Al: Representation and Problem Solving

Logical Agent Algorithms

Instructor: Pat Virtue
Slide credits: CMU Al, http://ai.berkeley.edu

Plan

Last Time:

" Propositional logic

" Models and Knowledge Bases
= Satisifiability and Entailment

Today: Logical Agent Algorithms

Entailment
" Model checking: Truth table entailment

* Theorem proving: (Forward chaining), resolution
(™ Satisfiability: DPLL
ENext time) Planning with logic - mMe

Propositional Logic Vocab

Literal
" Atomic sentence: True, False, Symbol, —Symbol

Llause
-/Disjunr.ﬂo_n(OR) of literals: AV B Vv =C
Defini:cg clause

= Disjunction (OR) of literals, exactly one is positive
"—AVB YV =C =

Horn clause
" Disjunction of literals, at most one is positive
= All definite clauses are Horn clauses

PL: Conjunctive Normal Form (CNF)

Every sentence can be expressed as a conjunction (AND) of clauses
Each clause is a disjunction (OR) of literals

Each literal is a symbol or a negated symbol

=" Example: (—A v —C v B)A(—A v =B v ()

PL: Conjunctive Normal Form (CNF)

Every sentence can be expressed as a conjunction of clauses
Each clause is a disjunction of literals

Each literal is a symbol or a negated symbol

Conversion to CNF by a sequence of standard transformations:

" At 1,1 0= (Wall 0,1 < Blocked W _0)
= At 1,1 0= ((Wall_0,1 = Blocked W _0) A (Blocked W_0 =Wall_0,1))
= -At 1,1 Ov((—Wall 0,1 vBlocked W_0) A (—Blocked_W_0v Wall _0,1))

" (-At_ 1,1 0 v —=Wall 0,1 v Blocked W _0)A (—At 1,1 O v —Blocked W_0 v Wall_0,1)

PL: Conjunctive Normal Form (CNF)

Every sentence can be expressed\ Replace biconditional by two implications |

Replacea = 3 by —a v f3 }

Distribute v over A }

Conversion to CNF by a s dard tran
= At 1,1 0= ((Wall_0,1 = Blocked_W_0) A (Blo ~“W_0=Wall_0,1))
= -At 1,1 Ov((—Wall 0,1 vBlocked W_0) A (—Blocked W _0v Wall _0,1))

" (-At_ 1,1 0 v —=Wall 0,1 v Blocked W _0)A (—At 1,1 O v —Blocked W_0 v Wall_0,1)

Logical Agent Vocab

‘/\/Iodel

= Complete assighnment of symbols to True/False

\/éntence
" Logical statement

=" Composition of logic symbols and operators

e

= Collection of sentences representing facts and rules
we know about the world

Ajery

= Sentence we want to know if it is provably True,
provably False, or unsure.

Provably True, Provably False, or Unsure

. -
KB =7

Nt | (g

;ﬁ V€S
9 i

et nitely
)/r‘ué

http://thiagodnf.github.io/wumpus-world-simulator/

http://thiagodnf.github.io/wumpus-world-simulator/
http://thiagodnf.github.io/wumpus-world-simulator/
http://thiagodnf.github.io/wumpus-world-simulator/
http://thiagodnf.github.io/wumpus-world-simulator/
http://thiagodnf.github.io/wumpus-world-simulator/

Logical Agent Vocab

Entailment _
" |nput: sentencel, sentence?2
» Each model that satisfies sentencel must also satisfy sentence?2
= "If | know 1 holds, then | know 2 holds"
—= (ASK), TT-ENTAILS, FC-ENTAILS, RESOLUTION-ENTAILS

Satisfy (node) , SeAh €ncc\ so ,gg,'ﬂb]é

" [nput: model, sentence

" |s this sentence true in this model?

" Does this model satisfy this sentence

" "Does this particular state of the world work?’
[= PL-TRUE

Logical Agent Vocab

fatlsflabj

" [nput: sentence

= Can find at least one model that satisfies this sentence
= (We often want to know what that model is)

= "Is it possible to make this sentence true?"

"DPLL &——

[vale

=" Input: sentence
" sentence is true in all possible models

L-/

Outline

Logical Agent Algorithms
\/Vocab

(= PL TRUE

" Entailment
" Model checking: Truth table entailment
* Theorem proving:
* (Forward chaining), resolution

= Satisfiability: DPLL
" Planning with logic

Propositional Logic T

Check if sentence is true in given model / \
In other words, does the model satisfy the sentence? /N §
function PL-TRUE?(a,model) returns true or false s Zf

But are models and propositional logic sentences a represented? A
yd \
'l —

T F
i

Propositional Logic

Check if sentence is true in given model
In other words, does the model satisfy the sentence?

function PL-TRUE?(a,model) returns true or false
if o is a symbol then return Lookup(o, model)
if Op(at) = — then return not(PL-TRUE?(Argl(o),model))
if Op(at) = A then return and(PL-TRUE?(Argl(c),model),
PL-TRUE?(Arg2(a),model))
etc.

(Sometimes called “recursion over syntax”)

Outline

Logical Agent Algorithms
= Vocab

" Entailment
" Model checking: Truth table entailment

" Theorem proving:
" Forward chaining, resolution

= Satisfiability: DPLL
" Planning with logic

Inference: Proofs

A proof is a demonstration of entailment between o and 3
Method 1: model-checking

" For every possible world, if o is true make sure that is 3 true too
= OK for propositional logic (finitely many worlds); not easy for first-order logic

1. 1. 2 1.1
® 2 ® 2 0
108 1 & 1 ® 0 3
2 18 2 1 1 A X
N 1 0 > 0 2
& 1 3 1
®e

Simple Model Checking
function TT-ENTAILS?(KB, a)

Simple Model Checking

function TT-ENTAILS?(KB, a)
Same recursion as backtracking

157% made] |
Xy =true /\ Xy =false Xy =true Xy = false

wker@

| ?i" TQUE(MDC)Q U@ Kolcs?? >< j X j X XX >\é
ThEN — - = — o
Model X o 3 S S 8

p%lgfug riae) 0 R s S g

Simple Model Checking

function TT-ENTAILS?(KB, a)
return TT-CHECK-ALL(KB, a, symbols(KB) U symbols(a), {})

function TT-CHECK-ALL(KB, a, symbols, model)

Simple Model Checking

function TT-CHECK-ALL(KB, a, symbols, model)
if empty?(symbols) then
if PL-TRUE?(KB, model) then
return PL-TRUE?(a, model)
else
return true
else
X; & first(symbols)
rest < rest(symbols)
return and (TT-CHECK-ALL(KB, a, rest, model U {X; = true})
TT-CHECK-ALL(KB, a, rest, model U {X; = false}))

Simple Model Checking

Same recursion as backtrackin X, =true
O(2N) time, linear space O(/U

e D}—‘S X, =true

Can we do better? A ‘«

Xy =true/\ Xy =false X, =true Xy = false

KB?

X, = false

X, = false

X

111110 NS
101001 KIS
000000 X

111111

Inference: Proofs

A proof is a demonstration of entailment between o and 3
ﬂ/lethod 1: model-checking

" For every possible world, if o is true make sure that is 3 true too
= OK for propositional logic (finitely many worlds); not easy for first-order logic

Method 2: theorem-proving
= Search for a sequence of proof steps (applications of inference rules) leading from o to [3
=" E.g.,, fromP A (P = Q), infer Q by Modus Ponens

Properties
" Sound algorithm: everything it claims to prove is in fact entailed
= Complete algorithm: every sentence that is entailed can be proved

Simple Theorem Proving: Forward Chaining

Forward chaining applies Modus Ponens to generate new facts:
" Given(X, A X, A .. X, :@nd X1 Xop oy X
" InferY

n

Forward chaining keeps applying this rule, adding new facts, until
nothing more can be added

Requires KB to contain onl[definite c/ausé):

" (Conjunction of symbols) = symbol; or
" A single symbol (note that X is equivalent to True = X)

Forward Chaining Algorithm

function PL-FC- ENTAILS?(KB q)

s D= Q-

w x P 5)/me
v XL P /,l,
BaAt=M J B

%

QT/L\/% L
T .
Q

Forward Chaining Algorithm

function PL-FC-ENTAILS?(KB, qg) returns true or false
count & a table, where count|c] is the number of symbols in c’s premise
inferred < a table, where inferred[s] is initially false for all s

agenda < a queue of symbols, initially symbols known to be true in KB

CLAUSES COUNT INFERRED AGENDA
P=Q 1 A false
LAM=P 2 B false
BAL=M 2 L false
AAP =L p) M false
AAB =L 2 P false
A 0 Q false
0

B

Forward Chaining Example: Proving Q

CLAUSES COUNT INFERRED

P=0Q 1/0 A fabsetrue
LAM=P N0 B tabsetrue
BAL= M o L faleetrue

AAP =L 2/ 0 M tabse true
AAB=L 7/ 0 P fadse true
A 0 Q faksetrue
B 0

AGENDA

A B ¥ K R ¥ &

Forward Chaining Algorithm

function PL-FC-ENTAILS?(KB, q) returns true or false
count < a table, where count|c] is the number of symbols in c¢’s premise
inferred < a table, where inferred[s] is initially false for all s
agenda < a queue of symbols, initially symbols known to be true in KB

while agenda is not empty do
p < Pop(agenda)
if p =g then return true
if inferred[p] = false then
inferred[p]<true
for each clause c in KB where p is in c.premise do
decrement count|c]
if count[c] = 0 then add c.conclusion to agenda
return false

Properties

Forward Chaining is:

" Sound and complete for definite-clause
KBs

= Complexity: linear time ©
_—

Resolution is another theorem-proving
algorithm that is:

" Sound and complete for any PL KBs!
= Complexity: exponential time ®

Vocab Reminder

Literal
= Atomic sentence:
T, F, Symbol, —Symbol

Clause

" Disjunction of literals:
AV BV AC

Definite clause

= Disjunction of literals,
exactly one is positive

—AV BV AC

\ \
Inference Rules "

EModu_sC;:o}r’\Be,ns a]ﬁq:? B\ /\ O&] %ﬁ Notation Alert!

4B

Unit Resolution

Cl\[l; —ﬂVc
ave __J\e 3@ \VC_
Of\J\ 0”\ 2
General Resolution a -

Z\/aV: Vamv,b/ 7/b/\/clv Vcn\/—*:a{\/

a1V VamVClv VCn ; ’} i— M€

b

Reso
Algorit

function PL-RESOLUTION?(KB,) returns true or false

(e 5{;\\‘{” s

ution KB SAT (,ug/\—;@

— O\
nm Overview enfa \S (K% ,Db £ T eesuld
e un TJRUE

We want to prove that KB entails o K
In other words, we want to prove that(we cannot satisfy (KB am
1. Start with a set of CNF clauses, including the KB as well as =&

E Keep resolving pairs of clauses until
A. You resolve the empty clause

Contradiction found! =

{KB /\ = cannot be satisfiecu

Return true, KB entails «

,\?B. No new clauses added

Return false, KB does not entail «

: General Reso|ution
Resolution alv---vamca ~Ble;v-ve,

aV--Vam,VciV---Vep

Example trying to prove

Knowledge Base -

l ") A2 [/ 6 17 P; 7]
/ — % __> I \ — Y
FPZ,l V B4 1By, VP o VP] =Py 5 V By g 2B [Iﬂlg_”_' 2
N J — N

Sl

‘7%)) *77(3)’13\\:)

General Resolution

Resolution ai1V--VamVbh, —bVcqVeVep

aV--Vam,VciV---Vep

Example trying to prove =P ,

Knowledge Base
A

P,V _Bl,l 1B VP, VP, -P1, VB, —1B14 P; 5

IBl,l V P1,2 V Bl,l P]’z V P2,1 V _IP2,1 _IB]_']_ V P2,1 V Bl,l P1,2 V P2’1 V _IP]_’Z _IP]_’Z

Resolution

function PL-RESOLUTION?(KB, &) returns true or false
clauses « the set of clauses in the CNF representation of KB A =«
new « { }
loop do
for each pair of clauses C;, C; in clauses do
resolvents < PL-RESOLVE(C;, C;)

if resolvents contains the empty clause then

return true
new < new U resolvants
if new € clauses then
return false

clauses < clauses U new

Properties

Forward Chaining is:

" Sound and complete for definite-clause

KBs —
= Complexity: linear time ©

—\
Resolution is another theorem-proving

algorithm that is:
L' Sound and complete for any PL KBs!

= Complexity: exponential time ®

<

Vocab Reminder

Literal
= Atomic sentence:
T, F, Symbol, —Symbol

Clause

" Disjunction of literals:
AV BV AC

Definite clause

= Disjunction of literals,
exactly one is positive

—AV BV AC

Outline

Logical Agent Algorithms

ESatisfiability: DPLL (Sef\’f €f\C€\ 2 NOAQ o a 0&61
= Planning with logic KB N\ z

/ssPr‘J/o'Q ¢lauses) 5>/m)70)6) maolf/

Satistfiability and Entailment

A sentence is satisfiable if it is true in at least one world (e.g. CSPs!)

Breeze
Stench

Breeze
Stench F.
& - é f ,
1 i

Breeze
Stench

Br
, Stench Stench ,

Breeze
Stench Stench

Breeze Breeze

http://thiagodnf.github.io/wumpus-world-simulator/

http://thiagodnf.github.io/wumpus-world-simulator/
http://thiagodnf.github.io/wumpus-world-simulator/
http://thiagodnf.github.io/wumpus-world-simulator/
http://thiagodnf.github.io/wumpus-world-simulator/
http://thiagodnf.github.io/wumpus-world-simulator/

Satistfiability and Entailment

A sentence is satisfiable if it is true in at least one world (cf CSPs!)

Suppose we have a hyper-efficient SAT solver; how can we use it to test
entailment?

= Suppose o |=f3

= Then o= B is true in all worlds '7[~1 ! \)/6.3

" Hence — (a0 =,3) is false in all worlds

= Henc?\oc//_ﬂjﬁ\is false in all worlds, i.e., unsatisfiable
—

So, add the negated conclusion to what you know, test for
(un)satisfiability; also known as reductio ad absurdum

Efficient SAT solvers operate on conjunctive normal form

Efficient SAT solvers

DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern solvers

Essentially a backtracking search over models with some extras:
" Farly termination: stop if
= all clauses are satisfied; e.g., (A v B) A (A v —C) is satisfied by {A=true}

——

= any clause is falsified; e.g., (A v B) A (A v —C) is satisfied by {A=false, B=false}

= Pure literals: if all occurrences of a symbol in as-yet-unsatisfied clauses have the
same sign, then give the symbol that value

= E.g., Alis pure and positive in (A v B) A (A v —C) A (C v —B) so set it to true

= Unit clauses: if a clause is left with a single literal, set symbol to satisfy clause
" E.g., if A=false, (A v B) A (A v —C) becomes (false v B) A (false v —C), i.e. (B) /_(:9__

= Satisfying the unit clausefoften leads to further propagation, new unit clauses,
etc.

DPLL algorithm

function DPLL(clauses, symbols, model) returns true or false =
ff every clause in clauses is true in model then return true

if some clause in clauses is false in model then return false

P, value <FIND-PURE-SYMBOL(symbols, clauses, model) \O

if P is non-null then return DPLL(clauses, symbols—P, modelU{P=value}) b
P, value <FIND-UNIT-CLAUSE(clauses, model)

if P is non-null then return DPLL(cIauses,EymboIs—P{modelU{Pﬁ=vaIue})

rest <& Rest(symbols)

return or(DPLL(clauses, rest, modelU{P=true}), T
DPLL(clauses, rest, modelU{P=false}))

h & First(symbols) /\
N

(—

Outline

Logical Agent Algorithms

= Satisfiability: DPLL
" Planning with logic

Planning as Satistiability

Given a hyper-efficient SAT solver, can we use it to make plans?

Yes, for fully observable, deterministic case: planning problem is
solvable iff there is some satisfying assignment for actions etc.

SCORE: {

SCORE: (

SCORE: 0

Planning as Satistiability

Given a hyper-efficient SAT solver, can we use it to make plans?

Yes, for fully observable, deterministic case: planning problem is
solvable iff there is some satisfying assignment for actions etc.

tla

For T =1 to infinity, set up the KB as follows and run SAT solver: =
= |nitial state, domain constraints

Eransition model sentences up to time T
" Goal istrue attime T

" Precondition axioms: At 1,1 O AN 0 = —Wall 1,2 etc.
= Action exclusion axioms: =(N_ O AW _0) A—=(N_OAS 0) A .. etc.

1l

Initial State

The agent may know its initial location:
= At 1,1 0

Or, it may not:
= At 1,1 OvAt 1,2 OvAt 1,3 Ov..vAt 3,30

We also need a domain constraint — cannot be in two places at once!
"= (At 1,1 OAAt 1,2 O)A—(At_ 1,1 OAALt 1,3 O) A ..
" (At 1,1 1 AAt 1,2 1) A—(At 1,1 1 AAt 1,3 1)A...

Fluents and Effect Axioms Stote \ ACT =7 Sbie

A fluent is a state variable that changes over time

How does each state variable or fluent at each time gets its value?

Fluents for PL Pacman are Pacman_x,y ¢, e.g.,, Pacman 3,3 17

—

———

3 @)

‘ect Axioms

Fluents and E

A fluent is a state variable that changes over time

How does each state variable or fluent at each time gets its value?

Fluents for PL Pacman are Pacman_x,y ¢, e.g.,, Pacman 3,3 17

Fluents and Successor-state Axioms

A fluent is a state variable that changes over time

How does each state variable or fluent at each time gets its value?
Fluents for PL Pacman are Pacman_x,y ¢, e.g.,, Pacman 3,3 17
A state variable gets its value according to a successor-state axiom

ﬂ@ m =(some action,_; made it false)] v
/\ (some action, ; made it true)]

a—

Fluents and Successor-state Axioms

A fluent is a state variable that changes over time

How does each state variable or fluent at each time gets its value?
Fluents for PL Pacman are Pacman_x,y ¢, e.g.,, Pacman 3,3 17

A state variable gets its value according to a successor-state axiom
" X, < [X,.; A —=(some action, ; made it false)] v
[—X,; A (some action, ; made it true)]

For Pacman location:
" Pacman 3,3 17 < [Pacman 3,3 16 A —((—=Wall 3,4 AN _16) v (—=Wall 4,3 AE _16) v ...)]
v [=Pacman 3,3 16 A ((Pacman 3,2 16 A—=Wall 3,3 AN_16)v
(Pacman 2,3 16 A—Wall 3,3 AN _16)v..)]

	Slide 1: AI: Representation and Problem Solving
	Slide 2: Plan
	Slide 3: Propositional Logic Vocab
	Slide 4: PL: Conjunctive Normal Form (CNF)
	Slide 5: PL: Conjunctive Normal Form (CNF)
	Slide 6: PL: Conjunctive Normal Form (CNF)
	Slide 7: Logical Agent Vocab
	Slide 8: Provably True, Provably False, or Unsure
	Slide 9: Logical Agent Vocab
	Slide 10: Logical Agent Vocab
	Slide 11: Outline
	Slide 12: Propositional Logic
	Slide 13: Propositional Logic
	Slide 14: Outline
	Slide 15: Inference: Proofs
	Slide 16: Simple Model Checking
	Slide 17: Simple Model Checking
	Slide 18: Simple Model Checking
	Slide 19: Simple Model Checking
	Slide 20: Simple Model Checking
	Slide 21: Inference: Proofs
	Slide 22: Simple Theorem Proving: Forward Chaining
	Slide 23: Forward Chaining Algorithm
	Slide 24: Forward Chaining Algorithm
	Slide 25: Forward Chaining Example: Proving Q
	Slide 26: Forward Chaining Algorithm
	Slide 28: Properties
	Slide 29: Inference Rules
	Slide 30: Resolution
	Slide 31: Resolution
	Slide 32: Resolution
	Slide 33: Resolution
	Slide 34: Properties
	Slide 35: Outline
	Slide 36: Satisfiability and Entailment
	Slide 37: Satisfiability and Entailment
	Slide 38: Efficient SAT solvers
	Slide 39: DPLL algorithm
	Slide 40: Outline
	Slide 41: Planning as Satisfiability
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Planning as Satisfiability
	Slide 46: Initial State
	Slide 47: Fluents and Effect Axioms
	Slide 48: Fluents and Effect Axioms
	Slide 49: Fluents and Successor-state Axioms
	Slide 50: Fluents and Successor-state Axioms

