15-281: AI: Representation and Problem Solving Spring 2026

Recitation 5 February 13

1 Conceptual Review

(a) Vocabulary check: Are you familiar with the following terms?
e Symbols:

Variables that can be T/F (capital letter)

e Operators:
And (A), Or (V), Implies (=), Equivalent (<)
e Sentences:

Symbols connected with operators, can be T/F

e Equivalence:

True in all models that A and B imply each other (A equivalent to B)

e Literals:
Atomic Sentence
e Knowledge Base:
Sentences known to be true
¢ Entailment:
A entails B iff for every model that satisfies A, B is also true
o Clauses (Definite vs. Horn Clauses):

Clause: A conjunction of literals
Definite Clause: Clause with exactly one positive literal
Horn Clause: Clause with at most one positive literal

e Model Checking:

Check if sentences are true in given model/check entailment

e Theorem Proving:

Search for sequence of proof steps (e.g. Forward Chaining)

e Modus Ponens:

From P and (P = @), infer Q

(b) Recall the definitions of satisfiability and entailment.
e Satisfiability:

A sentence is satisfied by some model (an assignment of values to variables) m if m makes the
sentence true.
A sentence is satisfiable if there exists a model that satisfies it.

o Entailment:

15-281: AI: Representation and Problem Solving Spring 2026

Recitation 5 February 13

(c)

Entailment: a = b (“a entails b” or “b follows from a”) iff every model that satisfies a also
satisfies b. In other words, the a-worlds (worlds where a is true) are a subset of the b-worlds
[models(a) C models(b)].

What is the difference between satisfiability and entailment?

Satisfiability holds if there exists a single model that in which the sentence is true. This is a property
of a sentence (a sentence is satisfiable or it is not).

Entailment holds if all models which satisfy one sentence (query) also satisfy another sentence (knowl-
edge base). It relates two sentences (sentence a entails b, or a does not entail b), and requires checking
all models that satisfy a.

Suppose A = B. Consider all models assigning values to variables in sentences A and B. Which of the
following sentences must be true in all possible models (even if either or both A/B are false)?

(a) ANB (c) B=A (e) B
(b) A= B (d) AV B
(b) A= B

By definition of implication, in all models (i.e., truth assignments) where A is true, B is also true. Thus
in all models, A = B is satisfied.

(Thinking of it conversely, there would never be a model where B is false and A is true. By definition
of implication, this means no model the rule A = B.)

Determine which of the following are correct, and explain your reasoning.
e (AVB)E (A= B)
False (when A is true and B is False, AV B is true but A = B is false)
e A< BEAV-B
True (the RHS is B = A, which is one of the conjuncts in the definition of A <= B)
e (AV B) A=(A = B) is satisfiable
True (the model has A and —B)

How would we formulate the SAT problem as a CSP? What are the variables? Domains? Constraints?

SAT can be modeled as a CSP in which the variables are literals with domain {T, 1}, and the constraints
are the clauses themselves.

Suppose we have an algorithm which determines whether a sentence is satisfiable or not. Given two
sentences A and B, how could we determine whether A = B?

If A = B, then A A =B should be unsatisfiable (this is proof via reductio ad absurdum - reduction to
an absurd thing).

15-281: AI: Representation and Problem Solving

Spring 2026

Recitation 5

2 SATurdays are for everyone
o P
« -PVQ
e PV-QVR
« “QVR

Prove R to be true using resolution.

February 13

P "PVQ PvoQvR

(2~\\\\\\

“"Qv iR

15-281: AI: Representation and Problem Solving Spring 2026

Recitation 5 February 13

3 Wandering in Wumpus World

We bring together what we have learned in lecture as well as the ideas of search so far in order to construct
wumpus world agents that use propositional logic. The first step is to enable the agent to deduce, to the
extent possible, the state of the world given its percept history. This requires writing down a complete logical
model of the effects of actions. We also show how the agent can keep track of the world efficiently without
going into the percept history for each inference. Finally, we show how the agent can use logical inference to
construct plans that are guaranteed to achieve its goals.

Try it out: http://thiagodnf.github.io/wumpus-world-simulator/ Note that there are some slight differ-
ences between this online version and the version we describe below.

Throughout this question, we will present several screenshots from the Wumpus World simulator linked
previously. Note that the location of the explorer can be ignored. We just tried to place him somewhere off
screen!

Recall that an agent in the Wumpus World has access to the following percepts:

e In the square containing the wumpus and in the directly (not diagonally) adjacent squares, the agent
will perceive a Stench.

e In the squares directly adjacent to a pit, the agent will perceive a Breeze.
e In the square where the gold is, the agent will perceive a Glitter.
e When an agent walks into a wall, it will perceive a Bump.

e When the wumpus is killed, it emits a woeful Scream that can be perceived anywhere in the cave.

(a) Consider the following Wumpus World state:

Stench

Breeze
Stench

Breeze Breeze Breeze

Figure 1: Safe, not safe, or unsure?

For the squares A-H, mark each of them with ‘+ if the square is definitely safe, ‘- if it is definitely
not safe, and ‘7’ otherwise.

http://thiagodnf.github.io/wumpus-world-simulator/

15-281: AI: Representation and Problem Solving Spring 2026

Recitation 5 February 13

Stench

Breeze
Stench

Breeze

Safe, since there is no adjacent breeze or stench.
Unsure, since there may be a pit.

Unsure, since there may be a pit.

Unsure, since there may be a pit.
Unsafe, there are two squares adjacent to the breeze/stench square, so both must be hazards.

)
)
)
d) Not safe - it’s the only square adjacent to the breeze, so it must be a pit.
)
)
) Unsafe - same reasoning as F.
)

Unsafe. Since there is only one square adjacent to the stench, this square is a wumpus.

(b) Counsider the PL symbols Sa,Sg ... Sy that represent whether or not each square A-H is safe or not
safe. We also have symbols W; and P; for whether square i has a wumpus or a pit, respectively.

Let our Knowledge Base (KB) be a propositional logic sentence in CNF which contains all of the logic
for the rules of Wumpus World as well as the percepts for the squares already visited (i.e., info about
stenches, breezes, or not in the 12 dark squares in the figure). Assume the KB also has logic related to
the safety of a square, i.e.,mW; A =P, <= S,.

You are given access to a black box SAT solver function PL_SATISFIES(pl_sentence} which returns
a PL model satisfying the given sentence if it is satisfiable and None otherwise.

Write pseudocode using the SAT solver and given propositional logic symbols to determine is square ¢
is:

(a) Definitely safe

if PL_SATISFIES(KB and not S_i) == None:
return SAFE

(b) Definitely not safe

if PL_SATISFIES(KB and S_i) == None:
return SAFE

15-281: AI: Representation and Problem Solving Spring 2026

Recitation 5 February 13

(¢) Unsure

if PL_SATISFIES(KB and S_i) != None
&& PL_SATISFIES(KB and !S_i) !'= None:
return UNSURE

(c) Take a moment to familiarize yourself with the pseudocode below to understand how we might decide
to act in Wumpus World. You’ll notice that we have labeled the key decision-making portions of this
code, and that different decisions need to be made given the state of our knowledge base.

On the next page, match each of the following states to one of the labeled code chunks in the pseu-
docode, and explain your reasoning.

function HYBRID-WUMPUS-AGENT(percept) returns an action
inputs: percept, alist, [stench,breeze,glitter,bump,scream]
persistent: KB, a knowledge base, initially the atemporal “wumpus physics”
t, a counter, initially 0, indicating time
plan, an action sequence, initially empty

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
TELL the KB the temporal “physics” sentences for time ¢
safe — {[z,y] : ASK(KB, Owa) = true}
if ASK(KB, Glitter’) = true then A
plan < [Grab] + PLAN-ROUTE(current, {[1,11}, safe) + [Climb]
if plan is empty then
unuisited — {[z,y] : ASK(KB, Lgy) = false forall ¢’ < t}
plan «— PLAN-ROUTE(current, unvisited N safe, safe)
if plan is empty and ASK (KB, HaveArrow"') = true then
possible_wumpus «— {[z,y] : ASK(KB,~ Wy) = false} C
plan — PLAN-SHOT(current, possible_wumpus, safe)
if plan is empty then // no choice but to take a risk
not_unsafe —{[z,y] : AsK(KB,~ OK_) = false} D
plan «— PLAN-ROUTE(current, unvisited N not_unsafe, safe)
if plan is empty then
plan < PLAN-ROUTE(current, {[1, 1]}, safe) + [Climb] E
action <+ POP(plan)
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t—t+1
return action

function PLAN-ROUTE(current,goals,allowed) returns an action sequence
inputs: current, the agent’s current position
goals, a set of squares; try to plan a route to one of them
allowed, a set of squares that can form part of the route

problem < ROUTE-PROBLEM(current, goals,allowed)
return A*-GRAPH-SEARCH(problem)

Figure 2: Hybrid-Wumpus-Agent from AIMA 3rd ed. It uses a propositional knowledge base to infer the
state of the world, and a combination of problem-solving search and domain-specific code to decide what
actions to take.

15-281: AI: Representation and Problem Solving Spring 2026

Recitation 5 February 13

State Code Chunk

C: There are two stenches within
reasonable distance; therefore,
based on satisfiability, it is possi-
ble for a Wumpus to exist in the
unvisited square diagonal from
our explorer. There are also no
guaranteed safe spaces. Since we
have an arrow that we can use
in case of Wumpus, we plan to
shoot our arrow.

B: We have found an unvisited
square free from breeze or stench.
We know, based on our knowl-
edge base, that this unvisited
square must therefore also be
safe and we can visit it.

A: We have found gold, and we
can grab it, and then plan the
shortest, safest route out.

D: There is no guaranteed safe
square; therefore, we must take
a risk.

Table 1: Which code chunk is applicable for each of these states?

15-281: AI: Representation and Problem Solving Spring 2026

Recitation 5 February 13

4 Journey to Success(or-State Axioms)

(a)

First, let’s review some definitions. What are successor-state axioms?

Successor-state axioms are axioms outlining what preconditions must be true in order to ensure that
the state at the next time step will be specified. By definition, it is an axiom that sets the truth value
of F'*1 (where F is some fluent, or changeable variable in an environment) in one of two ways:

e The action at time ¢ causes F to be true at ¢ + 1 (which refers to ActionCausesF?)
e [was already true at time ¢ and the action at time ¢ does not cause it to be false.

It has the following schema: F'"! <= ActionCausesF'V (F* A =ActionCausesNotF").
We use successor-state axioms to ensure that each state we compute is the result of legal action.

Consider the following Mini Pacman grid. In this simplified world, the only available actions are Left,
Right, and Stay. The only possible states are Pacman; 1y and Pacman sy 1. If Pacman tries to move
into a wall, he will stay in the same state.

Notice that Pacman’s state and actions are both fluent, so we can set up successor-state axioms to
define how Pacman moves in this world. Write the successor-state axiom corresponding to Figure 4.

State at time t (Option 1) State at time t+7 (Successor State)

State at time t (Option 2)

Figure 3: Mini Pacman Grid

Successor-state axiom: Pacmana}) <= Right'V (Pacmanfm) A —Leftt)

Ft+l g Pacmanfﬁ)
ActionCausesF* is Right

(Ft A = ActionCausesNotF?) is (Pacmanfzn A —Leftt)

Think about how you could prevent Pacman from being in multiple states or taking multiple actions
at the same time. You will get to explore this in P3!

Suppose that at time 0, Pacman is somewhere on a 5x5 grid ((1,1) at the bottom left, (5,5) at the top
right) with only walls on the borders.

For each of the following, state whether the entailment relation is correct. Explain your reasoning.

15-281: AI: Representation and Problem Solving Spring 2026

Recitation 5 February 13

(a)

(b)

Up' V Right* |= ﬁPacmanEﬂ)

True, there is no square that would lead to square (1,1) after moving up or right

—\Pacman'(fi}) E Up' V Rightt

False, a counterexample would be starting at square (3,2), and an action left leading to square
(2.2)

Up’ NUp? NUp? = Pacman‘(lx) T €15y e [4,5]

False, this is almost true, however, if Pacman starts at row 1 and the action at step 1 was down,
Pacman would end at row 3

Up' A Right® |= ﬁPacmanE;é)

True

There is no model that fits the action at a time step being both Up and Right. Therefore, for
every model that fits this, the right side must also be true

(similar to being vacuously true for implications)

ﬁPacmangé) E Up' A Right!

False, since there is no model such that the right side is true, and there is at least one model such
that the left side is true

Down®*! A Leftt*! |= Upt A Right!

True, since there are no valid models in the left or the right
(similar to False = False)

