
AI: Representation and Problem Solving

Logical Agent Algorithms

Instructor: Pat Virtue

Slide credits: CMU AI, http://ai.berkeley.edu



Plan
Last Time:

▪ Propositional logic 

▪ Models and Knowledge Bases

▪ Satisifiability and Entailment

Today: Logical Agent Algorithms

▪ Entailment

▪ Model checking: Truth table entailment

▪ Theorem proving: (Forward chaining), resolution

▪ Satisfiability: DPLL

▪ (Next time) Planning with logic



Propositional Logic Vocab
Literal

▪ Atomic sentence: True, False, Symbol, Symbol

Clause

▪ Disjunction (OR) of literals: 𝐴 ∨ 𝐵 ∨  ¬𝐶

Definite clause

▪ Disjunction (OR) of literals, exactly one is positive

▪¬𝐴 ∨ 𝐵 ∨ ¬𝐶

Horn clause

▪ Disjunction of literals, at most one is positive

▪ All definite clauses are Horn clauses



PL: Conjunctive Normal Form (CNF)

Every sentence can be expressed as a conjunction (AND) of clauses

Each clause is a disjunction (OR) of literals

Each literal is a symbol or a negated symbol

▪ Example: (A  v  C   v   B)  (A   v  B   v  C)



PL: Conjunctive Normal Form (CNF)

Every sentence can be expressed as a conjunction of clauses

Each clause is a disjunction of literals

Each literal is a symbol or a negated symbol

Conversion to CNF by a sequence of standard transformations:

▪ At_1,1_0  (Wall_0,1  Blocked_W_0)

▪ At_1,1_0  ((Wall_0,1  Blocked_W_0)  (Blocked_W_0 Wall_0,1)) 

▪ At_1,1_0 v ((Wall_0,1 v Blocked_W_0)  (Blocked_W_0 v Wall_0,1)) 

▪ (At_1,1_0  v  Wall_0,1   v   Blocked_W_0)  (At_1,1_0   v  Blocked_W_0   v  Wall_0,1)



PL: Conjunctive Normal Form (CNF)

Every sentence can be expressed as a conjunction of clauses

Each clause is a disjunction of literals

Each literal is a symbol or a negated symbol

Conversion to CNF by a sequence of standard transformations:

▪ At_1,1_0  (Wall_0,1  Blocked_W_0)

▪ At_1,1_0  ((Wall_0,1  Blocked_W_0)  (Blocked_W_0 Wall_0,1)) 

▪ At_1,1_0 v ((Wall_0,1 v Blocked_W_0)  (Blocked_W_0 v Wall_0,1)) 

▪ (At_1,1_0  v  Wall_0,1   v   Blocked_W_0)  (At_1,1_0   v  Blocked_W_0   v  Wall_0,1)

Replace biconditional by two implications

Replace     by  v  

Distribute v over  



Logical Agent Vocab
Model

▪ Complete assignment of symbols to True/False

Sentence

▪ Logical statement

▪ Composition of logic symbols and operators

KB

▪ Collection of sentences representing facts and rules 
we know about the world

Query

▪ Sentence we want to know if it is provably True, 
provably False, or unsure.



Provably True, Provably False, or Unsure

http://thiagodnf.github.io/wumpus-world-simulator/
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http://thiagodnf.github.io/wumpus-world-simulator/
http://thiagodnf.github.io/wumpus-world-simulator/
http://thiagodnf.github.io/wumpus-world-simulator/


Logical Agent Vocab
Entailment

▪ Input: sentence1, sentence2

▪ Each model that satisfies sentence1 must also satisfy sentence2

▪ "If I know 1 holds, then I know 2 holds"

▪ (ASK), TT-ENTAILS, FC-ENTAILS, RESOLUTION-ENTAILS 

Satisfy

▪ Input: model, sentence

▪ Is this sentence true in this model?

▪ Does this model satisfy this sentence

▪ "Does this particular state of the world work?’

▪ PL-TRUE



Logical Agent Vocab
Satisfiable

▪ Input: sentence

▪ Can find at least one model that satisfies this sentence

▪ (We often want to know what that model is)

▪ "Is it possible to make this sentence true?"

▪ DPLL

Valid

▪ Input: sentence

▪ sentence is true in all possible models



Outline
Logical Agent Algorithms

▪ Vocab

▪ PL_TRUE

▪ Entailment

▪ Model checking: Truth table entailment

▪ Theorem proving:

▪ (Forward chaining), resolution

▪ Satisfiability: DPLL

▪ Planning with logic



Propositional Logic

function PL-TRUE?(,model) returns true or false

But are models and propositional logic sentences 𝛼 represented?

Check if sentence is true in given model

In other words, does the model satisfy the sentence?



Propositional Logic

function PL-TRUE?(,model) returns true or false

    if  is a symbol then return Lookup(, model)

    if Op() =  then return not(PL-TRUE?(Arg1(),model))

    if Op() =  then return and(PL-TRUE?(Arg1(),model), 

                                                          PL-TRUE?(Arg2(),model))

    etc.

(Sometimes called “recursion over syntax”)

Check if sentence is true in given model

In other words, does the model satisfy the sentence?



Outline
Logical Agent Algorithms

▪ Vocab

▪ PL_TRUE

▪ Entailment

▪ Model checking: Truth table entailment

▪ Theorem proving:

▪ Forward chaining, resolution

▪ Satisfiability: DPLL

▪ Planning with logic



Inference: Proofs
A proof is a demonstration of entailment between  and  

Method 1: model-checking
▪ For every possible world, if  is true make sure that is  true too

▪ OK for propositional logic (finitely many worlds); not easy for first-order logic



Simple Model Checking
function TT-ENTAILS?(KB, α)    Returns true or false



Simple Model Checking
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Simple Model Checking

function TT-ENTAILS?(KB, α)    Returns true or false

        return TT-CHECK-ALL(KB, α, symbols(KB) ∪ symbols(α), {}) 

function TT-CHECK-ALL(KB, α, symbols, model)     Returns true or false

        Recursively check to make sure all models 

        that satisfy the KB also satisfy α



Simple Model Checking

function TT-CHECK-ALL(KB, α, symbols, model)     Returns true or false 

        if empty?(symbols) then 

                if PL-TRUE?(KB, model) then

                        return PL-TRUE?(α, model) 

                else 

                        return true

        else

                𝑋𝑖 ← first(symbols)

                rest ← rest(symbols)

                return  and ( TT-CHECK-ALL(KB, α, rest, model ∪ {𝑋𝑖 = true}) 

                              TT-CHECK-ALL(KB, α, rest, model ∪ {𝑋𝑖 = false}) ) 



Simple Model Checking
Same recursion as backtracking

O(2N) time, linear space

Can we do better?
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Inference: Proofs
A proof is a demonstration of entailment between  and  

Method 1: model-checking
▪ For every possible world, if  is true make sure that is  true too

▪ OK for propositional logic (finitely many worlds); not easy for first-order logic

Method 2: theorem-proving
▪ Search for a sequence of proof steps (applications of inference rules) leading from  to  

▪ E.g., from P  (P  Q), infer Q by Modus Ponens

Properties

▪ Sound algorithm: everything it claims to prove is in fact entailed

▪ Complete algorithm: every sentence that is entailed can be proved



Simple Theorem Proving: Forward Chaining

Forward chaining applies Modus Ponens to generate new facts:
▪ Given X1  X2  … Xn   Y and X1, X2, …, Xn 

▪ Infer Y

Forward chaining keeps applying this rule, adding new facts, until 
nothing more can be added

Requires KB to contain only definite clauses: 
▪ (Conjunction of symbols)  symbol; or

▪ A single symbol (note that X is equivalent to True   X)



Forward Chaining Algorithm
function PL-FC-ENTAILS?(KB, q)     Returns true or false

    

P  Q

L  M  P

B  L  M

A  P  L

A  B  L

A

B 

KB CLAUSES



Forward Chaining Algorithm
function PL-FC-ENTAILS?(KB, q) returns true or false

    count ← a table, where count[c] is the number of symbols in c’s premise

    inferred ← a table, where inferred[s] is initially false for all s 

    agenda ← a queue of symbols, initially symbols known to be true in KB 

P  Q

L  M  P

B  L  M

A  P  L

A  B  L

A

B 
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0 

CLAUSES AGENDACOUNT

A  false
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P  false

Q  false
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Forward Chaining Example: Proving Q

P  Q
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Forward Chaining Algorithm
function PL-FC-ENTAILS?(KB, q) returns true or false

    count ← a table, where count[c] is the number of symbols in c’s premise

    inferred ← a table, where inferred[s] is initially false for all s 

    agenda ← a queue of symbols, initially symbols known to be true in KB 

    while agenda is not empty do 

            p ← Pop(agenda)

            if p = q then return true 

            if inferred[p] = false then 

                    inferred[p]←true

                    for each clause c in KB where p is in c.premise do 

                            decrement count[c] 

                            if count[c] = 0 then add c.conclusion to agenda 

    return false



Properties

Forward Chaining is:

▪ Sound and complete for definite-clause 
KBs

▪ Complexity: linear time ☺

Resolution is another theorem-proving 
algorithm that is:

▪ Sound and complete for any PL KBs!

▪ Complexity: exponential time 

Vocab Reminder

Literal

▪ Atomic sentence:

   T, F, Symbol, Symbol

Clause

▪ Disjunction of literals: 
𝐴 ∨  𝐵 ∨  ¬𝐶

Definite clause

▪ Disjunction of literals, 
exactly one is positive

   ¬𝐴 ∨  𝐵 ∨  ¬𝐶



Inference Rules 
Modus Ponens

𝛼⇒𝛽, 𝛼

𝛽

Unit Resolution

𝑎∨𝑏, ¬𝑏∨𝑐

𝑎∨𝑐

General Resolution

𝑎1∨⋯∨𝑎𝑚∨𝑏, ¬𝑏∨𝑐1∨⋯∨𝑐𝑛

𝑎1∨⋯∨𝑎𝑚∨𝑐1∨⋯∨𝑐𝑛

Notation Alert!



Resolution
Algorithm Overview

function PL-RESOLUTION?(KB, ) returns true or false

    We want to prove that KB entails 

    In other words, we want to prove that we cannot satisfy (KB and not )

1. Start with a set of CNF clauses, including the KB as well as ¬
2. Keep resolving pairs of clauses until

A. You resolve the empty clause

 Contradiction found!

 KB ٿ ¬𝛼 cannot be satisfied

 Return true, KB entails 
B. No new clauses added

 Return false, KB does not entail 



Resolution
Example trying to prove ¬𝑃1,2

¬𝑃2,1 ∨ 𝐵1,1 ¬𝐵1,1 ∨ 𝑃1,2 ∨ 𝑃2,1 ¬𝑃1,2 ∨ 𝐵1,1 ¬𝐵1,1 ¬¬𝑃1,2

Knowledge Base

General Resolution
𝑎1∨⋯∨𝑎𝑚∨𝑏, ¬𝑏∨𝑐1∨⋯∨𝑐𝑛

𝑎1∨⋯∨𝑎𝑚∨𝑐1∨⋯∨𝑐𝑛



Resolution
Example trying to prove ¬𝑃1,2

¬𝑃2,1 ∨ 𝐵1,1 ¬𝐵1,1 ∨ 𝑃1,2 ∨ 𝑃2,1 ¬𝑃1,2 ∨ 𝐵1,1 ¬𝐵1,1 𝑃1,2

Knowledge Base

General Resolution
𝑎1∨⋯∨𝑎𝑚∨𝑏, ¬𝑏∨𝑐1∨⋯∨𝑐𝑛

𝑎1∨⋯∨𝑎𝑚∨𝑐1∨⋯∨𝑐𝑛

¬𝐵1,1 ∨ 𝑃1,2 ∨ 𝐵1,1 𝑃1,2 ∨ 𝑃2,1 ∨ ¬𝑃2,1 ¬𝐵1,1 ∨ 𝑃2,1 ∨ 𝐵1,1 𝑃1,2 ∨ 𝑃2,1 ∨ ¬𝑃1,2 ¬𝑃2,1 ¬𝑃1,2



Resolution
function PL-RESOLUTION?(KB, ) returns true or false

    clauses ← the set of clauses in the CNF representation of KB ٿ ¬𝛼

    new ← { }

    loop do

        for each pair of clauses 𝐶𝑖 , 𝐶𝑗  in clauses do

            resolvents ← PL-RESOLVE(𝐶𝑖 , 𝐶𝑗)

            if resolvents contains the empty clause then

                return true

            new ← new ∪ resolvants

        if new ⊆ clauses then

            return false

        clauses ← clauses ∪ new



Properties

Forward Chaining is:

▪ Sound and complete for definite-clause 
KBs

▪ Complexity: linear time ☺

Resolution is another theorem-proving 
algorithm that is:

▪ Sound and complete for any PL KBs!

▪ Complexity: exponential time 

Vocab Reminder

Literal

▪ Atomic sentence:

   T, F, Symbol, Symbol

Clause

▪ Disjunction of literals: 
𝐴 ∨  𝐵 ∨  ¬𝐶

Definite clause

▪ Disjunction of literals, 
exactly one is positive

   ¬𝐴 ∨  𝐵 ∨  ¬𝐶



Outline
Logical Agent Algorithms

▪ Vocab

▪ PL_TRUE

▪ Entailment

▪ Model checking: Truth table entailment

▪ Theorem proving:

▪ Forward chaining, resolution

▪ Satisfiability: DPLL

▪ Planning with logic



Satisfiability and Entailment
A sentence is satisfiable if it is true in at least one world (e.g. CSPs!)

http://thiagodnf.github.io/wumpus-world-simulator/
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Satisfiability and Entailment
A sentence is satisfiable if it is true in at least one world (cf CSPs!)

Suppose we have a hyper-efficient SAT solver; how can we use it to test 
entailment?
▪ Suppose   |=  

▪ Then     is true in all worlds

▪ Hence (  ) is false in all worlds

▪ Hence    is false in all worlds, i.e., unsatisfiable

So, add the negated conclusion to what you know, test for 
(un)satisfiability; also known as reductio ad absurdum

Efficient SAT solvers operate on conjunctive normal form



Efficient SAT solvers

DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern solvers

Essentially a backtracking search over models with some extras:
▪ Early termination: stop if 

▪ all clauses are satisfied; e.g., (A  B)  (A  C) is satisfied by {A=true}

▪ any clause is falsified; e.g., (A  B)  (A  C) is satisfied by {A=false, B=false}

▪ Pure literals: if all occurrences of a symbol in as-yet-unsatisfied clauses have the 
same sign, then give the symbol that value

▪ E.g., A is pure and positive in (A  B)  (A  C)  (C  B) so set it to true

▪ Unit clauses: if a clause is left with a single literal, set symbol to satisfy clause

▪ E.g., if A=false, (A  B)  (A  C) becomes (false  B)  (false  C), i.e. (B)  (C)

▪ Satisfying the unit clauses often leads to further propagation, new unit clauses, 
etc.



DPLL algorithm
function DPLL(clauses, symbols, model) returns true or false 
    if every clause in clauses is true in model then return true
    if some clause in clauses is false in model then return false
    
    P, value ←FIND-PURE-SYMBOL(symbols, clauses, model)
    if P is non-null then return DPLL(clauses, symbols–P, model∪{P=value}) 
    
    P, value ←FIND-UNIT-CLAUSE(clauses, model)
    if P is non-null then return DPLL(clauses, symbols–P, model∪{P=value}) 
    
    P ← First(symbols)
    rest ← Rest(symbols)

    return or(DPLL(clauses, rest, model∪{P=true}),
                      DPLL(clauses, rest, model∪{P=false}))



Outline
Logical Agent Algorithms

▪ Vocab

▪ PL_TRUE

▪ Entailment

▪ Model checking: Truth table entailment

▪ Theorem proving:

▪ (Forward chaining), resolution

▪ Satisfiability: DPLL

▪ Planning with logic



Planning as Satisfiability
Given a hyper-efficient SAT solver, can we use it to make plans?

Yes, for fully observable, deterministic case: planning problem is 
solvable iff there is some satisfying assignment for actions etc.









Planning as Satisfiability
Given a hyper-efficient SAT solver, can we use it to make plans?

Yes, for fully observable, deterministic case: planning problem is 
solvable iff there is some satisfying assignment for actions etc.

For T = 1 to infinity, set up the KB as follows and run SAT solver:

▪ Initial state, domain constraints

▪ Transition model sentences up to time T

▪ Goal is true at time T

▪ Precondition axioms: At_1,1_0  N_0    Wall_1,2 etc.

▪ Action exclusion axioms: (N_0  W_0)  (N_0  S_0)  .. etc.



Initial State

The agent may know its initial location:
▪ At_1,1_0

Or, it may not:
▪ At_1,1_0 v At_1,2_0 v At_1,3_0 v … v At_3,3_0

We also need a domain constraint – cannot be in two places at once!
▪ (At_1,1_0  At_1,2_0)  (At_1,1_0  At_1,3_0)  …

▪ (At_1,1_1  At_1,2_1)  (At_1,1_1  At_1,3_1)  …

▪ …



Fluents and Effect Axioms

A fluent is a state variable that changes over time

How does each state variable or fluent at each time gets its value?

Fluents for PL Pacman are Pacman_x,y_t , e.g., Pacman _3,3_17



Fluents and Effect Axioms

A fluent is a state variable that changes over time

How does each state variable or fluent at each time gets its value?

Fluents for PL Pacman are Pacman_x,y_t , e.g., Pacman _3,3_17



Fluents and Successor-state Axioms

A fluent is a state variable that changes over time

How does each state variable or fluent at each time gets its value?

Fluents for PL Pacman are Pacman_x,y_t , e.g., Pacman _3,3_17

A state variable gets its value according to a successor-state axiom
▪ Xt  [Xt-1  (some actiont-1 made it false)] v

              [Xt-1  (some actiont-1 made it true)]



Fluents and Successor-state Axioms

A fluent is a state variable that changes over time

How does each state variable or fluent at each time gets its value?

Fluents for PL Pacman are Pacman_x,y_t , e.g., Pacman _3,3_17

A state variable gets its value according to a successor-state axiom
▪ Xt  [Xt-1  (some actiont-1 made it false)] v

              [Xt-1  (some actiont-1 made it true)]

For Pacman location:
▪ Pacman _3,3_17  [Pacman _3,3_16  ((Wall_3,4  N_16) v (Wall_4,3  E_16) v …)]

        v  [ Pacman _3,3_16  ((Pacman _3,2_16  Wall_3,3  N_16) v 

                                       (Pacman _2,3_16  Wall_3,3  N_16) v …)]
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