
AI: Representation and Problem Solving

Logical Agent Algorithms

Instructor: Pat Virtue

Slide credits: CMU AI, http://ai.berkeley.edu

Plan
Last Time:

▪ Propositional logic

▪ Models and Knowledge Bases

▪ Satisifiability and Entailment

Today: Logical Agent Algorithms

▪ Entailment

▪ Model checking: Truth table entailment

▪ Theorem proving: (Forward chaining), resolution

▪ Satisfiability: DPLL

▪ (Next time) Planning with logic

Propositional Logic Vocab
Literal

▪ Atomic sentence: True, False, Symbol, Symbol

Clause

▪ Disjunction (OR) of literals: 𝐴 ∨ 𝐵 ∨ ¬𝐶

Definite clause

▪ Disjunction (OR) of literals, exactly one is positive

▪¬𝐴 ∨ 𝐵 ∨ ¬𝐶

Horn clause

▪ Disjunction of literals, at most one is positive

▪ All definite clauses are Horn clauses

PL: Conjunctive Normal Form (CNF)

Every sentence can be expressed as a conjunction (AND) of clauses

Each clause is a disjunction (OR) of literals

Each literal is a symbol or a negated symbol

▪ Example: (A v C v B)  (A v B v C)

PL: Conjunctive Normal Form (CNF)

Every sentence can be expressed as a conjunction of clauses

Each clause is a disjunction of literals

Each literal is a symbol or a negated symbol

Conversion to CNF by a sequence of standard transformations:

▪ At_1,1_0  (Wall_0,1  Blocked_W_0)

▪ At_1,1_0  ((Wall_0,1  Blocked_W_0)  (Blocked_W_0 Wall_0,1))

▪ At_1,1_0 v ((Wall_0,1 v Blocked_W_0)  (Blocked_W_0 v Wall_0,1))

▪ (At_1,1_0 v Wall_0,1 v Blocked_W_0)  (At_1,1_0 v Blocked_W_0 v Wall_0,1)

PL: Conjunctive Normal Form (CNF)

Every sentence can be expressed as a conjunction of clauses

Each clause is a disjunction of literals

Each literal is a symbol or a negated symbol

Conversion to CNF by a sequence of standard transformations:

▪ At_1,1_0  (Wall_0,1  Blocked_W_0)

▪ At_1,1_0  ((Wall_0,1  Blocked_W_0)  (Blocked_W_0 Wall_0,1))

▪ At_1,1_0 v ((Wall_0,1 v Blocked_W_0)  (Blocked_W_0 v Wall_0,1))

▪ (At_1,1_0 v Wall_0,1 v Blocked_W_0)  (At_1,1_0 v Blocked_W_0 v Wall_0,1)

Replace biconditional by two implications

Replace    by  v 

Distribute v over 

Logical Agent Vocab
Model

▪ Complete assignment of symbols to True/False

Sentence

▪ Logical statement

▪ Composition of logic symbols and operators

KB

▪ Collection of sentences representing facts and rules
we know about the world

Query

▪ Sentence we want to know if it is provably True,
provably False, or unsure.

Provably True, Provably False, or Unsure

http://thiagodnf.github.io/wumpus-world-simulator/

http://thiagodnf.github.io/wumpus-world-simulator/
http://thiagodnf.github.io/wumpus-world-simulator/
http://thiagodnf.github.io/wumpus-world-simulator/
http://thiagodnf.github.io/wumpus-world-simulator/
http://thiagodnf.github.io/wumpus-world-simulator/

Logical Agent Vocab
Entailment

▪ Input: sentence1, sentence2

▪ Each model that satisfies sentence1 must also satisfy sentence2

▪ "If I know 1 holds, then I know 2 holds"

▪ (ASK), TT-ENTAILS, FC-ENTAILS, RESOLUTION-ENTAILS

Satisfy

▪ Input: model, sentence

▪ Is this sentence true in this model?

▪ Does this model satisfy this sentence

▪ "Does this particular state of the world work?’

▪ PL-TRUE

Logical Agent Vocab
Satisfiable

▪ Input: sentence

▪ Can find at least one model that satisfies this sentence

▪ (We often want to know what that model is)

▪ "Is it possible to make this sentence true?"

▪ DPLL

Valid

▪ Input: sentence

▪ sentence is true in all possible models

Outline
Logical Agent Algorithms

▪ Vocab

▪ PL_TRUE

▪ Entailment

▪ Model checking: Truth table entailment

▪ Theorem proving:

▪ (Forward chaining), resolution

▪ Satisfiability: DPLL

▪ Planning with logic

Propositional Logic

function PL-TRUE?(,model) returns true or false

But are models and propositional logic sentences 𝛼 represented?

Check if sentence is true in given model

In other words, does the model satisfy the sentence?

Propositional Logic

function PL-TRUE?(,model) returns true or false

 if  is a symbol then return Lookup(, model)

 if Op() =  then return not(PL-TRUE?(Arg1(),model))

 if Op() =  then return and(PL-TRUE?(Arg1(),model),

 PL-TRUE?(Arg2(),model))

 etc.

(Sometimes called “recursion over syntax”)

Check if sentence is true in given model

In other words, does the model satisfy the sentence?

Outline
Logical Agent Algorithms

▪ Vocab

▪ PL_TRUE

▪ Entailment

▪ Model checking: Truth table entailment

▪ Theorem proving:

▪ Forward chaining, resolution

▪ Satisfiability: DPLL

▪ Planning with logic

Inference: Proofs
A proof is a demonstration of entailment between  and 

Method 1: model-checking
▪ For every possible world, if  is true make sure that is  true too

▪ OK for propositional logic (finitely many worlds); not easy for first-order logic

Simple Model Checking
function TT-ENTAILS?(KB, α) Returns true or false

Simple Model Checking

1
1

1
1

1
1

0
0

0
0

0
0

KB?
α?

𝑋1 = true 𝑋1 = false

𝑋2 = true 𝑋2 = false

𝑋𝑁 = false𝑋𝑁 = true 𝑋𝑁 = false 𝑋𝑁 = true

1
1

1
1

1
0

⋮ ⋮

0
0

0
0

0
1

function TT-ENTAILS?(KB, α)

 Same recursion as backtracking

1
0

1
0

0
1

Simple Model Checking

function TT-ENTAILS?(KB, α) Returns true or false

 return TT-CHECK-ALL(KB, α, symbols(KB) ∪ symbols(α), {})

function TT-CHECK-ALL(KB, α, symbols, model) Returns true or false

 Recursively check to make sure all models

 that satisfy the KB also satisfy α

Simple Model Checking

function TT-CHECK-ALL(KB, α, symbols, model) Returns true or false

 if empty?(symbols) then

 if PL-TRUE?(KB, model) then

 return PL-TRUE?(α, model)

 else

 return true

 else

 𝑋𝑖 ← first(symbols)

 rest ← rest(symbols)

 return and (TT-CHECK-ALL(KB, α, rest, model ∪ {𝑋𝑖 = true})

 TT-CHECK-ALL(KB, α, rest, model ∪ {𝑋𝑖 = false}))

Simple Model Checking
Same recursion as backtracking

O(2N) time, linear space

Can we do better?

1
1

1
1

1
1

0
0

0
0

0
0

KB?
α?

𝑋1 = true 𝑋1 = false

𝑋2 = true 𝑋2 = false

𝑋𝑁 = false𝑋𝑁 = true 𝑋𝑁 = false 𝑋𝑁 = true

1
1

1
1

1
0

⋮ ⋮

0
0

0
0

0
1

1
0

1
0

0
1

Inference: Proofs
A proof is a demonstration of entailment between  and 

Method 1: model-checking
▪ For every possible world, if  is true make sure that is  true too

▪ OK for propositional logic (finitely many worlds); not easy for first-order logic

Method 2: theorem-proving
▪ Search for a sequence of proof steps (applications of inference rules) leading from  to 

▪ E.g., from P  (P  Q), infer Q by Modus Ponens

Properties

▪ Sound algorithm: everything it claims to prove is in fact entailed

▪ Complete algorithm: every sentence that is entailed can be proved

Simple Theorem Proving: Forward Chaining

Forward chaining applies Modus Ponens to generate new facts:
▪ Given X1  X2  … Xn  Y and X1, X2, …, Xn

▪ Infer Y

Forward chaining keeps applying this rule, adding new facts, until
nothing more can be added

Requires KB to contain only definite clauses:
▪ (Conjunction of symbols)  symbol; or

▪ A single symbol (note that X is equivalent to True  X)

Forward Chaining Algorithm
function PL-FC-ENTAILS?(KB, q) Returns true or false

P  Q

L  M  P

B  L  M

A  P  L

A  B  L

A

B

KB CLAUSES

Forward Chaining Algorithm
function PL-FC-ENTAILS?(KB, q) returns true or false

 count ← a table, where count[c] is the number of symbols in c’s premise

 inferred ← a table, where inferred[s] is initially false for all s

 agenda ← a queue of symbols, initially symbols known to be true in KB

P  Q

L  M  P

B  L  M

A  P  L

A  B  L

A

B

1

2

2

2

2

0

0

CLAUSES AGENDACOUNT

A false

B false

L false

M false

P false

Q false

INFERRED

Q

P

M

L

BA

Forward Chaining Example: Proving Q

P  Q

L  M  P

B  L  M

A  P  L

A  B  L

A

B

1

2

2

2

2

0

0

A false

B false

L false

M false

P false

Q false

CLAUSES

AGENDA

A B

INFERREDCOUNT

Lx

xxxx true

// 1

// 1

x

xxxx true

// 1

// 0

x

xxxx true

// 1

// 0

Mx

xxxx true

// 0

Px

xxxx true

// 0

// 0

L Qx x

xxxx true

Forward Chaining Algorithm
function PL-FC-ENTAILS?(KB, q) returns true or false

 count ← a table, where count[c] is the number of symbols in c’s premise

 inferred ← a table, where inferred[s] is initially false for all s

 agenda ← a queue of symbols, initially symbols known to be true in KB

 while agenda is not empty do

 p ← Pop(agenda)

 if p = q then return true

 if inferred[p] = false then

 inferred[p]←true

 for each clause c in KB where p is in c.premise do

 decrement count[c]

 if count[c] = 0 then add c.conclusion to agenda

 return false

Properties

Forward Chaining is:

▪ Sound and complete for definite-clause
KBs

▪ Complexity: linear time ☺

Resolution is another theorem-proving
algorithm that is:

▪ Sound and complete for any PL KBs!

▪ Complexity: exponential time 

Vocab Reminder

Literal

▪ Atomic sentence:

 T, F, Symbol, Symbol

Clause

▪ Disjunction of literals:
𝐴 ∨ 𝐵 ∨ ¬𝐶

Definite clause

▪ Disjunction of literals,
exactly one is positive

 ¬𝐴 ∨ 𝐵 ∨ ¬𝐶

Inference Rules
Modus Ponens

𝛼⇒𝛽, 𝛼

𝛽

Unit Resolution

𝑎∨𝑏, ¬𝑏∨𝑐

𝑎∨𝑐

General Resolution

𝑎1∨⋯∨𝑎𝑚∨𝑏, ¬𝑏∨𝑐1∨⋯∨𝑐𝑛

𝑎1∨⋯∨𝑎𝑚∨𝑐1∨⋯∨𝑐𝑛

Notation Alert!

Resolution
Algorithm Overview

function PL-RESOLUTION?(KB, ) returns true or false

 We want to prove that KB entails 

 In other words, we want to prove that we cannot satisfy (KB and not )

1. Start with a set of CNF clauses, including the KB as well as ¬
2. Keep resolving pairs of clauses until

A. You resolve the empty clause

 Contradiction found!

 KB ٿ ¬𝛼 cannot be satisfied

 Return true, KB entails 
B. No new clauses added

 Return false, KB does not entail 

Resolution
Example trying to prove ¬𝑃1,2

¬𝑃2,1 ∨ 𝐵1,1 ¬𝐵1,1 ∨ 𝑃1,2 ∨ 𝑃2,1 ¬𝑃1,2 ∨ 𝐵1,1 ¬𝐵1,1 ¬¬𝑃1,2

Knowledge Base

General Resolution
𝑎1∨⋯∨𝑎𝑚∨𝑏, ¬𝑏∨𝑐1∨⋯∨𝑐𝑛

𝑎1∨⋯∨𝑎𝑚∨𝑐1∨⋯∨𝑐𝑛

Resolution
Example trying to prove ¬𝑃1,2

¬𝑃2,1 ∨ 𝐵1,1 ¬𝐵1,1 ∨ 𝑃1,2 ∨ 𝑃2,1 ¬𝑃1,2 ∨ 𝐵1,1 ¬𝐵1,1 𝑃1,2

Knowledge Base

General Resolution
𝑎1∨⋯∨𝑎𝑚∨𝑏, ¬𝑏∨𝑐1∨⋯∨𝑐𝑛

𝑎1∨⋯∨𝑎𝑚∨𝑐1∨⋯∨𝑐𝑛

¬𝐵1,1 ∨ 𝑃1,2 ∨ 𝐵1,1 𝑃1,2 ∨ 𝑃2,1 ∨ ¬𝑃2,1 ¬𝐵1,1 ∨ 𝑃2,1 ∨ 𝐵1,1 𝑃1,2 ∨ 𝑃2,1 ∨ ¬𝑃1,2 ¬𝑃2,1 ¬𝑃1,2

Resolution
function PL-RESOLUTION?(KB, ) returns true or false

 clauses ← the set of clauses in the CNF representation of KB ٿ ¬𝛼

 new ← { }

 loop do

 for each pair of clauses 𝐶𝑖 , 𝐶𝑗 in clauses do

 resolvents ← PL-RESOLVE(𝐶𝑖 , 𝐶𝑗)

 if resolvents contains the empty clause then

 return true

 new ← new ∪ resolvants

 if new ⊆ clauses then

 return false

 clauses ← clauses ∪ new

Properties

Forward Chaining is:

▪ Sound and complete for definite-clause
KBs

▪ Complexity: linear time ☺

Resolution is another theorem-proving
algorithm that is:

▪ Sound and complete for any PL KBs!

▪ Complexity: exponential time 

Vocab Reminder

Literal

▪ Atomic sentence:

 T, F, Symbol, Symbol

Clause

▪ Disjunction of literals:
𝐴 ∨ 𝐵 ∨ ¬𝐶

Definite clause

▪ Disjunction of literals,
exactly one is positive

 ¬𝐴 ∨ 𝐵 ∨ ¬𝐶

Outline
Logical Agent Algorithms

▪ Vocab

▪ PL_TRUE

▪ Entailment

▪ Model checking: Truth table entailment

▪ Theorem proving:

▪ Forward chaining, resolution

▪ Satisfiability: DPLL

▪ Planning with logic

Satisfiability and Entailment
A sentence is satisfiable if it is true in at least one world (e.g. CSPs!)

http://thiagodnf.github.io/wumpus-world-simulator/

http://thiagodnf.github.io/wumpus-world-simulator/
http://thiagodnf.github.io/wumpus-world-simulator/
http://thiagodnf.github.io/wumpus-world-simulator/
http://thiagodnf.github.io/wumpus-world-simulator/
http://thiagodnf.github.io/wumpus-world-simulator/

Satisfiability and Entailment
A sentence is satisfiable if it is true in at least one world (cf CSPs!)

Suppose we have a hyper-efficient SAT solver; how can we use it to test
entailment?
▪ Suppose  |= 

▪ Then    is true in all worlds

▪ Hence (  ) is false in all worlds

▪ Hence    is false in all worlds, i.e., unsatisfiable

So, add the negated conclusion to what you know, test for
(un)satisfiability; also known as reductio ad absurdum

Efficient SAT solvers operate on conjunctive normal form

Efficient SAT solvers

DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern solvers

Essentially a backtracking search over models with some extras:
▪ Early termination: stop if

▪ all clauses are satisfied; e.g., (A  B)  (A  C) is satisfied by {A=true}

▪ any clause is falsified; e.g., (A  B)  (A  C) is satisfied by {A=false, B=false}

▪ Pure literals: if all occurrences of a symbol in as-yet-unsatisfied clauses have the
same sign, then give the symbol that value

▪ E.g., A is pure and positive in (A  B)  (A  C)  (C  B) so set it to true

▪ Unit clauses: if a clause is left with a single literal, set symbol to satisfy clause

▪ E.g., if A=false, (A  B)  (A  C) becomes (false  B)  (false  C), i.e. (B)  (C)

▪ Satisfying the unit clauses often leads to further propagation, new unit clauses,
etc.

DPLL algorithm
function DPLL(clauses, symbols, model) returns true or false
 if every clause in clauses is true in model then return true
 if some clause in clauses is false in model then return false

 P, value ←FIND-PURE-SYMBOL(symbols, clauses, model)
 if P is non-null then return DPLL(clauses, symbols–P, model∪{P=value})

 P, value ←FIND-UNIT-CLAUSE(clauses, model)
 if P is non-null then return DPLL(clauses, symbols–P, model∪{P=value})

 P ← First(symbols)
 rest ← Rest(symbols)

 return or(DPLL(clauses, rest, model∪{P=true}),
 DPLL(clauses, rest, model∪{P=false}))

Outline
Logical Agent Algorithms

▪ Vocab

▪ PL_TRUE

▪ Entailment

▪ Model checking: Truth table entailment

▪ Theorem proving:

▪ (Forward chaining), resolution

▪ Satisfiability: DPLL

▪ Planning with logic

Planning as Satisfiability
Given a hyper-efficient SAT solver, can we use it to make plans?

Yes, for fully observable, deterministic case: planning problem is
solvable iff there is some satisfying assignment for actions etc.

Planning as Satisfiability
Given a hyper-efficient SAT solver, can we use it to make plans?

Yes, for fully observable, deterministic case: planning problem is
solvable iff there is some satisfying assignment for actions etc.

For T = 1 to infinity, set up the KB as follows and run SAT solver:

▪ Initial state, domain constraints

▪ Transition model sentences up to time T

▪ Goal is true at time T

▪ Precondition axioms: At_1,1_0  N_0  Wall_1,2 etc.

▪ Action exclusion axioms: (N_0  W_0)  (N_0  S_0)  .. etc.

Initial State

The agent may know its initial location:
▪ At_1,1_0

Or, it may not:
▪ At_1,1_0 v At_1,2_0 v At_1,3_0 v … v At_3,3_0

We also need a domain constraint – cannot be in two places at once!
▪ (At_1,1_0  At_1,2_0)  (At_1,1_0  At_1,3_0)  …

▪ (At_1,1_1  At_1,2_1)  (At_1,1_1  At_1,3_1)  …

▪ …

Fluents and Effect Axioms

A fluent is a state variable that changes over time

How does each state variable or fluent at each time gets its value?

Fluents for PL Pacman are Pacman_x,y_t , e.g., Pacman _3,3_17

Fluents and Effect Axioms

A fluent is a state variable that changes over time

How does each state variable or fluent at each time gets its value?

Fluents for PL Pacman are Pacman_x,y_t , e.g., Pacman _3,3_17

Fluents and Successor-state Axioms

A fluent is a state variable that changes over time

How does each state variable or fluent at each time gets its value?

Fluents for PL Pacman are Pacman_x,y_t , e.g., Pacman _3,3_17

A state variable gets its value according to a successor-state axiom
▪ Xt  [Xt-1  (some actiont-1 made it false)] v

 [Xt-1  (some actiont-1 made it true)]

Fluents and Successor-state Axioms

A fluent is a state variable that changes over time

How does each state variable or fluent at each time gets its value?

Fluents for PL Pacman are Pacman_x,y_t , e.g., Pacman _3,3_17

A state variable gets its value according to a successor-state axiom
▪ Xt  [Xt-1  (some actiont-1 made it false)] v

 [Xt-1  (some actiont-1 made it true)]

For Pacman location:
▪ Pacman _3,3_17  [Pacman _3,3_16  ((Wall_3,4  N_16) v (Wall_4,3  E_16) v …)]

 v [ Pacman _3,3_16  ((Pacman _3,2_16  Wall_3,3  N_16) v

 (Pacman _2,3_16  Wall_3,3  N_16) v …)]

	Slide 1: AI: Representation and Problem Solving
	Slide 2: Plan
	Slide 3: Propositional Logic Vocab
	Slide 4: PL: Conjunctive Normal Form (CNF)
	Slide 5: PL: Conjunctive Normal Form (CNF)
	Slide 6: PL: Conjunctive Normal Form (CNF)
	Slide 7: Logical Agent Vocab
	Slide 8: Provably True, Provably False, or Unsure
	Slide 9: Logical Agent Vocab
	Slide 10: Logical Agent Vocab
	Slide 11: Outline
	Slide 12: Propositional Logic
	Slide 13: Propositional Logic
	Slide 14: Outline
	Slide 15: Inference: Proofs
	Slide 16: Simple Model Checking
	Slide 17: Simple Model Checking
	Slide 18: Simple Model Checking
	Slide 19: Simple Model Checking
	Slide 20: Simple Model Checking
	Slide 21: Inference: Proofs
	Slide 22: Simple Theorem Proving: Forward Chaining
	Slide 23: Forward Chaining Algorithm
	Slide 24: Forward Chaining Algorithm
	Slide 25: Forward Chaining Example: Proving Q
	Slide 26: Forward Chaining Algorithm
	Slide 28: Properties
	Slide 29: Inference Rules
	Slide 30: Resolution
	Slide 31: Resolution
	Slide 32: Resolution
	Slide 33: Resolution
	Slide 34: Properties
	Slide 35: Outline
	Slide 36: Satisfiability and Entailment
	Slide 37: Satisfiability and Entailment
	Slide 38: Efficient SAT solvers
	Slide 39: DPLL algorithm
	Slide 40: Outline
	Slide 41: Planning as Satisfiability
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Planning as Satisfiability
	Slide 46: Initial State
	Slide 47: Fluents and Effect Axioms
	Slide 48: Fluents and Effect Axioms
	Slide 49: Fluents and Successor-state Axioms
	Slide 50: Fluents and Successor-state Axioms

