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1 HMMs: Warmup

1. What are the three components of a hidden markov model? What makes it ”hidden”?

• Initial distribution: P (X0)

• Transition model: P (Xt|Xt−1)

• Sensor model: P (Et|Xt)

The hidden part of hidden markov models comes from the fact that we do not observe the state
variables Xi directly, rather we observe the evidence variables Ei and must make conclusions about the
underlying true state.

2. Write an expression for the joint distribution of a hidden markov model consisting of states X0, . . . , Xn

and evidence variables E1, . . . , EN . How does the expression reflect the underlying structure of the
model?

P (X0, . . . , XN , E1, . . . , EN ) = P (X0)
∏N

t=1 P (Xt|Xt−1)P (Et|Xt)

This expression reflects that the a state is only directly influenced by its previous state, and that
the evidence is independent of everything else given the corresponding state.

3. For each of the following descriptions in English of an inference task, write the corresponding probability
expression:

• Draw conclusions about our current underlying state given evidence up to the current time step

• Draw conclusions about our future underlying state given evidence up to the current time step

• Draw conclusions about a past underlying state given evidence up to the current time step

• Draw conclusions about the sequence of underlying states given evidence up to the current time
step

• Draw conclusions about the most likely sequence of underlying states given evidence up to the
current time step

• Filtering: P (Xt|E1:t)

• Prediction: P (Xt+k|E1:t), k > 0

• Smoothing: P (Xk|E1:t), 1 ≤ k < t

• Explanation: P (X1:t|E1:t)

• Most likely explanation: argmaxX1:t
P (X1:t|E1:t)
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4. Hidden Markov Models can be extended in a number of ways to incorporate additional relations. Since
the independence assumptions are different in these extended Hidden Markov Models, the forward
algorithm updates will also be different. What is the forward algorithm updates for the extended
Hidden Markov Models specified by the following Bayes net?

P (Xt|e1:t) = α
∑

xt−1
P (et|xt, xt−1)P (xt|xt−1)P (xt−1|e1:t−1)
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2 HMMs: Tracking a Jabberwock

You have been put in charge of a Jabberwock for your friend Lewis. The Jabberwock is kept in a large
tugley wood which is conveniently divided into an N × N grid. It wanders freely around the N2 possible
cells. At each time step t = 1, 2, 3, . . ., the Jabberwock is in some cell Xt ∈ {1, . . . , N}2, and it moves to
cell Xt+1 randomly as follows: with probability 1− ϵ, it chooses one of the (up to 4) valid neighboring cells
uniformly at random; with probability ϵ, it uses its magical powers to teleport to a random cell uniformly
at random among the N2 possibilities (it might teleport to the same cell). Suppose ϵ = 1

2 , N = 10 and that
the Jabberwock always starts in X1 = (1, 1).

(a) Compute the probability that the Jabberwock will be in X2 = (2, 1) at time step 2. What about
P (X2 = (4, 4))?

P (X2 = (2, 1)) = 1/2 · 1/2 + 1/2 · 1/100 = 0.255
P (X2 = (4, 4)) = 1/2 · 1/100 = 0.005

At each time step t, you don’t see Xt but see Et, which is the row that the Jabberwock is in; that is,
if Xt = (r, c), then Et = r. You still know that X1 = (1, 1).

(b) Suppose we see that E1 = 1, E2 = 2. Fill in the following table with the distribution over Xt after each
time step, taking into consideration the evidence. Your answer should be concise. Hint: you should
not need to do any heavy calculations.

t P (Xt | e1:t−1, X1 = (1, 1)) P (Xt | e1:t, X1 = (1, 1))

1

X1 P (X1)
(1, 1)

all other values

X1 P (X1)
(1, 1)

all other values

2

X2 P (X2 | e1,X1 = (1,1))
(1, 2)
(2, 1)

all other values

X2 P (X2 | e1:2,X1 = (1,1))
(2, 1)

(2, a) (∀a, a > 1)
all other values

t P (Xt | e1:t−1, X1 = (1, 1)) P (Xt | e1:t, X1 = (1, 1))

1

X1 P (X1)
(1, 1) 1

all other values 0

X1 P (X1)
(1, 1) 1

all other values 0

2

X2 P (X2 | e1,X1 = (1,1))
(1, 2) 51/200
(2, 1) 51/200

all other values 1/200

X2 P (X2 | e1:2,X1 = (1,1))
(2, 1) 51/60

(2, a) (∀a, a > 1) 1/60
all other values 0
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You are a bit unsatisfied that you can’t pinpoint the Jabberwock exactly. But then you remembered
Lewis told you that the Jabberwock teleports only because it is frumious on that time step, and it
becomes frumious independently of anything else. Let us introduce a variable Ft ∈ {0, 1} to denote
whether it will teleport at time t. We want to to add these frumious variables to the HMM. Consider
the two candidates:

(A) (B)

(A) (B)
X1 ⊥⊥ X3|X2 X1 ⊥⊥ X3|X2

X1 ⊥⊥ E2|X2 X1 ⊥⊥ E2|X2

X1 ⊥⊥ F2|X2 X1 ⊥⊥ F2|X2

X1 ⊥⊥ E4|X2 X1 ⊥⊥ E4|X2

X1 ⊥⊥ F4|X2 X1 ⊥⊥ F4|X2

E3 ⊥⊥ F3|X3 E3 ⊥⊥ F3|X3

E1 ⊥⊥ F2|X2 E1 ⊥⊥ F2|X2

E1 ⊥⊥ F2|E2 E1 ⊥⊥ F2|E2

(c) For each model, circle the conditional independence assumptions above which are true in that model.

(A) (B)
X1 ⊥⊥ X3|X2✓ X1 ⊥⊥ X3|X2✓
X1 ⊥⊥ E2|X2✓ X1 ⊥⊥ E2|X2✓
X1 ⊥⊥ F2|X2 X1 ⊥⊥ F2|X2✓
X1 ⊥⊥ E4|X2✓ X1 ⊥⊥ E4|X2✓
X1 ⊥⊥ F4|X2✓ X1 ⊥⊥ F4|X2✓
E3 ⊥⊥ F3|X3✓ E3 ⊥⊥ F3|X3✓
E1 ⊥⊥ F2|X2 E1 ⊥⊥ F2|X2✓
E1 ⊥⊥ F2|E2 E1 ⊥⊥ F2|E2

(d) Which Bayes net is more appropriate for the problem domain here, (A) or (B)? Justify your answer.

(A) because the choice of X depends on F in the problem description.

For the following questions, your answers should be fully general for models of the structure shown
above, not specific to the teleporting Jabberwock.

(e) For (A), express P (Xt+1, e1:t+1, f1:t+1) in terms of P (Xt, e1:t, f1:t) and the conditional probability tables
used to define the network. Assume the E and F nodes are all observed.

P (xt+1, e1:t+1, f1:t+1) = P (et+1|xt+1)P (ft+1)
∑
xt

P (xt+1|xt, ft+1)P (xt, e1:t, f1:t).

We’re already provided with P (xt, e1:t, f1:t). To get P (xt + 1, e1:t, f1:t), we can sum over all xt and
multiply by P (xt+1 | xt, ft+1), the conditional probability table of xt+1.
Then, to get the joint probability P (xt + 1, e1:t+1, f1:t+1), we multiply the above quantity with the
emission probability (P (et+1 | xt+1)) and P (ft+1), the CPT of P (ft+1).

(f) For (B), express P (Xt+1, e1:t+1, f1:t+1) in terms of P (Xt, e1:t, f1:t) and the CPTs used to define the
network. Assume the E and F nodes are all observed.
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P (xt+1, e1:t+1, f1:t+1) = P (et+1|xt+1)P (ft+1|xt+1)
∑
xt

P (xt+1|xt)P (xt, e1:t, f1:t).

Similar idea as above, except this time we multiply the joint probability by P (xt+1|xt), since xt+1 now
no longer depends on ft+1).

Suppose that we don’t actually observe the Fts.

(g) For (A), express P (Xt+1, e1:t+1) in terms of P (Xt, e1:t) and the CPTs used to define the network.

P (xt+1, e1:t+1) = P (et+1|xt+1)
∑
ft+1

P (ft+1)
∑
xt

P (xt+1|xt, ft+1)P (xt, e1:t).

(h) For (B), express P (Xt+1, e1:t+1) in terms of P (Xt, e1:t) and the CPTs used to define the network.

P (xt+1, e1:t+1) = P (et+1|xt+1)
∑
xt

P (xt+1|xt)P (xt, e1:t).

For (g) and (h), we essentially use the same logic as (e) and (f). However, we no longer need the Fts
in the joint probability - so for any probability values that are conditioned on an ft, we multiply by
P (ft) and sum over all possible ft values. If not (i.e., for graph (B)), we simply drop that term when
computing the joint probability.
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3 Particle Filtering: Warmup

(a) The following state space contains 10 particles. The left grid shows the prior belief distribution of the
particles at time t, while the grid on the right shows the states weighted by the observations P (et|St).

Fill in the following grids to update the belief distribution. Each square in the “Belief” grid should
correspond to P̂ (St|e1:t−1), the estimated probability of a particle being in state S at time t. Each square
in the “Unnormalized” grid should correspond to the probability P (St, et|e1:t−1). The “Normalized”
grid should contain our updated belief distribution P̂ (St|et, e1:t−1).

Solution: Note that states which did not appear in the weight table have a weight of 0.
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(b) True / False: The particle filtering algorithm is consistent since it gives correct probabilities as the
number of samples N tends to infinity.

True

(c) True / False: The number of samples we use in the particle filtering algorithm increases from one time
step to the next.

False. The number of samples stays constant from one time step to the next. The last step for each
iteration of the algorithm is resampling, which builds a new population of N samples from the belief
distribution updated by observation weights.
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4 Tracking the Jabberwock

Lewis’ Jabberwock is in the wild: its position is in a two-dimensional discrete grid, but this time the grid
is not bounded. In other words, the position of the Jabberwock is a pair of integers z = (x, y) ∈ Z2 =
{. . . ,−2,−1, 0, 1, 2, . . . } × {· · · ,−2,−1, 0, 1, 2, · · · }. At each time step t = 1, 2, 3, . . ., the Jabberwock is in
some cell Zt = z ∈ Z2, and it moves to cell Zt+1 randomly as follows: with probability 1/2, it stays where it
is; otherwise, it chooses one of its four neighboring cells uniformly at random (fortunately, no teleportation
is allowed this week!).

(a) Write a function for the transition probability P (Zt+1 = (x′, y′)|Zt = (x, y)).

P (Zt+1 = (x′, y′)|Zt = (x, y)) =


1
2 if x = x′, y = y′

1
8 if |x− x′|+ |y − y′| = 1

0 otherwise

We will use the particle filtering algorithm to track the Jabberwock. As a source of randomness use values
in order from the following sequence {ai}1≤i≤14. Use these values to sample from any discrete distribution of

the form P (X) where X takes values in {1, 2, . . . , N}. Given ai ∼ U [0, 1], return j such that
∑j−1

k=1 P (X =

k) ≤ ai <
∑j

k=1 P (X = k). You have to fix an ordering of the elements for this procedure to make sense.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
0.142 0.522 0.916 0.792 0.703 0.231 0.036 0.859 0.677 0.221 0.156 0.249

At each time step t you get an observation of the x coordinate Rt in which the Jabberwock sits, but it is
a noisy observation. Given the true position Zt = (x, y), you observe the correct value according to the
following probability:

P (Rt = r|Zt = (x, y)) ∝ (0.5)|x−r|

(b) Suppose that you know that half of the time, the Jabberwock starts at z1 = (0, 0), and the other half,
at z1 = (1, 1). You get the following observations: R1 = 1, R2 = 0, R3 = 1. Fill out the table for each
time step using a particle filter with 2 particles to compute an approximation to P (Z1, Z2, Z3|r1, r2, r3).
Sample transitions from the table below using the ai’s as our source of randomness. The ai’s you should
use for each step habe been indicated in the last row of each table. Note that going “left” decrements
the x-coordinate by 1, and going “down” decrements the y-coordinate by 1.

[0; 0.5) Stay
[0.5; 0.625) Up
[0.625; 0.75) Left
[0.75; 0.875) Right
[0.875; 1) Down
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Initial Belief Weights Unnormalized Normalized Resampling

P̂ (z1) P (r1|z1) P̂ (z1, r1) P̂ (z1|r1)
p1 = ( 0, 0 ) 1/2 p1 = ( , )
p2 = ( 1, 1 ) 1/2 p2 = ( , )

a1, a2 a3, a4

Transition Belief Weights Unnormalized Normalized Resampling

P (z2|z1) P̂ (z2|r1) P (r2|z2) P̂ (z2, r2|r1) P̂ (z2|r1, r2)
p2 = ( , ) p1 = ( , )
p2 = ( , ) p2 = ( , )

a5, a6 a7, a8

Transition Belief Weights Unnormalized Normalized Resampling

P (z3|z2) P̂ (z3|r1, r2) P (r3|z3) P̂ (z3, r3|r1, r2) P̂ (z3|r1, r2, r3)
p1 = ( , ) p1 = ( , )
p2 = ( , ) p2 = ( , )

a9, a10 a11, a12

For each time step, we use our random numbers ai to sample from the prior or from the transitions.
Next, we find the weight of the sample based on the observation at that time step. We update our
belief distribution with the weight by taking the product P̂ (zt|r1:t−1)P (rt|zt) and normalizing to get
P̂ (zt|r1:t). Note that since the two particles are in different locations at each time step, the belief
P̂ (zt|r1:t−1) is always 1/2. Finally, we resample the particles from this updated belief distribution.

Initial Belief Weights Unnormalized Normalized Resampling

P̂ (z1) P (r1|z1) P̂ (z1, r1) P̂ (z1|r1)
p1 = ( 0 , 0 ) 1/2 1/2 1/4 4/3 ∗ 1/4 = 1/3 p1 = ( 1 , 1 )
p2 = ( 1 , 1 ) 1/2 1 1/2 4/3 ∗ 1/2 = 2/3 p2 = ( 1 , 1 )

a1, a2 a3, a4

Transition Belief Weights Unnormalized Normalized Resampling

P (z2z1) P̂ (z2|r1) P (r2|z2) P̂ (z2, r2|r1) P̂ (z2|r1, r2)
p1 = ( 0 , 1 ) 1/2 1 1/2 4/3 ∗ 1/2 = 2/3 p1 = ( 0 , 1 )
p2 = ( 1 , 1 ) 1/2 1/2 1/4 4/3 ∗ 1/4 = 1/3 p2 = ( 1 , 1 )

a5(left), a6(stay) a7, a8

Transition Belief Weights Unnormalized Normalized Resampling

P (z3|z2) P̂ (z3|r1, r2) P (r3|z3) P̂ (z3, r3|r1, r2) P̂ (z3|r1, r2, r3)
p1 = (−1 , 1 ) 1/2 1/4 1/8 8/5 ∗ 1/8 = 1/5 p1 = (−1, 1 )
p2 = ( 1 , 1 ) 1/2 1 1/2 8/5 ∗ 1/2 = 4/5 p2 = ( 1 , 1 )

a9(left), a10(stay) a11, a12

(d) Use your samples (the unweighted particles in the last step) to evaluate the posterior probability that
the x-coordinate of Z3 is different than the column of Z3, i.e. X3 ̸= Y3.

Out of the two unweighted particles in the last step, exactly one satisfies X3 = Y3, so the estimate is
1/2.

(e) What is the problem of using the elimination algorithm instead of a particle filter for tracking Jabber-
wock?
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The state space is infinite, so factors of infinite size (distributions over all points on the plane) would
need to be computed and stored when using the variable elimination algorithm.
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