AI: Representation and Problem Solving

Local Search

Instructors: Tuomas Sandholm and Nihar Shah

Slide credits: CMU AI, http://ai.berkeley.edu
Local Search

• Can be applied to identification problems (e.g., CSPs), as well as some planning and optimization problems

• For identification problems, we use a complete-state formulation, e.g., all variables assigned in a CSP (may not satisfy all the constraints)

• For planning problems, typically we make local decisions. e.g., not a plan all the way to the goal or not a deep search
Iterative Improvement for CSPs
Iterative Improvement for CSPs

- Start with an arbitrary assignment, iteratively \emph{reassign} variable values
- While not solved,
 - Variable selection: randomly select a conflicted variable
 - Value selection with \textbf{min-conflicts heuristic} h: Choose a value that violates the fewest constraints (break tie randomly)
- For n-Queens: Variables $x_i \in \{1..n\}$; Constraints $x_i \neq x_j, |x_i - x_j| \neq |i - j|, \forall i \neq j
Iterative Improvement for CSPs

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)!

- Same for any randomly-generated CSP except in a narrow range of the ratio

\[R = \frac{\text{number of constraints}}{\text{number of variables}} \]
Local Search

• A local search algorithm is...
 • **Optimal** if it always finds a global minimum/maximum heuristic value

Will an iterative improvement algorithm for CSPs always find a solution?

 No! May get stuck in a local optimum
State-Space Landscape

In identification problems, could be a function measuring how close you are to a valid solution, e.g., $-1 \times \# \text{conflicts in n-Queens/CSP}$

What’s the difference between shoulder and flat local maximum (both are plateaux)?
Hill Climbing (Greedy Local Search)

• Simple, general idea:
 • Start wherever
 • Repeat: move to the best “neighboring” state (successor state) instead of picking variable randomly
 • If no neighbors better than current, quit
Hill Climbing (Greedy Local Search)

function HILL-CLIMBING(problem) returns a state that is a local maximum

\[
\text{current} \leftarrow \text{MAKE-NODE} \left(\text{problem}_\text{INITIAL_STATE} \right)
\]

loop do

\[
\text{neighbor} \leftarrow \text{a highest-valued successor of current}
\]

if \(\text{neighbor} _\text{VALUE} \leq \text{current} _\text{VALUE} \) then return \(\text{current} _\text{STATE} \)

\[
\text{current} \leftarrow \text{neighbor}
\]

What if there is a tie? Typically break ties randomly

What if we do not stop here? Make a sideway move if “=”

- In 8-Queens, steepest-ascent hill climbing solves 14% of problem instances
 - Takes 4 steps on average when it succeeds, and 3 steps when it fails
- When allow for \(\leq 100 \) consecutive sideway moves, solves 94% of problem instances
 - Takes 21 steps on average when it succeeds, and 64 steps when it fails
Poll 1: Hill Climbing

1. Starting from X, where do you end up?
2. Starting from Y, where do you end up?
3. Starting from Z, where do you end up?

I. $X \rightarrow A, Y \rightarrow D, Z \rightarrow E$
II. $X \rightarrow B, Y \rightarrow D, Z \rightarrow E$
III. $X \rightarrow B, Y \rightarrow E, Z \rightarrow E$
IV. I don’t know
Variants of Hill Climbing

• Random-restart hill climbing
 • “If at first you don’t succeed, try again.”
 • What kind of landscape will random-restarts hill climbing work the best?

• Stochastic hill climbing
 • Choose randomly from the uphill moves, with probability dependent on the “steepness” (i.e., amount of improvement)
 • Converge slower than steepest ascent, but may find better solutions

• First-choice hill climbing
 • Generate successors randomly (one by one) until a better one is found
 • Suitable when there are too many successors to enumerate
Variants of Hill Climbing

- What if variables are continuous, e.g., find $x \in [0,1]$ that maximizes $f(x)$?
 - Gradient ascent
 - Use gradient to find best direction
 - Use the magnitude of the gradient to determine how big a step you move
Random Walk

- Uniformly randomly choose a neighbor to move to
- Save the best you’ve seen so far
- Stop after K moves

- What happens to the solution as K increases?
Simulated Annealing

• Combines random walk and hill climbing
• Inspired by statistical physics
• Annealing – Metallurgy
 • Heating metal to high temperature then cooling
 • Reaching low energy state
• Simulated Annealing – Local Search
 • Allow for downhill moves and make them rarer as time goes on
 • Escape local maxima and reach global maxima
Simulated Annealing

function SIMULATED-ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem
 schedule, a mapping from time to “temperature”

current ← MAKE-NODE(problem.INITIAL-STATE)
for t = 1 to ∞ do
 T ← schedule(t)
 if T = 0 then return current
 next ← a randomly selected successor of current
 ΔE ← next.VALUE - current.VALUE
 if ΔE > 0 then current ← next
 else current ← next only with probability $e^{\Delta E/T}$

Control the change of temperature T (↓ over time)
Almost the same as hill climbing except for a random successor
Unlike hill climbing, move downhill with some prob.
Poll 2:

Which of the following will make it more likely that we’ll take a downward step?

A. Decrease T, decrease ΔE
B. Decrease T, increase ΔE
C. Increase T, decrease ΔE
D. Increase T, increase ΔE

function SIMULATED-ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem
 schedule, a mapping from time to “temperature”

$current \leftarrow$ MAKE-NODE(problem, INITIAL-STATE)

for $t = 1$ to ∞ do
 $T \leftarrow$ schedule(t)
 if $T = 0$ then return $current$
 $next \leftarrow$ a randomly selected successor of $current$
 $\Delta E \leftarrow next.VALUE - current.VALUE$
 if $\Delta E > 0$ then $current \leftarrow next$
 else $current \leftarrow next$ only with probability $e^{\Delta E/T}$
Poll 2:

Which of the following will make it more likely that we’ll take a downward step?

- A. Decrease T, decrease ΔE
- B. Decrease T, increase ΔE
- C. Increase T, decrease ΔE
- D. **Increase T, increase ΔE**

ΔE is negative but should be close to 0, T should be big because of E’s negative

```plaintext
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
    inputs: problem, a problem
             schedule, a mapping from time to “temperature”

    current ← MAKE-NODE(problem.INITIAL-STATE)
    for $t = 1$ to $\infty$ do
        $T ← schedule(t)$
        if $T = 0$ then return current
        next ← a randomly selected successor of current
        $\Delta E ← next.VALUE - current.VALUE$
        if $\Delta E > 0$ then current ← next
        else current ← next only with probability $e^{\Delta E/T}$
```

Simulated Annealing

- \(P[\text{move downhill}] = e^{\Delta E/T} \)
 - Bad moves are more likely to be allowed when \(T \) is high (at the beginning of the algorithm)
 - Worse moves are less likely to be allowed

- Guarantee: If \(T \) decreased slowly enough, will converge to optimal state!

- But! In reality, the more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
Summary: Local Search

• Maintain a constant number of current nodes or states, and move to “neighbors” or generate “offspring” in each iteration
 • Do not maintain a search tree or multiple paths
 • Typically, do not retain the path to the node

• Advantages
 • Use little memory
 • Can potentially solve large-scale problems or get a reasonable (suboptimal or almost feasible) solution