Al: Representation and Problem Solving

Logical Agent Algorithms

Instructor: Pat Virtue
Slide credits: CMU Al, http://ai.berkeley.edu



Plan

Last Time:

" Propositional logic

" Models and Knowledge Bases
= Satisifiability and Entailment

Today: Logical Agent Algorithms

Entailment
" Model checking: Truth table entailment

* Theorem proving: (Forward chaining), resolution
(™ Satisfiability: DPLL
ENext time) Planning with logic - mMe



Propositional Logic Vocab

Literal
" Atomic sentence: True, False, Symbol, —Symbol

Llause
-/Disjunr.ﬂo_n(OR) of literals: AV B Vv =C
Defini:cg clause

= Disjunction (OR) of literals, exactly one is positive
"—AVB YV =C =

Horn clause
" Disjunction of literals, at most one is positive
= All definite clauses are Horn clauses




PL: Conjunctive Normal Form (CNF)

Every sentence can be expressed as a conjunction (AND) of clauses
Each clause is a disjunction (OR) of literals

Each literal is a symbol or a negated symbol

=" Example: (—A v —C v B)A(—A v =B v ()



PL: Conjunctive Normal Form (CNF)

Every sentence can be expressed as a conjunction of clauses
Each clause is a disjunction of literals

Each literal is a symbol or a negated symbol

Conversion to CNF by a sequence of standard transformations:

" At 1,1 0= (Wall 0,1 < Blocked W _0)
= At 1,1 0= ((Wall_0,1 = Blocked W _0) A (Blocked W_0 =Wall_0,1))
= -At 1,1 Ov((—Wall 0,1 vBlocked W_0) A (—Blocked_W_0v Wall _0,1))

" (-At_ 1,1 0 v —=Wall 0,1 v Blocked W _0)A (—At 1,1 O v —Blocked W_0 v Wall_0,1)



PL: Conjunctive Normal Form (CNF)

Every sentence can be expressed\ Replace biconditional by two implications |

Replacea = 3 by —a v f3 }

Distribute v over A }

Conversion to CNF by a s dard tran
= At 1,1 0= ((Wall_0,1 = Blocked_W_0) A (Blo ~“W_0=Wall_0,1))
= -At 1,1 Ov((—Wall 0,1 vBlocked W_0) A (—Blocked W _0v Wall _0,1))

" (-At_ 1,1 0 v —=Wall 0,1 v Blocked W _0)A (—At 1,1 O v —Blocked W_0 v Wall_0,1)



Logical Agent Vocab

‘/\/Iodel

= Complete assighnment of symbols to True/False

\/éntence
" Logical statement

=" Composition of logic symbols and operators

e

= Collection of sentences representing facts and rules
we know about the world

Ajery

= Sentence we want to know if it is provably True,
provably False, or unsure.



Provably True, Provably False, or Unsure
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http://thiagodnf.github.io/wumpus-world-simulator/
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Logical Agent Vocab

Entailment _
" |nput: sentencel, sentence?2
» Each model that satisfies sentencel must also satisfy sentence?2
= "If | know 1 holds, then | know 2 holds"
—= (ASK), TT-ENTAILS, FC-ENTAILS, RESOLUTION-ENTAILS

Satisfy ( node) , SeAh €ncc\ so ,gg,'ﬂb]é

" [nput: model, sentence

" |s this sentence true in this model?

" Does this model satisfy this sentence

" "Does this particular state of the world work?’
[ = PL-TRUE




Logical Agent Vocab

fatlsflabj

" [nput: sentence

= Can find at least one model that satisfies this sentence
= (We often want to know what that model is)

= "Is it possible to make this sentence true?"

"DPLL &——

[ vale

=" Input: sentence
" sentence is true in all possible models

L-/




Outline

Logical Agent Algorithms
\/Vocab

(= PL TRUE

" Entailment
" Model checking: Truth table entailment
* Theorem proving:
* (Forward chaining), resolution

= Satisfiability: DPLL
" Planning with logic




Propositional Logic T

Check if sentence is true in given model / \
In other words, does the model satisfy the sentence? /N §
function PL-TRUE?(a,model) returns true or false s Zf

But are models and propositional logic sentences a represented? A
yd \
'l —

T F
i



Propositional Logic

Check if sentence is true in given model
In other words, does the model satisfy the sentence?

function PL-TRUE?(a,model) returns true or false
if o is a symbol then return Lookup(o, model)
if Op(at) = — then return not(PL-TRUE?(Argl(o),model))
if Op(at) = A then return and(PL-TRUE?(Argl(c),model),
PL-TRUE?(Arg2(a),model))
etc.

(Sometimes called “recursion over syntax”)



Outline

Logical Agent Algorithms
= Vocab

" Entailment
" Model checking: Truth table entailment

" Theorem proving:
" Forward chaining, resolution

= Satisfiability: DPLL
" Planning with logic



Inference: Proofs

A proof is a demonstration of entailment between o and 3
Method 1: model-checking

" For every possible world, if o is true make sure that is 3 true too
= OK for propositional logic (finitely many worlds); not easy for first-order logic
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Simple Model Checking
function TT-ENTAILS?(KB, a)



Simple Model Checking

function TT-ENTAILS?(KB, a)
Same recursion as backtracking
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Simple Model Checking

function TT-ENTAILS?(KB, a)
return TT-CHECK-ALL(KB, a, symbols(KB) U symbols(a), {})

function TT-CHECK-ALL(KB, a, symbols, model)



Simple Model Checking

function TT-CHECK-ALL(KB, a, symbols, model)
if empty?(symbols) then
if PL-TRUE?(KB, model) then
return PL-TRUE?(a, model)
else
return true
else
X; & first(symbols)
rest < rest(symbols)
return and ( TT-CHECK-ALL(KB, a, rest, model U {X; = true})
TT-CHECK-ALL(KB, a, rest, model U {X; = false}) )



Simple Model Checking

Same recursion as backtrackin X, =true
O(2N) time, linear space O(/U

e D}—‘S X, =true

Can we do better? A ‘«

Xy =true/\ Xy =false X, =true Xy = false

KB?

X, = false

X, = false

X
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Inference: Proofs

A proof is a demonstration of entailment between o and 3
ﬂ/lethod 1: model-checking

" For every possible world, if o is true make sure that is 3 true too
= OK for propositional logic (finitely many worlds); not easy for first-order logic

Method 2: theorem-proving
= Search for a sequence of proof steps (applications of inference rules) leading from o to [3
=" E.g.,, fromP A (P = Q), infer Q by Modus Ponens

Properties
"  Sound algorithm: everything it claims to prove is in fact entailed
= Complete algorithm: every sentence that is entailed can be proved



Simple Theorem Proving: Forward Chaining

Forward chaining applies Modus Ponens to generate new facts:
" Given(X, A X, A .. X, :@nd X1 Xop oy X
" InferY

n

Forward chaining keeps applying this rule, adding new facts, until
nothing more can be added

Requires KB to contain onl[definite c/ausé):

" (Conjunction of symbols) = symbol; or
" A single symbol (note that X is equivalent to True = X)




Forward Chaining Algorithm

function PL-FC- ENTAILS?(KB q)
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Forward Chaining Algorithm

function PL-FC-ENTAILS?(KB, qg) returns true or false
count & a table, where count|c] is the number of symbols in c’s premise
inferred < a table, where inferred[s] is initially false for all s

agenda < a queue of symbols, initially symbols known to be true in KB

CLAUSES COUNT INFERRED AGENDA
P=Q 1 A false
LAM=P 2 B false
BAL=M 2 L false
AAP =L p) M false
AAB =L 2 P false
A 0 Q false
0

B



Forward Chaining Example: Proving Q

CLAUSES COUNT INFERRED

P=0Q 1/0 A fabsetrue
LAM=P N0 B tabsetrue
BAL= M o L faleetrue

AAP =L 2/ 0 M tabse true
AAB=L 7/ 0 P fadse true
A 0 Q faksetrue
B 0

AGENDA

A B ¥ K R ¥ &




Forward Chaining Algorithm

function PL-FC-ENTAILS?(KB, q) returns true or false
count < a table, where count|c] is the number of symbols in c¢’s premise
inferred < a table, where inferred[s] is initially false for all s
agenda < a queue of symbols, initially symbols known to be true in KB

while agenda is not empty do
p < Pop(agenda)
if p =g then return true
if inferred[p] = false then
inferred[p]<true
for each clause c in KB where p is in c.premise do
decrement count|c]
if count[c] = 0 then add c.conclusion to agenda
return false



Properties

Forward Chaining is:

" Sound and complete for definite-clause
KBs

= Complexity: linear time ©
_—

Resolution is another theorem-proving
algorithm that is:

" Sound and complete for any PL KBs!
= Complexity: exponential time ®

Vocab Reminder

Literal
= Atomic sentence:
T, F, Symbol, —Symbol

Clause

" Disjunction of literals:
AV BV AC

Definite clause

= Disjunction of literals,
exactly one is positive

—AV BV AC




\ \
Inference Rules "
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Reso
Algorit

function PL-RESOLUTION?(KB, ) returns true or false

(e 5{;\\‘{” s

ution KB SAT (,ug/\—;@
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nm Overview enfa \S (K% ,Db £ T eesuld
e un TJRUE

We want to prove that KB entails o K
In other words, we want to prove that(we cannot satisfy (KB am
1. Start with a set of CNF clauses, including the KB as well as =&

E Keep resolving pairs of clauses until
A. You resolve the empty clause

Contradiction found! =

{KB /\ = cannot be satisfiecu

Return true, KB entails «

,\?B. No new clauses added

Return false, KB does not entail «



: General Reso|ution
Resolution alv---vamca ~Ble;v-ve,

aV--Vam,VciV---Vep

Example trying to prove

Knowledge Base -
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General Resolution

Resolution ai1V--VamVbh, —bVcqVeVep

aV--Vam,VciV---Vep

Example trying to prove =P ,

Knowledge Base
A

P,V _Bl,l 1B VP, VP, -P1, VB, —1B14 P; 5

_IBl,l V P1,2 V Bl,l P]_’z V P2,1 V _IP2,1 _IB]_']_ V P2,1 V Bl,l P1,2 V P2’1 V _IP]_’Z _IP]_’Z




Resolution

function PL-RESOLUTION?(KB, &) returns true or false
clauses « the set of clauses in the CNF representation of KB A =«
new « { }
loop do
for each pair of clauses C;, C; in clauses do
resolvents < PL-RESOLVE(C;, C;)

if resolvents contains the empty clause then

return true
new < new U resolvants
if new € clauses then
return false

clauses < clauses U new



Properties

Forward Chaining is:

" Sound and complete for definite-clause

KBs —
= Complexity: linear time ©

—\
Resolution is another theorem-proving

algorithm that is:
L' Sound and complete for any PL KBs!

= Complexity: exponential time ®

<

Vocab Reminder

Literal
= Atomic sentence:
T, F, Symbol, —Symbol

Clause

" Disjunction of literals:
AV BV AC

Definite clause

= Disjunction of literals,
exactly one is positive

—AV BV AC




Outline

Logical Agent Algorithms

ESatisfiability: DPLL (Sef\’f €f\C€\ 2 NOAQ o a 0&61
= Planning with logic KB N\ z
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Satistfiability and Entailment

A sentence is satisfiable if it is true in at least one world (e.g. CSPs!)

Breeze
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http://thiagodnf.github.io/wumpus-world-simulator/
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Satistfiability and Entailment

A sentence is satisfiable if it is true in at least one world (cf CSPs!)

Suppose we have a hyper-efficient SAT solver; how can we use it to test
entailment?

= Suppose o |=f3

= Then o= B is true in all worlds '7[~1 ! \)/6.3

" Hence — (a0 =,3) is false in all worlds

= Henc?\oc//\_ﬂjﬁ\is false in all worlds, i.e., unsatisfiable
—

So, add the negated conclusion to what you know, test for
(un)satisfiability; also known as reductio ad absurdum

Efficient SAT solvers operate on conjunctive normal form



Efficient SAT solvers

DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern solvers

Essentially a backtracking search over models with some extras:
" Farly termination: stop if
= all clauses are satisfied; e.g., (A v B) A (A v —C) is satisfied by {A=true}

——

= any clause is falsified; e.g., (A v B) A (A v —C) is satisfied by {A=false, B=false}

= Pure literals: if all occurrences of a symbol in as-yet-unsatisfied clauses have the
same sign, then give the symbol that value

= E.g., Alis pure and positive in (A v B) A (A v —C) A (C v —B) so set it to true

= Unit clauses: if a clause is left with a single literal, set symbol to satisfy clause
" E.g., if A=false, (A v B) A (A v —C) becomes (false v B) A (false v —C), i.e. (B) /\_(:9__

= Satisfying the unit clausefoften leads to further propagation, new unit clauses,
etc.



DPLL algorithm

function DPLL(clauses, symbols, model) returns true or false =
ff every clause in clauses is true in model then return true

if some clause in clauses is false in model then return false

P, value <FIND-PURE-SYMBOL(symbols, clauses, model) \O

if P is non-null then return DPLL(clauses, symbols—P, modelU{P=value}) b
P, value <FIND-UNIT-CLAUSE(clauses, model)

if P is non-null then return DPLL(cIauses,EymboIs—P{modelU{Pﬁ=vaIue})

rest <& Rest(symbols)

return or(DPLL(clauses, rest, modelU{P=true}), T
DPLL(clauses, rest, modelU{P=false}))

h & First(symbols) /\
N

(—



Outline

Logical Agent Algorithms

= Satisfiability: DPLL
" Planning with logic



Planning as Satistiability

Given a hyper-efficient SAT solver, can we use it to make plans?

Yes, for fully observable, deterministic case: planning problem is
solvable iff there is some satisfying assignment for actions etc.



SCORE: {



SCORE: (



SCORE: 0



Planning as Satistiability

Given a hyper-efficient SAT solver, can we use it to make plans?

Yes, for fully observable, deterministic case: planning problem is
solvable iff there is some satisfying assignment for actions etc.

tla

For T =1 to infinity, set up the KB as follows and run SAT solver: =
= |nitial state, domain constraints

Eransition model sentences up to time T
" Goal istrue attime T

" Precondition axioms: At 1,1 O AN 0 = —Wall 1,2 etc.
= Action exclusion axioms: =(N_ O AW _0) A—=(N_OAS 0) A .. etc.

1l




Initial State

The agent may know its initial location:
= At 1,1 0

Or, it may not:
= At 1,1 OvAt 1,2 OvAt 1,3 Ov..vAt 3,30

We also need a domain constraint — cannot be in two places at once!
"= (At 1,1 OAAt 1,2 O)A—(At_ 1,1 OAALt 1,3 O) A ..
" (At 1,1 1 AAt 1,2 1) A—(At 1,1 1 AAt 1,3 1)A...



Fluents and Effect Axioms Stote \ ACT =7 Sbie

A fluent is a state variable that changes over time

How does each state variable or fluent at each time gets its value?

Fluents for PL Pacman are Pacman_x,y ¢, e.g.,, Pacman 3,3 17

—

———

3 @)




‘ect Axioms

Fluents and E

A fluent is a state variable that changes over time

How does each state variable or fluent at each time gets its value?

Fluents for PL Pacman are Pacman_x,y ¢, e.g.,, Pacman 3,3 17



Fluents and Successor-state Axioms

A fluent is a state variable that changes over time

How does each state variable or fluent at each time gets its value?
Fluents for PL Pacman are Pacman_x,y ¢, e.g.,, Pacman 3,3 17
A state variable gets its value according to a successor-state axiom

ﬂ@ m =(some action,_; made it false)] v
/\ (some action, ; made it true)]

a—




Fluents and Successor-state Axioms

A fluent is a state variable that changes over time

How does each state variable or fluent at each time gets its value?
Fluents for PL Pacman are Pacman_x,y ¢, e.g.,, Pacman 3,3 17

A state variable gets its value according to a successor-state axiom
" X, < [X,.; A —=(some action, ; made it false)] v
[—X,; A (some action, ; made it true)]

For Pacman location:
" Pacman 3,3 17 < [Pacman 3,3 16 A —((—=Wall 3,4 AN _16) v (—=Wall 4,3 AE _16) v ...)]
v [=Pacman 3,3 16 A ((Pacman 3,2 16 A—=Wall 3,3 AN_16)v
(Pacman 2,3 16 A—Wall 3,3 AN _16)v..)]
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