representation and Problem Solving Spring 2026

Recitation 6 February 20

3 Symbolic Planning - Crate Problem

In the Crane problem, you are given a crane, a package and a truck. The package starts on the left, the truck
on the right, and the crane faces the left. The goal of this is to load the package onto the truck and have the
crane be facing the left.

The crane can swing between left and right, with or without a payload, and it can pick up the crate if it
is on the same side. The crate can only be loaded onto the truck using the crane.

(a) Draw the planning graph for the first 3 moves. You may use pictures instead of propositions.

T T~
Iy

Ju
N

Ta -

o

15-281: AI: Representation and Problem Solving Spring 2026

Recitation 6 February 20

(b) Formulate the crate problem as a symbolic plan. You will need to define your variables, instances,
start/goal states, and operators.

See provided sample code, bottom of the document

15-281: AI: Representation and Problem Solving Spring 2026

Recitation 6 February 20

(¢) Draw the first two levels of the Graph Plan graph.
In the following diagram, the blue lines represent the propositions added as the result of an action

and the dotted purple lines represent the propositions deleted at the result of that action. The green
squares in the action levels represent no-op’s.

So Ag 51 A S,

On(Crane, L)

On(Crane, L) ’

EE— .
/ e Swing(L)}<~ - - - /=>»On(Crane, R)

IOn(Crane, L) " a -
SWIHQ(R) \ On(Crane R} K On(Crate,
’ Crane)

On(Crate, R)

On(Crate, | Pickup — On(Crate,
Ground) Crane)

On(Crate, Truck)

——— | On(Crate,

On(Crate, L) \ Ground) %r:ﬁ:g;a
\On(crate’ D On(Crate, L)
On(Truck, R)——>

T ———(On(Truck, R) On(Truck, R)

(d) Identify the exclusive actions in your graph and determine which type of mutex each is.

In the level Ap, Swing(R) and Pickup interfere with each other. In level Ay, one example would be
Swing(L) and Swing(R) being inconsistent.

15-281: AI: Representation and Problem Solving Spring 2026

Recitation 6 February 20

4 Mutex relation

Pinky is getting food from a Chuck E. Cheese. Pinky has the following actions:
e Move(A,B):
— Preconditions: At(A)
— Add list: At(B)
— Delete list: At(A)

Buy(Cheese):

— Preconditions: At(ChuckyCheese), Rich
— Add list: Has(Cheese), = Rich

Gamble

— Preconditions: At(ChuckyCheese),Rich
— Add list: = Rich
— Delete list: Rich

e ATM

— Precondition: At(ChuckyCheese),— Rich
— Add list: Rich
— Delete list: — Rich

Eat(Cheese):

— Preconditions: Has(Cheese)
— Add list: Full
— Delete list: Has(Cheese)
The start state contains the predicates Rich and At(Home).

The goal state is any state containing Full.
Below is the corresponding GraphPlan graph:

15-281: AI: Representation and Problem Solving

Spring 2026

Recitation 6

So Ao S Ai S:
At(Home) (] | At(Home) (] | At(Home)
Move(Home, CC)
Move(Home, CC) | Move(CC, Home) f..
At(CC) [N At(ce) §
Buy(Cheese)
Has(Cheese)
Gamble [~
—Rich
Rich D Rich
=1 Rich

(a) Based on the above graph, list two actions that are mutex via inconsistent effects in level Ag.

No-op of At(Home) and Move(Home, ChuckyCheese)

February 20

"N ace)

=4 Rich

\ ATM F

(b) Based on the above graph, list two actions that are mutex via Interference in level A;

Buy(Cheese) and Gamble()

(¢) Based on the above graph, list two actions that are mutex via Competing needs in level As.

No-op of Rich and ATM

—? Has(Cheese)

3 —Rich

Full

15-281: AI: Representation and Problem Solving

Spring 2026

Recitation 6

Crane planning problem
from graphplanUtils import *

Types

0BJ = ’0Object’
DIR = ’Direction’
LOC = ’Location’

Instances

truck = Instance(’truck’, LOC)
crane = Instance(’crane’, L0OC)
crate = Instance(’crate’, 0BJ)
ground = Instance(’ground’, LOC)

left = Instance(’left’, DIR)
right = Instance(’right’, DIR)

Instances = [truck, crane, crate, left, right, ground]

#Start and Goal States

Start = [Proposition(’on’, crane, left),
Proposition(’on’, truck, right),
Proposition(’on’, crate, ground),
Proposition(’on’, crate, left)]

Goal = [Proposition(’on’, crane, left), Proposition(’on’, crate, truck)]

Variables
v_to_side = Variable(’to_side’, DIR)
v_from_side = Variable(’from_side’, DIR)

Operators
o_pickup = Operator(’pickup’,
Preconditions
[Proposition(’on’, crate, ground),

Proposition(’on’, crate, v_from_side),
Proposition(’on’, crane, v_from_side)],

Adds
[Proposition(’on’, crate, crane)],
Deletes

[Proposition(’on’, crate, v_from_side),

Proposition(’on’, crate, ground)])

o_swing = Operator(’swing’,
Preconditions

[Proposition(’on’, crane, v_from_side),
Proposition(NOT_EQUAL, v_from_side, v_to_side)],

Adds

[Proposition(’on’, crane, v_to_side)],

Deletes

[Proposition(’on’, crane, v_from_side)])

o_load = Operator(’load’,

February 20

15-281: AI: Representation and Problem Solving Spring 2026

Recitation 6 February 20

Preconditions

[Proposition(’on’, crane, v_from_side),
Proposition(’on’, truck, v_from_side),
Proposition(’on’, crate, crane)],

Adds

[Proposition(’on’, crate, v_from_side),
Proposition(’on’, crate, truck)],

Deletes

[Proposition(’on’, crate, crane)])

Operators=[o_pickup, o_swing, o_load]

#Problems
probl = GraphPlanProblem(’dockloading’,
Instances
Instances,
Operators
Operators,
Initial state
Start,
Goals
Goal)

probl.solve()
probl.display()

probl.dump()

