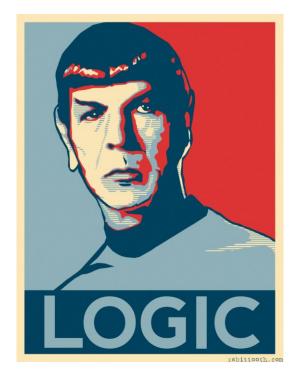
AI: Representation and Problem Solving

Logical Agent Algorithms



Instructor: Pat Virtue

Slide credits: CMU AI, http://ai.berkeley.edu

Plan

Last Time:

- Propositional logic
- Models and Knowledge Bases
- Satisifiability and Entailment

Today: Logical Agent Algorithms

- Entailment
 - Model checking: Truth table entailment
 - Theorem proving: (Forward chaining), resolution
- Satisfiability: DPLL
- (Next time) Planning with logic

Propositional Logic Vocab

Literal

Atomic sentence: True, False, Symbol, ¬Symbol

Clause

■ Disjunction (OR) of literals: $A \lor B \lor \neg C$

Definite clause

- Disjunction (OR) of literals, exactly one is positive
- $\blacksquare \neg A \lor B \lor \neg C$

Horn clause

- Disjunction of literals, at most one is positive
- All definite clauses are Horn clauses

PL: Conjunctive Normal Form (CNF)

Every sentence can be expressed as a conjunction (AND) of clauses Each clause is a disjunction (OR) of literals

Each literal is a symbol or a negated symbol

■ Example: $(\neg A \lor \neg C \lor B) \land (\neg A \lor \neg B \lor C)$

PL: Conjunctive Normal Form (CNF)

Every sentence can be expressed as a conjunction of clauses

Each clause is a disjunction of literals

Each literal is a symbol or a negated symbol

Conversion to CNF by a sequence of standard transformations:

- At_1,1_0 \Rightarrow (Wall_0,1 \Leftrightarrow Blocked_W_0)
- At_1,1_0 \Rightarrow ((Wall_0,1 \Rightarrow Blocked_W_0) \land (Blocked_W_0 \Rightarrow Wall_0,1))
- ¬At_1,1_0 v ((¬Wall_0,1 v Blocked_W_0) ∧ (¬Blocked_W_0 v Wall_0,1))
- (¬At_1,1_0 v ¬Wall_0,1 v Blocked_W_0) ∧ (¬At_1,1_0 v ¬Blocked_W_0 v Wall_0,1)

PL: Conjunctive Normal Form (CNF)

Every sentence can be expressed Replace biconditional by two implications

Each clause is a disjunction of literal

Replace $\alpha \Rightarrow \beta$ by $\neg \alpha \lor \beta$

Each literal is a symbol or a neg sym

Distribute v over \(\)

Conversion to CNF by a sequence andard transform

- At_1,1_0 \Rightarrow (Wall_0,1 \Leftrightarrow Block_\(\text{W}_0)
- At_1,1_0 \Rightarrow ((Wall_0,1 \Rightarrow Blocked_W_0) \land (Blocked_W_0 \Rightarrow Wall_0,1))
- ¬At_1,1_0 v ((¬Wall_0,1 v Blocked_W_0) ∧ (¬Blocked_W_0 v Wall_0,1))
- (¬At_1,1_0 v ¬Wall_0,1 v Blocked_W_0) ∧ (¬At_1,1_0 v ¬Blocked_W_0 v Wall_0,1)

Logical Agent Vocab

Model

Complete assignment of symbols to True/False

Sentence

- Logical statement
- Composition of logic symbols and operators

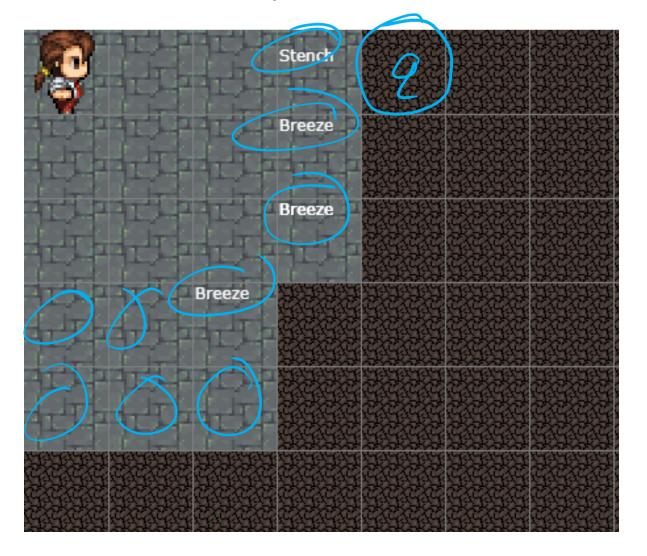
KB

 Collection of sentences representing facts and rules we know about the world

Query

Sentence we want to know if it is provably True, provably False, or unsure.

Provably True, Provably False, or Unsure



definitely True

http://thiagodnf.github.io/wumpus-world-simulator/

Logical Agent Vocab

Entailment

- Input: sentence1, sentence2
- Each model that satisfies sentence1 must also satisfy sentence2
- "If I know 1 holds, then I know 2 holds"
- (ASK), TT-ENTAILS, FC-ENTAILS, RESOLUTION-ENTAILS

- Input: model, sentence
- Is this sentence true in this model?
- Does this model satisfy this sentence
- "Does this particular state of the world work?"
- PL-TRUE

satisfiable

Logical Agent Vocab

Satisfiable

- Input: sentence
- Can find at least one model that satisfies this sentence
 - (We often want to know what that model is)
- "Is it possible to make this sentence true?"
- DPLL *←*

Valid

- Input: sentence
- sentence is true in all possible models

Outline

Logical Agent Algorithms

- Vocab
- PL TRUE
- Entailment
 - Model checking: Truth table entailment
 - Theorem proving:
 - (Forward chaining), resolution
- Satisfiability: DPLL
- Planning with logic

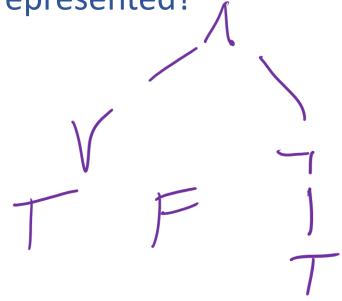
Propositional Logic

Check if sentence is true in given model

In other words, does the model satisfy the sentence?

function PL-TRUE?(α ,model) returns true or false

But are models and propositional logic sentences α represented?



Propositional Logic

Check if sentence is true in given model

In other words, does the model *satisfy* the sentence?

```
function PL-TRUE?(\alpha,model) returns true or false if \alpha is a symbol then return Lookup(\alpha, model) if Op(\alpha) = \neg then return not(PL-TRUE?(Arg1(\alpha),model)) if Op(\alpha) = \land then return and(PL-TRUE?(Arg1(\alpha),model), PL-TRUE?(Arg2(\alpha),model)) etc.
```

(Sometimes called "recursion over syntax")

Outline

Logical Agent Algorithms

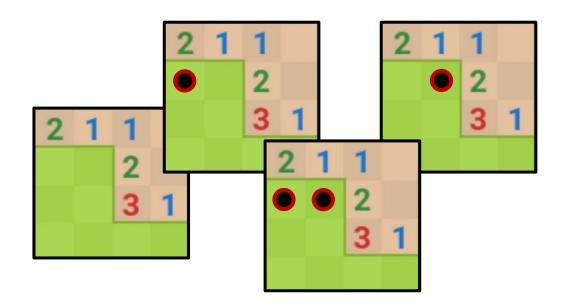
- Vocab
 - PL_TRUE
- Entailment
 - Model checking: Truth table entailment
 - Theorem proving:
 - Forward chaining, resolution
- Satisfiability: DPLL
- Planning with logic

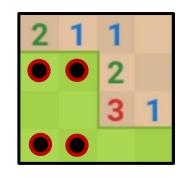
Inference: Proofs

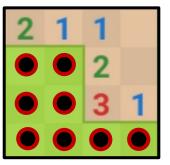
A proof is a *demonstration* of entailment between α and β

Method 1: model-checking

- For every possible world, if α is true make sure that is β true too
- OK for propositional logic (finitely many worlds); not easy for first-order logic

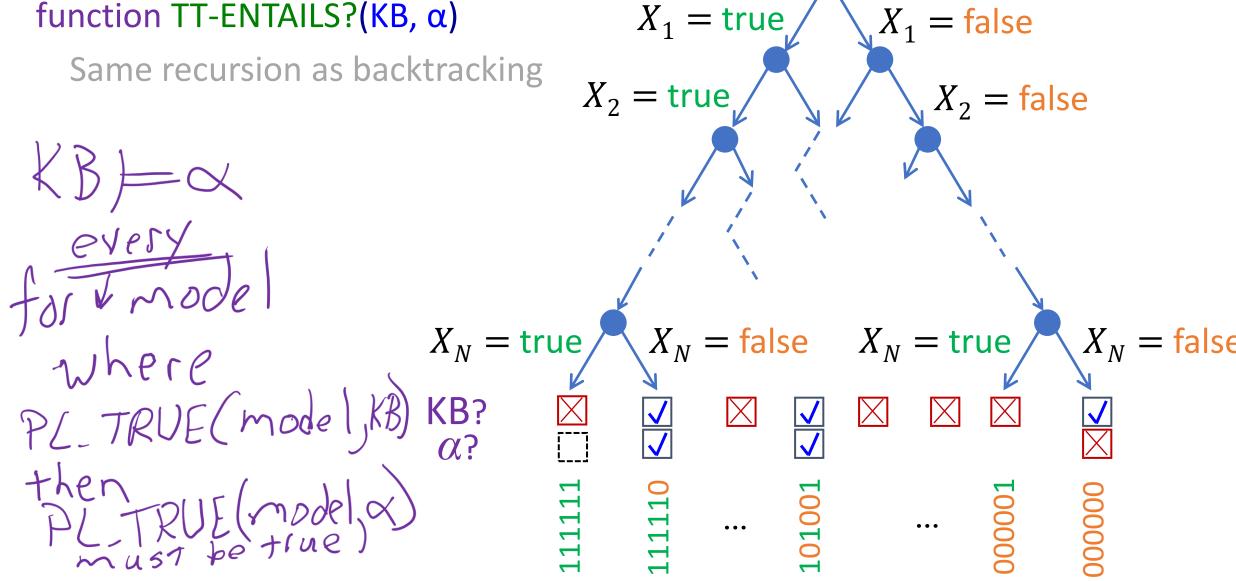






function TT-ENTAILS?(KB, α) Returns true or false

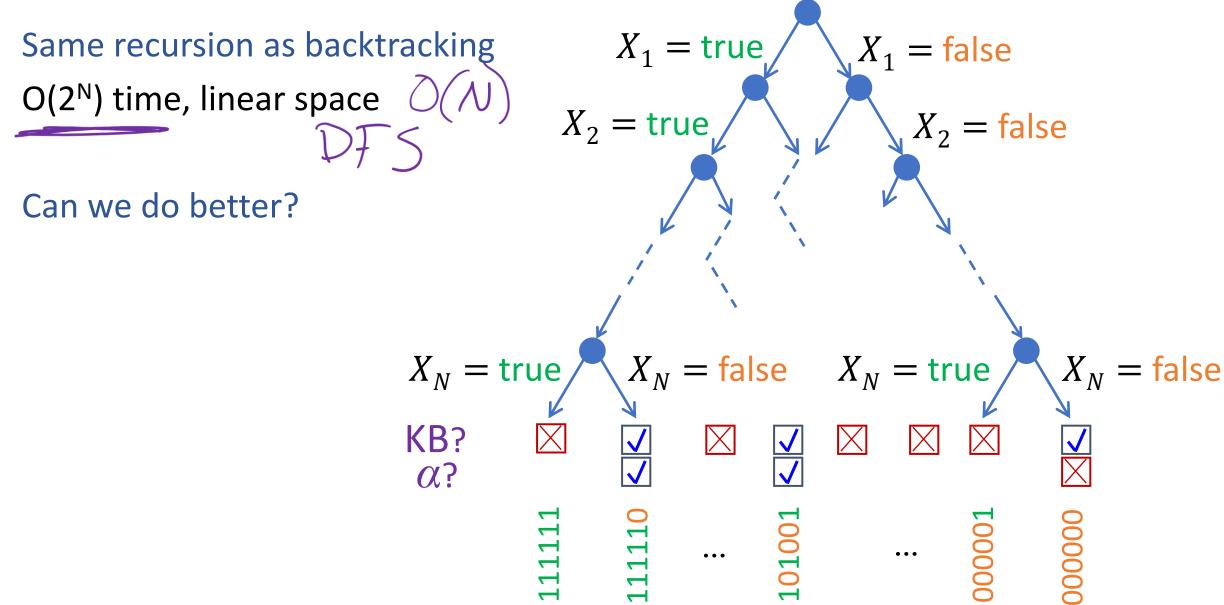
function TT-ENTAILS?(KB, α)



```
function TT-ENTAILS?(KB, \alpha) Returns true or false return TT-CHECK-ALL(KB, \alpha, symbols(KB) U symbols(\alpha), {})
```

function TT-CHECK-ALL(KB, α , symbols, model) Returns true or false Recursively check to make sure all models that satisfy the KB also satisfy α

```
function TT-CHECK-ALL(KB, α, symbols, model)
                                                        Returns true or false
     if empty?(symbols) then
          if PL-TRUE?(KB, model) then
               return PL-TRUE?(α, model)
          else
               return true
     else
          X_i \leftarrow \text{first(symbols)}
          rest ← rest(symbols)
          return and (TT-CHECK-ALL(KB, \alpha, rest, model \cup \{X_i = \text{true}\})
                         TT-CHECK-ALL(KB, \alpha, rest, model \cup \{X_i = \text{false}\})
```



Inference: Proofs

A proof is a *demonstration* of entailment between α and β

Method 1: model-checking

- For every possible world, if α is true make sure that is β true too
- OK for propositional logic (finitely many worlds); not easy for first-order logic

Method 2: theorem-proving

- Search for a sequence of proof steps (applications of *inference rules*) leading from α to β
- E.g., from $P \land (P \Rightarrow Q)$, infer Q by *Modus Ponens*

Properties

- Sound algorithm: everything it claims to prove is in fact entailed
- Complete algorithm: every sentence that is entailed can be proved

Simple Theorem Proving: Forward Chaining

Forward chaining applies Modus Ponens to generate new facts: • Given $X_1 \wedge X_2 \wedge ... \times X_n \Rightarrow Y$ and $X_1, X_2, ..., X_n$

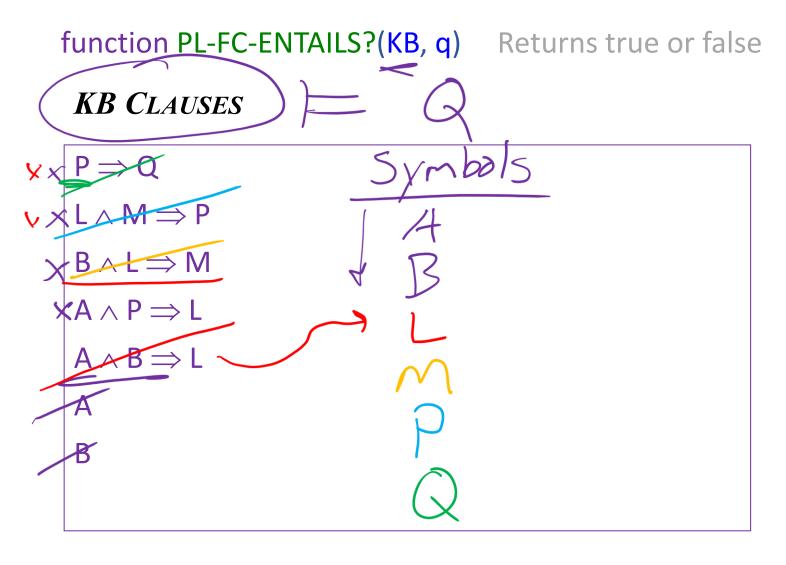
- Infer Y

Forward chaining keeps applying this rule, adding new facts, until nothing more can be added

Requires KB to contain only definite clauses:

- (Conjunction of symbols) ⇒ symbol; or
- \blacksquare A single symbol (note that X is equivalent to True \Rightarrow X)

Forward Chaining Algorithm



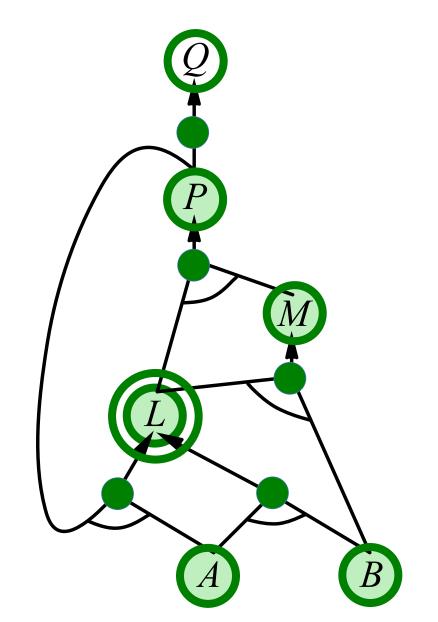
Forward Chaining Algorithm

function PL-FC-ENTAILS?(KB, q) returns true or false
 count ← a table, where count[c] is the number of symbols in c's premise
 inferred ← a table, where inferred[s] is initially false for all s
 agenda ← a queue of symbols, initially symbols known to be true in KB

CLAUSES	COUNT	Inferred	A GENDA
$P \Rightarrow Q$	1	A false	
$L \wedge M \Longrightarrow P$	2	B false	
$B \wedge L \Longrightarrow M$	2	L false	
$A \wedge P \Longrightarrow L$	2	M false	
$A \wedge B \Rightarrow L$	2	P false	
A	0	Q false	
В	0		

Forward Chaining Example: Proving Q

	•	•
CLAUSES	COUNT	Inferred
$P \Longrightarrow Q$	1 / 0	A fextse true
$L \wedge M \Longrightarrow P$	2 / 1 / 0	B faxtse true
$B \wedge L \Longrightarrow M$	2 / / 4 / 0	L kaksetrue
$A \wedge P \Rightarrow L$	2 // 1 0	M kaketrue
$A \wedge B \Rightarrow L$	2 // 1 / 0	P feetse true
Α	0	Q fxkx etrue
В	0	
	0	
A GENDA		
<u> </u>	¥ 	



Forward Chaining Algorithm

```
function PL-FC-ENTAILS?(KB, q) returns true or false
  count \leftarrow a table, where count[c] is the number of symbols in c's premise
  inferred \leftarrow a table, where inferred[s] is initially false for all s
  agenda \leftarrow a queue of symbols, initially symbols known to be true in KB
  while agenda is not empty do
       p \leftarrow Pop(agenda)
       if p = q then return true
       if inferred[p] = false then
            inferred[p]←true
            for each clause c in KB where p is in c.premise do
                decrement count[c]
                if count[c] = 0 then add c.conclusion to agenda
  return false
```

Properties

Forward Chaining is:

- Sound and complete for definite-clause KBs
- Complexity: linear time ©

Resolution is another theorem-proving algorithm that is:

- Sound and complete for any PL KBs!
- Complexity: exponential time <a>

Vocab Reminder

Literal

Atomic sentence:T, F, Symbol,

—Symbol

Clause

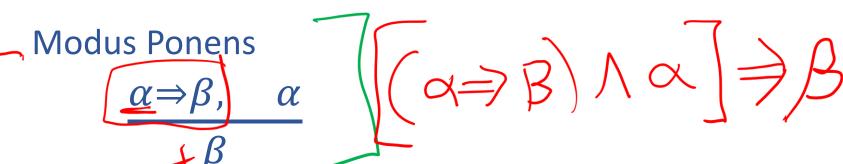
■ Disjunction of literals: $A \lor B \lor \neg C$

Definite clause

 Disjunction of literals, exactly one is positive

$$\neg A \lor B \lor \neg C$$

Inference Rules



Notation Alert!

Unit Resolution

$$a\sqrt{b}$$
, $\neg b \lor c$

resolve only one v-z symbol at

General Resolution

$$= \underbrace{a_1 \vee \cdots \vee a_m \vee b}, \quad \underbrace{b \vee c_1 \vee \cdots \vee c_n}$$

Resolution

Algorithm Overview

KB = 0x entails (KB, 0x) if ! result

function PL-RESOLUTION?(KB, α) returns true or false

We want to prove that KB entails α

In other words, we want to prove that we cannot satisfy (KB and **not** α)

- 1. Start with a set of CNF clauses, including the KB as well as $\neg \alpha$
- 2. Keep resolving pairs of clauses until
 - A. You resolve the empty clause

Contradiction found!

KB $\wedge \neg \alpha$ cannot be satisfied

Return true, KB entails α

B. No new clauses added

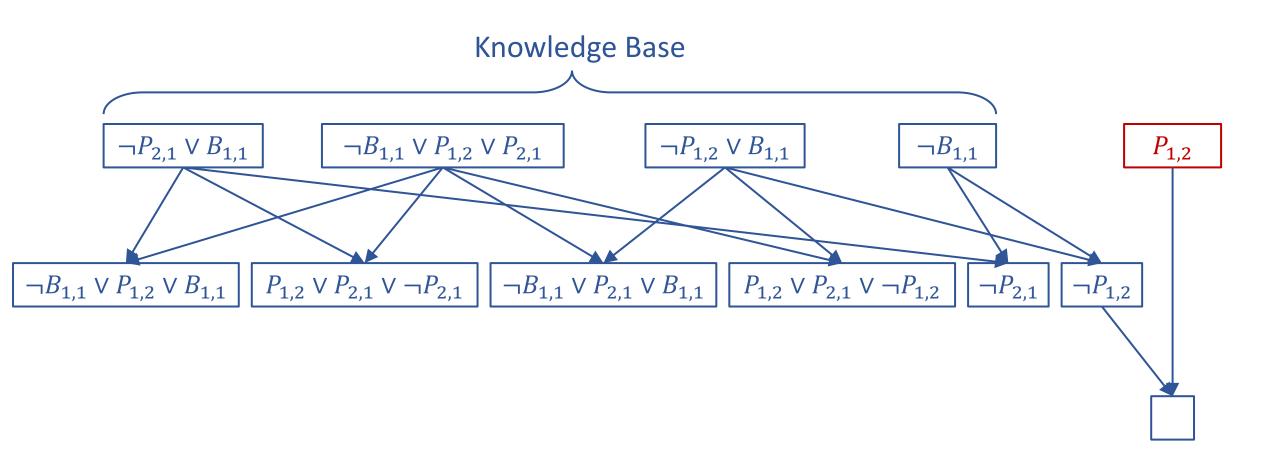
Return false, KB does not entail α

General Resolution Resolution $a_1 \vee \cdots \vee a_m \vee b$, $\neg b \vee c_1 \vee \cdots \vee c_n$ $a_1 \vee \cdots \vee a_m \vee c_1 \vee \cdots \vee c_n$ Example trying to prove $\neg P_{1,2}$ **Knowledge Base** $\neg B_{1,1} \lor P_{1,2} \lor (P_{2,1})$ $\neg P_{1,2} \lor B_{1,1}$ $\neg P_{2,1} \lor B_{1,1}$

Resolution

Example trying to prove $\neg P_{1,2}$

General Resolution $\underbrace{a_1 \vee \cdots \vee a_m \vee b}_{a_1 \vee \cdots \vee a_m \vee c_1 \vee \cdots \vee c_n}$



Resolution

```
function PL-RESOLUTION?(KB, \alpha) returns true or false
  clauses \leftarrow the set of clauses in the CNF representation of KB \wedge \neg \alpha
  new \leftarrow \{ \}
  loop do
     for each pair of clauses C_i, C_i in clauses do
       resolvents \leftarrow PL-RESOLVE(C_i, C_i)
       if resolvents contains the empty clause then
          return true
        new ← new ∪ resolvants
     if new \subseteq clauses then
        return false
     clauses ← clauses ∪ new
```

Properties

Forward Chaining is:

- Sound and complete for definite-clause KBs
- Complexity: linear time ©

Resolution is another theorem-proving algorithm that is:

- Sound and complete for any PL KBs!
- Complexity: exponential time <a>©

Vocab Reminder

Literal

Atomic sentence:T, F, Symbol,

—Symbol

Clause

■ Disjunction of literals: $A \lor B \lor \neg C$

Definite clause

 Disjunction of literals, exactly one is positive

$$\neg A \lor B \lor \neg C$$

Outline

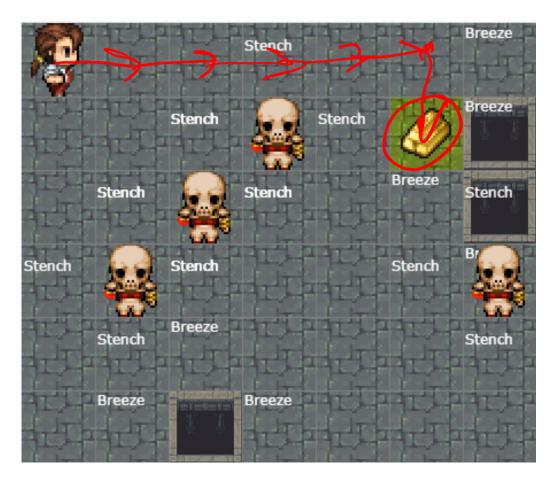
Logical Agent Algorithms

- Vocab
- PL TRUE
- Entailment
 - Model checking: Truth table entailment
 - Theorem proving:
 - Forward chaining, resolution
- Satisfiability: DPLL (sentence) → None or model
 - Planning with logic $KB \land \neg g$

1:57 of clauses, symbols, model

Satisfiability and Entailment

A sentence is *satisfiable* if it is true in at least one world (e.g. CSPs!)



http://thiagodnf.github.io/wumpus-world-simulator/

Satisfiability and Entailment

A sentence is *satisfiable* if it is true in at least one world (cf CSPs!)

Suppose we have a hyper-efficient SAT solver; how can we use it to test entailment?

- Suppose $\alpha \models \beta$
- Then $\alpha \Rightarrow \beta$ is true in all worlds

 Hence $\neg(\alpha \Rightarrow \beta)$ is false in all worlds

 Hence $\neg(\alpha \Rightarrow \beta)$ is false in all worlds
- Hence $\alpha \land \neg \beta$ is false in all worlds, i.e., unsatisfiable

So, add the negated conclusion to what you know, test for (un)satisfiability; also known as reductio ad absurdum

Efficient SAT solvers operate on conjunctive normal form

Efficient SAT solvers

DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern solvers

Essentially a backtracking search over models with some extras:

- Early termination: stop if
 - all clauses are satisfied; e.g., $(A \lor B) \land (A \lor \neg C)$ is satisfied by $\{A=true\}$
 - any clause is falsified; e.g., $(A \lor B) \land (A \lor \neg C)$ is satisfied by $\{A=false, B=false\}$
- Pure literals: if all occurrences of a symbol in as-yet-unsatisfied clauses have the same sign, then give the symbol that value
 - E.g., A is pure and positive in $(A \lor B) \land (A \lor \neg C) \land (C \lor \neg B)$ so set it to true

- Unit clauses: if a clause is left with a single literal, set symbol to satisfy clause
 - E.g., if A=false, $(A \lor B) \land (A \lor \neg C)$ becomes (false $\lor B) \land$ (false $\lor \neg C$), i.e. $(B) \land (\neg C)$
 - Satisfying the unit clauses often leads to further propagation, new unit clauses, etc.

DPLL algorithm

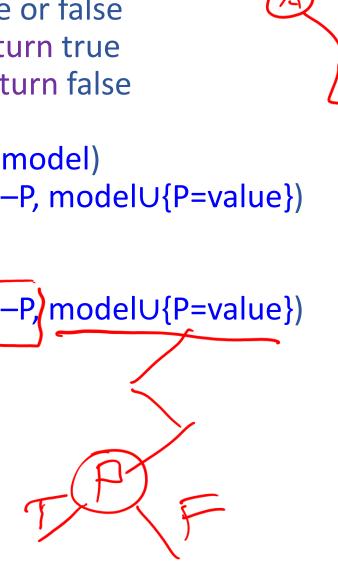
if every clause in clauses is true in model then return true if some clause in clauses is false in model then return false

P, value ←FIND-PURE-SYMBOL(symbols, clauses, model) if P is non-null then return DPLL(clauses, symbols—P, model∪{P=value})

P, value ←FIND-UNIT-CLAUSE(clauses, model) if P is non-null then return DPLL(clauses, symbols—P, model∪{P=value})

P ← First(symbols)
rest ← Rest(symbols)

return or(DPLL(clauses, rest, modelU{P=true}),
DPLL(clauses, rest, modelU{P=false}))



Outline

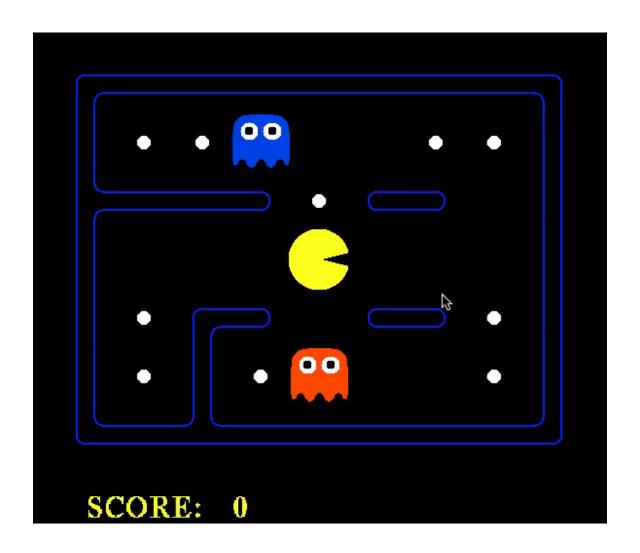
Logical Agent Algorithms

- Vocab
- PL_TRUE
- Entailment
 - Model checking: Truth table entailment
 - Theorem proving:
 - (Forward chaining), resolution
- Satisfiability: DPLL
- Planning with logic

Planning as Satisfiability

Given a hyper-efficient SAT solver, can we use it to make plans?

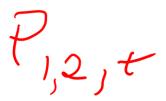
Yes, for fully observable, deterministic case: planning problem is solvable iff there is some satisfying assignment for actions etc.



Planning as Satisfiability

Given a hyper-efficient SAT solver, can we use it to make plans?

Yes, for fully observable, deterministic case: planning problem is solvable iff there is some satisfying assignment for actions etc.



For T = 1 to infinity, set up the KB as follows and run SAT solver:

- Initial state, domain constraints
- Transition model sentences up to time T
 - Goal is true at time T
 - Precondition axioms: At_1,1_0 \wedge N_0 \Rightarrow ¬Wall_1,2 etc.
 - Action exclusion axioms: $\neg(N_0 \land W_0) \land \neg(N_0 \land S_0) \land ..$ etc.

Initial State

The agent may know its initial location:

At_1,1_0

Or, it may not:

At_1,1_0 v At_1,2_0 v At_1,3_0 v ... v At_3,3_0

We also need a *domain constraint* – cannot be in two places at once!

- \neg (At_1,1_0 \land At_1,2_0) \land \neg (At_1,1_0 \land At_1,3_0) \land ...
- \neg (At_1,1_1 \land At_1,2_1) \land \neg (At_1,1_1 \land At_1,3_1) \land ...
- •

Fluents and Effect Axioms

State 1 act => state

A *fluent* is a state variable that changes over time

How does each state variable or fluent at each time gets its value?

Fluents for PL Pacman are Pacman_ x,y_t , e.g., Pacman _3,3_17

$$P_{3,3,17} \land E_{17} \Rightarrow P_{4,3,18}$$

Fluents and Effect Axioms

A *fluent* is a state variable that changes over time

How does each state variable or fluent at each time gets its value?

Fluents for PL Pacman are Pacman_ x,y_t , e.g., Pacman_3,3_17

Fluents and Successor-state Axioms

A *fluent* is a state variable that changes over time

How does each state variable or fluent at each time gets its value?

Fluents for PL Pacman are Pacman_ x,y_t , e.g., Pacman_3,3_17

A state variable gets its value according to a successor-state axiom

 $X_{t} \Leftrightarrow X_{t-1} \land \mathbb{Z}$ (some action_{t-1} made it false)] v $\neg X_{t-1} \land \text{ (some action}_{t-1} \text{ made it true)}$

Fluents and Successor-state Axioms

A *fluent* is a state variable that changes over time

How does each state variable or fluent at each time gets its value?

Fluents for PL Pacman are Pacman_ x,y_t , e.g., Pacman_3,3_17

A state variable gets its value according to a successor-state axiom

■ $X_t \Leftrightarrow [X_{t-1} \land \neg(\text{some action}_{t-1} \text{ made it false})] v$ $[\neg X_{t-1} \land (\text{some action}_{t-1} \text{ made it true})]$

For Pacman location:

```
Pacman _3,3_17 ⇔ [Pacman _3,3_16 ∧ ¬((¬Wall_3,4 ∧ N_16) v (¬Wall_4,3 ∧ E_16) v ...)]
v [¬ Pacman _3,3_16 ∧ ((Pacman _3,2_16 ∧ ¬Wall_3,3 ∧ N_16) v ...)]
(Pacman _2,3_16 ∧ ¬Wall_3,3 ∧ N_16) v ...)]
```