Al: Representation and Problem Solving

Logical Agent Algorithms

Instructor: Pat Virtue
Slide credits: CMU Al, http://ai.berkeley.edu

Plan

Last Time:

" Propositional logic

" Models and Knowledge Bases
= Satisifiability and Entailment

Today: Logical Agent Algorithms

" Entailment
" Model checking: Truth table entailment
» Theorem proving: (Forward chaining), resolution

= Satisfiability: DPLL
= (Next time) Planning with logic

Propositional Logic Vocab

Literal
" Atomic sentence: True, False, Symbol, —Symbol

Clause
" Disjunction (OR) of literals: AV B v —C

Definite clause
= Disjunction (OR) of literals, exactly one is positive
m JAVB vV AC

Horn clause
" Disjunction of literals, at most one is positive
= All definite clauses are Horn clauses

PL: Conjunctive Normal Form (CNF)

Every sentence can be expressed as a conjunction (AND) of clauses
Each clause is a disjunction (OR) of literals
Each literal is a symbol or a negated symbol

=" Example: (—A v —C v B)A(—A v =B v ()

PL: Conjunctive Normal Form (CNF)

Every sentence can be expressed as a conjunction of clauses
Each clause is a disjunction of literals

Each literal is a symbol or a negated symbol

Conversion to CNF by a sequence of standard transformations:

" At 1,1 0= (Wall 0,1 < Blocked W _0)
= At 1,1 0= ((Wall_0,1 = Blocked W _0) A (Blocked W_0 =Wall_0,1))
= -At 1,1 Ov((—Wall 0,1 vBlocked W_0) A (—Blocked_W_0v Wall _0,1))

" (-At_ 1,1 0 v —=Wall 0,1 v Blocked W _0)A (—At 1,1 O v —Blocked W_0 v Wall_0,1)

PL: Conjunctive Normal Form (CNF)

Every sentence can be expressed\ Replace biconditional by two implications |

Replacea = 3 by —a v f3 }

Distribute v over A }

Conversion to CNF by a s dard tran
= At 1,1 0= ((Wall_0,1 = Blocked_W_0) A (Blo ~“W_0=Wall_0,1))
= -At 1,1 Ov((—Wall 0,1 vBlocked W_0) A (—Blocked W _0v Wall _0,1))

" (-At_ 1,1 0 v —=Wall 0,1 v Blocked W _0)A (—At 1,1 O v —Blocked W_0 v Wall_0,1)

Logical Agent Vocab

Model
= Complete assighnment of symbols to True/False

Sentence
" Logical statement
=" Composition of logic symbols and operators

KB

= Collection of sentences representing facts and rules
we know about the world

Query
= Sentence we want to know if it is provably True,
provably False, or unsure.

Provably True, Provably False, or Unsure

http://thiagodnf.github.io/wumpus-world-simulator/

http://thiagodnf.github.io/wumpus-world-simulator/
http://thiagodnf.github.io/wumpus-world-simulator/
http://thiagodnf.github.io/wumpus-world-simulator/
http://thiagodnf.github.io/wumpus-world-simulator/
http://thiagodnf.github.io/wumpus-world-simulator/

Logical Agent Vocab

Entailment

" |nput: sentencel, sentence?2

» Each model that satisfies sentencel must also satisfy sentence?2
= "If | know 1 holds, then | know 2 holds"

= (ASK), TT-ENTAILS, FC-ENTAILS, RESOLUTION-ENTAILS

Satisfy

" [nput: model, sentence

" |s this sentence true in this model?

" Does this model satisfy this sentence

" "Does this particular state of the world work?’
= PL-TRUE

Logical Agent Vocab

Satisfiable

" |nput: sentence

= Can find at least one model that satisfies this sentence
= (We often want to know what that model is)

= "Is it possible to make this sentence true?"
= DPLL

Valid
=" Input: sentence
" sentence is true in all possible models

Outline
Logical Agent Algorithms

Vocab
PL TRUE

Entailment

" Model checking: Truth table entailment
" Theorem proving:

* (Forward chaining), resolution
Satisfiability: DPLL

Planning with logic

Propositional Logic

Check if sentence is true in given model
In other words, does the model satisfy the sentence?

function PL-TRUE?(a,model) returns true or false

But are models and propositional logic sentences a represented?

Propositional Logic

Check if sentence is true in given model
In other words, does the model satisfy the sentence?

function PL-TRUE?(a,model) returns true or false
if o is a symbol then return Lookup(o, model)
if Op(at) = — then return not(PL-TRUE?(Argl(o),model))
if Op(at) = A then return and(PL-TRUE?(Argl(c),model),
PL-TRUE?(Arg2(a),model))
etc.

(Sometimes called “recursion over syntax”)

Outline
Logical Agent Algorithms

Vocab
PL TRUE

Entailment

" Model checking: Truth table entailment
" Theorem proving:

=" Forward chaining, resolution
Satisfiability: DPLL

Planning with logic

Inference: Proofs

A proof is a demonstration of entailment between o and 3
Method 1: model-checking

" For every possible world, if o is true make sure that is 3 true too
= OK for propositional logic (finitely many worlds); not easy for first-order logic

1. 1. 2 1.1
® 2 ® 2 0
108 1 & 1 ® 0 3
2 18 2 1 1 A X
N 1 0 > 0 2
& 1 3 1
®e

Simple Model Checking
function TT-ENTAILS?(KB, a)

Simple Model Checking

function TT-ENTAILS?(KB, a) X, =true
Same recursion as backtracking

X, =false

X, = false

Xy =true/\ Xy =false X, =true Xy = false

KB?

X

111110 NS
101001 KIS
000000 X

111111 {7

Simple Model Checking

function TT-ENTAILS?(KB, a)
return TT-CHECK-ALL(KB, a, symbols(KB) U symbols(a), {})

function TT-CHECK-ALL(KB, a, symbols, model)

Simple Model Checking

function TT-CHECK-ALL(KB, a, symbols, model)
if empty?(symbols) then
if PL-TRUE?(KB, model) then
return PL-TRUE?(a, model)
else
return true
else
X; & first(symbols)
rest < rest(symbols)
return and (TT-CHECK-ALL(KB, a, rest, model U {X; = true})
TT-CHECK-ALL(KB, a, rest, model U {X; = false}))

Simple Model Checking

Same recursion as backtracking X, =true X, =false

O(2N) time, linear space

Can we do better? A ‘«

Xy =true/\ Xy =false X, =true Xy = false

KB?

X, = false

X

111110 NS
101001 KIS
000000 X

111111

Inference: Proofs

A proof is a demonstration of entailment between o and 3

Method 1: model-checking

" For every possible world, if o is true make sure that is 3 true too
= OK for propositional logic (finitely many worlds); not easy for first-order logic

Method 2: theorem-proving

= Search for a sequence of proof steps (applications of inference rules) leading from o to [3
=" E.g.,, fromP A (P = Q), infer Q by Modus Ponens

Properties

" Sound algorithm: everything it claims to prove is in fact entailed
= Complete algorithm: every sentence that is entailed can be proved

Simple Theorem Proving: Forward Chaining

Forward chaining applies Modus Ponens to generate new facts:
" Given X, A X, AL X, = Yand X, X, .., X
" Infer Y

n

Forward chaining keeps applying this rule, adding new facts, until
nothing more can be added

Requires KB to contain only definite clauses:
" (Conjunction of symbols) = symbol; or
" A single symbol (note that X is equivalent to True = X)

Forward Chaining Algorithm
function PL-FC-ENTAILS?(KB, q)

KB CLAUSES

P=0Q
LAM=P
BAL=M
AAP=L
AAB=L
A

B

Forward Chaining Algorithm

function PL-FC-ENTAILS?(KB, qg) returns true or false
count & a table, where count|c] is the number of symbols in c’s premise
inferred < a table, where inferred[s] is initially false for all s

agenda < a queue of symbols, initially symbols known to be true in KB

CLAUSES COUNT INFERRED AGENDA
P=Q 1 A false
LAM=P 2 B false
BAL=M 2 L false
AAP =L p) M false
AAB =L 2 P false
A 0 Q false
0

B

Forward Chaining Example: Proving Q

CLAUSES COUNT INFERRED

P=0Q 1/0 A fabsetrue
LAM=P N0 B tabsetrue
BAL= M o L faleetrue

AAP =L 2/ 0 M tabse true
AAB=L 7/ 0 P fadse true
A 0 Q faksetrue
B 0

AGENDA

A B ¥ K R ¥ &

Forward Chaining Algorithm

function PL-FC-ENTAILS?(KB, q) returns true or false
count < a table, where count|c] is the number of symbols in c¢’s premise
inferred < a table, where inferred[s] is initially false for all s
agenda < a queue of symbols, initially symbols known to be true in KB

while agenda is not empty do
p < Pop(agenda)
if p =g then return true
if inferred[p] = false then
inferred[p]<true
for each clause c in KB where p is in c.premise do
decrement count|c]
if count[c] = 0 then add c.conclusion to agenda
return false

Properties

Forward Chaining is:

" Sound and complete for definite-clause
KBs

= Complexity: linear time ©

Resolution is another theorem-proving
algorithm that is:

" Sound and complete for any PL KBs!
= Complexity: exponential time ®

Vocab Reminder

Literal
= Atomic sentence:
T, F, Symbol, —-Symbol

Clause

" Disjunction of literals:
AV BV AC

Definite clause

" Disjunction of literals,
exactly one is positive

—AV BV AC

Inference Rules

Modus Ponens Notation Alert!
a=>p, «

B

Unit Resolution
avVvb, —-bVc

avc

General Resolution
a,Vv---vamVvb, -—bVcqV---Vcp

a,V---VamVciV--Vey

Resolution

Algorithm Overview
function PL-RESOLUTION?(KB,) returns true or false
We want to prove that KB entails o

In other words, we want to prove that we cannot satisfy (KB and not «)
1. Start with a set of CNF clauses, including the KB as well as =«
2. Keep resolving pairs of clauses until
A. You resolve the empty clause
Contradiction found!
KB A =« cannot be satisfied
Return true, KB entails «
B. No new clauses added
Return false, KB does not entail «

Resolution

Example trying to prove =P ,

Knowledge Base

A

IPZ’] V Bl,l

General Resolution
a,v---vamVvb, -—bvVcqiV---Vcy

aV--Va, Ve V-Vep

_'Bl,l V Pl,Z V P2,1

_IP1,2 V Bl,l

_'Bl,l _I_Ipl,z

General Resolution

Resolution ai1V--VamVbh, —bVcqVeVep

aV--Vam,VciV---Vep

Example trying to prove =P ,

Knowledge Base
A

P,V _Bl,l 1B VP, VP, -P1, VB, —1B14 P; 5

IBl,l V P1,2 V Bl,l P]’z V P2,1 V _IP2,1 _IB]_']_ V P2,1 V Bl,l P1,2 V P2’1 V _IP]_’Z _IP]_’Z

Resolution

function PL-RESOLUTION?(KB, &) returns true or false
clauses « the set of clauses in the CNF representation of KB A =«
new « { }
loop do
for each pair of clauses C;, C; in clauses do
resolvents « PL-RESOLVE(Cj, Cj)
if resolvents contains the empty clause then
return true
new < new U resolvants
if new C clauses then
return false

clauses < clauses U new

Properties

Forward Chaining is:

" Sound and complete for definite-clause
KBs

= Complexity: linear time ©

Resolution is another theorem-proving
algorithm that is:

" Sound and complete for any PL KBs!
= Complexity: exponential time ®

Vocab Reminder

Literal
= Atomic sentence:
T, F, Symbol, —-Symbol

Clause

" Disjunction of literals:
AV BV AC

Definite clause

" Disjunction of literals,
exactly one is positive

—AV BV AC

Outline

Logical Agent Algorithms

= Satisfiability: DPLL
" Planning with logic

Satistfiability and Entailment

A sentence is satisfiable if it is true in at least one world (e.g. CSPs!)

Breeze
Stench

Breeze
Stench £,
& - é.ﬁ" ,
1 i

Breeze
Stench

Br
, Stench Stench ,

Breeze
Stench Stench

Breeze Breeze

http://thiagodnf.github.io/wumpus-world-simulator/

http://thiagodnf.github.io/wumpus-world-simulator/
http://thiagodnf.github.io/wumpus-world-simulator/
http://thiagodnf.github.io/wumpus-world-simulator/
http://thiagodnf.github.io/wumpus-world-simulator/
http://thiagodnf.github.io/wumpus-world-simulator/

Satistfiability and Entailment

A sentence is satisfiable if it is true in at least one world (cf CSPs!)

Suppose we have a hyper-efficient SAT solver; how can we use it to test
entailment?

= Suppose o |=f3

* Then o= [istruein all worlds

" Hence —(ow = [3) is false in all worlds

" Hence a. A —[3 is false in all worlds, i.e., unsatisfiable

So, add the negated conclusion to what you know, test for
(un)satisfiability; also known as reductio ad absurdum

Efficient SAT solvers operate on conjunctive normal form

Efficient SAT solvers

DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern solvers

Essentially a backtracking search over models with some extras:
" Farly termination: stop if
= all clauses are satisfied; e.g., (A v B) A (A v —C) is satisfied by {A=true}
= any clause is falsified; e.g., (A v B) A (A v —C) is satisfied by {A=false, B=false}

= Pure literals: if all occurrences of a symbol in as-yet-unsatisfied clauses have the
same sign, then give the symbol that value

= E.g., Alis pure and positive in (A v B) A (A v —C) A (C v —B) so set it to true

= Unit clauses: if a clause is left with a single literal, set symbol to satisfy clause
= E.g., if A=false, (A v B) A (A v —C) becomes (false v B) A (false v —C), i.e. (B) A (—C)

= Satisfying the unit clauses often leads to further propagation, new unit clauses,
etc.

DPLL algorithm

function DPLL(clauses, symbols, model) returns true or false
if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false

P, value <FIND-PURE-SYMBOL(symbols, clauses, model)
if P is non-null then return DPLL(clauses, symbols—P, modelU{P=value})

P, value &<FIND-UNIT-CLAUSE(clauses, model)
if P is non-null then return DPLL(clauses, symbols—P, modelU{P=value})

P & First(symbols)
rest <& Rest(symbols)

return or(DPLL(clauses, rest, modelU{P=true}),
DPLL(clauses, rest, modelU{P=false}))

Outline

Logical Agent Algorithms

= Satisfiability: DPLL
" Planning with logic

Planning as Satistiability

Given a hyper-efficient SAT solver, can we use it to make plans?

Yes, for fully observable, deterministic case: planning problem is
solvable iff there is some satisfying assignment for actions etc.

SCORE: {

SCORE: (

SCORE: 0

Planning as Satistiability

Given a hyper-efficient SAT solver, can we use it to make plans?

Yes, for fully observable, deterministic case: planning problem is
solvable iff there is some satisfying assignment for actions etc.

For T =1 to infinity, set up the KB as follows and run SAT solver:

= |nitial state, domain constraints

" Transition model sentences up totime T

" Goal istrue attime T

" Precondition axioms: At 1,1 O AN 0 = —Wall 1,2 etc.

= Action exclusion axioms: =(N_ O AW _0) A—=(N_OAS 0) A .. etc.

Initial State

The agent may know its initial location:
= At 1,1 0

Or, it may not:
= At 1,1 OvAt 1,2 OvAt 1,3 Ov..vAt 3,30

We also need a domain constraint — cannot be in two places at once!
"= (At 1,1 OAAt 1,2 O)A—(At_ 1,1 OAALt 1,3 O) A ..
" (At 1,1 1 AAt 1,2 1) A—(At 1,1 1 AAt 1,3 1)A...

‘ect Axioms

Fluents and E

A fluent is a state variable that changes over time

How does each state variable or fluent at each time gets its value?

Fluents for PL Pacman are Pacman_x,y ¢, e.g.,, Pacman 3,3 17

‘ect Axioms

Fluents and E

A fluent is a state variable that changes over time

How does each state variable or fluent at each time gets its value?

Fluents for PL Pacman are Pacman_x,y ¢, e.g.,, Pacman 3,3 17

Fluents and Successor-state Axioms

A fluent is a state variable that changes over time

How does each state variable or fluent at each time gets its value?
Fluents for PL Pacman are Pacman_x,y ¢, e.g.,, Pacman 3,3 17

A state variable gets its value according to a successor-state axiom
" X, < [X,.; A —=(some action, ; made it false)] v
[—X,; A (some action, ; made it true)]

Fluents and Successor-state Axioms

A fluent is a state variable that changes over time

How does each state variable or fluent at each time gets its value?
Fluents for PL Pacman are Pacman_x,y ¢, e.g.,, Pacman 3,3 17

A state variable gets its value according to a successor-state axiom
" X, < [X,.; A —=(some action, ; made it false)] v
[—X,; A (some action, ; made it true)]

For Pacman location:
" Pacman 3,3 17 < [Pacman 3,3 16 A —((—=Wall 3,4 AN _16) v (—=Wall 4,3 AE _16) v ...)]
v [=Pacman 3,3 16 A ((Pacman 3,2 16 A—=Wall 3,3 AN_16)v
(Pacman 2,3 16 A—Wall 3,3 AN _16)v..)]

	Slide 1: AI: Representation and Problem Solving
	Slide 2: Plan
	Slide 3: Propositional Logic Vocab
	Slide 4: PL: Conjunctive Normal Form (CNF)
	Slide 5: PL: Conjunctive Normal Form (CNF)
	Slide 6: PL: Conjunctive Normal Form (CNF)
	Slide 7: Logical Agent Vocab
	Slide 8: Provably True, Provably False, or Unsure
	Slide 9: Logical Agent Vocab
	Slide 10: Logical Agent Vocab
	Slide 11: Outline
	Slide 12: Propositional Logic
	Slide 13: Propositional Logic
	Slide 14: Outline
	Slide 15: Inference: Proofs
	Slide 16: Simple Model Checking
	Slide 17: Simple Model Checking
	Slide 18: Simple Model Checking
	Slide 19: Simple Model Checking
	Slide 20: Simple Model Checking
	Slide 21: Inference: Proofs
	Slide 22: Simple Theorem Proving: Forward Chaining
	Slide 23: Forward Chaining Algorithm
	Slide 24: Forward Chaining Algorithm
	Slide 25: Forward Chaining Example: Proving Q
	Slide 26: Forward Chaining Algorithm
	Slide 28: Properties
	Slide 29: Inference Rules
	Slide 30: Resolution
	Slide 31: Resolution
	Slide 32: Resolution
	Slide 33: Resolution
	Slide 34: Properties
	Slide 35: Outline
	Slide 36: Satisfiability and Entailment
	Slide 37: Satisfiability and Entailment
	Slide 38: Efficient SAT solvers
	Slide 39: DPLL algorithm
	Slide 40: Outline
	Slide 41: Planning as Satisfiability
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Planning as Satisfiability
	Slide 46: Initial State
	Slide 47: Fluents and Effect Axioms
	Slide 48: Fluents and Effect Axioms
	Slide 49: Fluents and Successor-state Axioms
	Slide 50: Fluents and Successor-state Axioms

