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Recitation 3 January 30

1 Adversarial Search

(a) Consider the following game tree, where the root node is a maximizer. Visit successors from left to right
and write the value being returned at each node inside the triangle or circle. Note that each blue triangle
is a maximizer and each green circle is a chance node.

5 12/ 18 20" 114 15 -7 -2' 118 -20! 10 15 18 -9' 120 -20! 118 -10

The following picture shows the final values at each node.

5 121 18 20" 114 15 -7 -2 118 -20' 10 15 18 9! 120 -20! 118 -10
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(b) Which of the nodes in the previous tree could have been pruned?

None of them! Any leaf node could have had an arbitrarily large value that resulted in the value of its
parent node(s) being larger than the value of previous nodes, thus it was necessary to explore all nodes.

(¢) Now you are given that each leaf node is bounded by [-20, 20]. With this information, resolve the previous
game tree, this time pruning any unnecessary paths. As before, visit successors from left to right and
write the value being returned at each node.

5 12/ 18 20" 114 15 -7 -2' 118 -20! 10 15 18 -9' 120 -20! 118 -10

The following picture shows the pruned nodes and final values at each node.

5 12/ 18 20" 114 15 7 -2 18 -9 120 ‘-18 -10
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2 Discussion Questions

(a) What is the difference between Forward Checking and AC-3?

Forward checking and AC-3 both enforce arc consistency, but forward checking is more limited. Whenever
a variable X is assigned, forward checking enforces arc consistency only for arcs that are pointing to X,
which will reduce the domains of the neighboring variables in the constraint graph. Forward checking
stops at this point, but AC-3 will continue to enforce arc consistency on neighboring arcs until there are
no more variables whose domain can be reduced. As a result, FC ensures arc consistency of the assigned
variable and its neighbors only, while AC-3 ensures arc consistency for the whole graph.

(b) Why would one use the following heuristics for CSP?
(i) Minimum Remaining Values (MRV)
MRYV: “Which variable should we assign next?”

e Fail fast

e We have to assign all variables at some point, so we might as well do hard stuff first (allowing
us to prune the search tree faster/realize we need to backtrack)

(ii) Least Constraining Value (LCV)
LCV: “Which value should we try next?”
e We just want one solution.

e We don’t try all combinations of value, so we should try ones that are likely to lead to a solution.
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3 CSP: Air Traffic Control

We have five planes: A, B, C, D, and E and two runways: international and domestic. We would like to
schedule a time slot and runway for each aircraft to either land or take off. We have four time slots: 1, 2, 3, 4
for each runway, during which we can schedule a landing or take off of a plane. We must find an assignment
that meets the following constraints:

e Plane B has lost an engine and must land in time slot 1.

e Plane D can only arrive at the airport to land during or after time slot 3.

e Plane A is running low on fuel but can last until at most time slot 2.

e Plane D must land before plane C takes off, because some passengers must transfer from D to C.

e No two aircrafts can reserve the same time slot for the same runway.

(a) Complete the formulation of this problem as a CSP in terms of variables, domains, and constraints (both
unary and binary). Constraints should be expressed implicitly using mathematical or logical notation rather
than with words. Make sure to specify variables, domains, and constraints.

Variables: A, B, C, D, E for each plane.
Domains: a tuple (runway type, time slot) for runway type € {international, domestic} and time slot

€ {1,2,3,4}.
Constraints:
B[l] =1
D[1] >3
All] <2
D[1] < C[1]

A#4B #C+#D+E

Note here we use B[1] to denote the second value of the tuple assigned to variable B, the time slot value,
which is a number in {1,2,3,4}.

For the following parts, we add the following two constraints:

e Planes A, B, and C cater to international flights and can only use the international runway.

e Planes D and E cater to domestic flights and can only use the domestic runway.

(b) The addition of the two constraints above alters the CSP. Specifically, the domain does not need to
include the runway type since this information is carried by the variable, and the binary constraints have
changed. Determine the new domain and complete the constraint graph for this problem given the original
constraints and the two added ones.

Variables: A, B, C, D, E for each plane.
Domain: {1,2,3,4}
Constraint Graph:

(®)
@
(®)
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Explanation of Constraints Graph: We can now encode the runway information into the identity of
the variable, since each runway has more than enough time slots for the planes it serves. We represent the
non-colliding time slot constraint as a binary constraint between the planes that use the same runways.



15-281: AI: Representation and Problem Solving Spring 2026

Recitation 3 January 30

(¢c) What are the domains of the variables after enforcing arc consistency? Begin by enforcing unary con-
straints. (Cross out values that are no longer in the domain.)

Enforcing arc consistency with AC-3, we have the following domain as a result:

HoO QW=
R WS
DO TR ™R DN
TR WO T ™
e N N

(explanation of process below)
Enforcing unary constraints (in an arbitrary order) first,

1. We cross out 2, 3, 4 from B’s domain, adding arcs A — B and C — B to the queue.
2. We cross out 3, 4 from A’s domain, adding arcs B — A and C — A to the queue.
3. We cross out 1, 2 from D’s domain, adding arcs C — D and E — D to the queue.

Enforcing A — B, we cross out 1 from A’s domain; Arcs B —+ A and C — A are already on the queue.
Enforcing C — B, we cross out 1 from C’s domain; add arcs A — C, B — C, and D — C to the queue.
Enforcing B — A, no domain changes are necessary (all values remaining in B’s domain have a consistent
corresponding value in A’s domain); no arcs are added.

Enforcing C — A, we cross out 2 from C’s domain; Arcs A — C, B — C, and D — C are already on the
queue.

Enforcing C — D, we cross out 3 from C’s domain; Arcs A — C, B — C, and D — C are already on the
queue.

Enforcing E — D, no domain changes are necessary.

Enforcing A — C, no domain changes are necessary.

Enforcing B — C, no domain changes are necessary.

Enforcing D — C, we cross out 4 from D’s domain (there is no ¢ in C’s domain such that ¢ > 4); add arcs C
— D and E — D to the queue.

Enforcing C — D, no domain changes are necessary.

Enforcing E — D, we cross out 3 from E’s domain; add arc D — E to the queue.

Enforcing D — E, no domain changes are necessary.

(phew!)

Note: For a general binary CSP, to enforce arc consistency before assigning any variables, you should add
all arcs to the initial queue. For this problem, it can be easily seen that if there are no unary constraints, all
the arcs will be consistent before any variable is assigned a value. As a result, we can start with the unary
constraints and add arcs only for the related variables after enforcing the unary constraints.

(d) Arc-consistency can be rather expensive to enforce, and we believe that we can obtain faster solutions
using only forward-checking on our variable assignments. Using the Minimum Remaining Values heuristic,
perform backtracking search on the graph, breaking ties by picking lower values and characters first. List
the (variable, assignment) pairs in the order they occur (including the assignments that are reverted upon
reaching a dead end). Enforce unary constraints before starting the search.

List of (variable, assignment) pairs:

(You don’t have to use this table)
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Answer: (B, 1), (A, 2), (C, 3), (C, 4), (D, 3), (E, 1)
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4 CSP: Magic Square

A magic square is an n x n grid where each entry is unique and contains one of {1,...,n?}. It has that every
row, column, and diagonal sum to the same number.

In this problem, we’ll solve a 3 x 3 magic square by formulating it as a CSP. Each row, column, and diagonal

in the 3 x 3 magic square must sum to 15. We have already filled out some of the numbers for you, but the
letters in blue still need to be filled in.

Ne)

4

4 A i = 15

(a) Complete the formulation of this problem as a CSP in terms of variables, domains, and constraints (both
unary and binary). Constraints should be expressed implicitly using mathematical or logical notation
rather than with words. Make sure to specify variables, domains, and constraints.

Hint: You do not need to create variables for the squares already provided.

Variables: A, B, C, D, E for each empty square
Domain: {1,3,7,8,9}

Constraints:
Horizontal:
4+A+2=15 — A=9
B+5+C=15 — B=10-C
D+FE+6=15 = D=9—-F
Vertical:
4+B+D=15 — B=11-D
A+5+FE=15 — A=10—-F
24+C+6=15 = C=7
Diagonal:
D+5+2=15 — D=8
Other:

A#B #C#D#E
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(b)

Draw the binary constraint graph for this problem. For simplicity, you may ignore the ”alldiff” constraint
that all variables are unique when creating this graph.

ONOSOS0R0

Explanation of Constraint Graph: We can encode the binary constraints as edges between pairs of
nodes. Note that in this problem, all rows, columns and diagonals have at most 2 variables, since at least
one number is already given. Therefore, every pair of variables in the same row, column, or diagonal has
the binary constraint that the sum of those two variables along with the third given number must be 15.

Here are the four binary constraints (represented by edges in the graph):

e A is in the same column as E, so A and E have a binary constraint.
e E is also in the same row as D, so E and D have a binary constraint.
e D is also in the same column as B, so D and B have a binary constraint.

e B is also in the same row as C, so B and C have a binary constraint.

Use the binary constraint graph to run the AC-3 algorithm and find a solution to the magic square.

Enforcing unary constraints (in an arbitrary order) first,

(a) We cross out 1, 3, 7, 8 from A’s domain as it is already fully constrained.
(b) We cross out 1, 3, 8, 9 from C’s domain as it is already fully constrained.

(¢) We cross out 1, 3, 7, 9 from D’s domain as it is already fully constrained.
AC3 Solution:

Enforcing arc consistency with AC-3, we have the following domain as a result:

ol wN@Nvel-
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Our starting queue will contain, in an arbitrary but convenient order, arcs E — A, B — C, B — D, and
E — D.

Enforcing E — A, we cross 3, 7, 8, 9 from E’s domain. Arcs A — E and D — E will be added to
the queue.

Enforcing B — C, we cross 1, 7, 8, 9 from B’s domain, Arcs D — B and C — B will be added to the
queue.

Enforcing B — D, no domain changes are necessary.

Enforcing E — D, no domain changes are necessary.

Enforcing A — E, no domain changes are necessary.

Enforcing D — E, no domain changes are necessary.

Enforcing D — B, no domain changes are necessary.

Enforcing C — B, no domain changes are necessary.
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5 MRV and LCV in Action

AJ, Sunny, and Ellyse want to paint ”15-281" on the fence tomorrow in honor of their favorite class. They
have the following paint collections at home:

e AJ = Red, Yellow, Green
e Sunny = Red, Yellow, Pink
e Ellyse = Red, Pink

Each of them will contribute exactly one bucket of paint from their collections such that no two TAs bring
the same paint color.

AJ suddenly remembers going over CSPs in lecture, and suggests formulating this problem as a CSP to
determine an assignment of each TA to a paint color so that all three chosen paint colors are different. Sunny
isn’t fully convinced yet that LCV and MRV will help speed up a constraint satisfaction problem, so AJ asks
for your help to convince Sunny.

(a) Let’s use the minimum remaining values (MRV) and least constraining value (LCV) heuristics to assign
TAs to paint colors. Recall that the MRV heuristic determines which variable to assign, while the LCV
heuristic determines which value to assign to that variable to. How many times will we backtrack to a
previous assignment? Assume we break ties in rainbow order.

We will backtrack zero times.

We first use the MRV (minimum remaining values) heuristic to choose which TA gets assigned next.
Ellyse has 2 possible paint colors, while AJ and Sunny have 3. Since Ellyse has the fewest possible paint
colors left, we will assign her next.

We will assign Ellyse a paint color using the LCV heuristic.

If we assign Ellyse to ”"Pink,” the sum of the number of paint colors remaining over the other TAs
is 5.

e AJ = Red, Yellow, Green

e Sunny = Red, Yellow, Pink
e Ellyse = Red, Pink

If we assign Ellyse to "Red,” the sum of the number of paint colors remaining over the other TAs is 4.

e AJ = Red, Yellow, Green
e Sunny = Red, Yellow, Pink
e Ellyse = Red, Pink

Since 5 > 4, assigning Ellyse to ”Pink” is the least constraining value (or paint color).

Now, we will use MRV again to choose which TA will get assigned next. Sunny has 2 possible paint
colors, while AJ has 3. Since Sunny has the fewest possible paint colors left, we will assign her next.

If we assign Sunny "Red”, there are 2 paint colors left for AJ.

o AJ = Red, Yellow, Green

10
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e Sunny = Red, YeHow, Pink
e Ellyse = Red, Pink

If we assign Sunny ”Yellow”, there are 2 paint colors left for AJ.
e AJ = Red, ¥eHow, Green

e Sunny = Red, Yellow, Pink
e Ellyse = Red, Pink

Since we have a tie (and we break ties in rainbow order), we will assign Sunny to "Red.”

AJ is the only TA left without a paint color assignment. We can assign her either ” Yellow” or ”Green,”
but choose ”Yellow” because we break ties in rainbow order.

We have satisfied the constraints (that no two TAs bring the same paint color) without backtracking to
previous assignments.

Suppose we use a new set of heuristics to assign TAs to paint colors: maximum remaining values (instead
of MRV) and most constraining value (instead of LCV). How many times will we backtrack to a previous
assignment?

We will backtrack one time.

We first use the maximum remaining values heuristic to choose which TA gets assigned next. Ellyse
has 2 possible paint colors, while AJ and Sunny have 3. Since AJ and Sunny have the most possible
paint colors left, we will assign AJ next (tiebreaking by order).

We will assign AJ a paint color using the most constraining value heuristic.

If we assign AJ to "Red,” the sum of the number of paint colors remaining over the other TAs is
3.

e AJ = Red, Yelow, Green
e Sunny = Red, Yellow, Pink
e Ellyse = Red, Pink
If we assign AJ to ”Yellow,” the sum of the number of paint colors remaining over the other TAs is 4.
e AJ = Red, Yellow, Green
e Sunny = Red, ¥ellow, Pink
e Ellyse = Red, Pink
If we assign AJ to ”Green,” the sum of the number of paint colors remaining over the other TAs is 5.
o AJ = Red, ¥Yellow, Green
e Sunny = Red, Yellow, Pink
e Ellyse = Red, Pink

11
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Since 3 < 4 and 3 < 5, we will assign AJ to "Red” using the most constraining value heuristic.

Now, we will use the mazimum remaining values heuristic again to choose which TA gets assigned
next. Sunny has 2 possible paint colors, while Ellyse has 1. Since Sunny has more possible paint colors
left, we will assign her next.

If we assign Sunny to ”Yellow,” the sum of the number of paint colors remaining over the other TAs is 1.
e AJ = Red, Yellow, Green
e Sunny = Red, Yellow, Pink
e Ellyse = Red, Pink

If we assign Sunny to ”Pink,” the sum of the number of paint colors remaining over the other TAs is 0.
e AJ = Red, Yellow, Green
e Sunny = Red, YeHow, Pink
o Ellyse = Red, Pink

Since 0 < 1, we will assign Sunny to ”"Pink” using the most constraining value heuristic.

Now, Ellyse has no paint colors to choose from, so we have not found a solution to our CSP.

Thus, we must backtrack and assign Sunny to ” Yellow” instead of ”Pink.”

e AJ = Red, ¥Yellow, Green
e Sunny = Red, Yellow, Pink

o Ellyse = Red, Pink

Ellyse is the only TA left without a paint color assignment, and there is only one paint color left in her
domain. Thus, we can assign Ellyse to ”Pink.”

We have satisfied the constraints (that no two TAs bring the same paint color), but we had to backtrack
to a previous assignment one time.
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