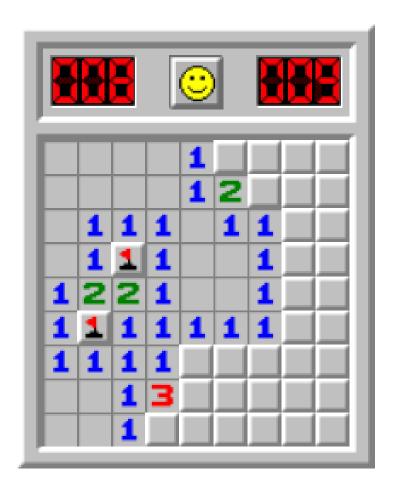
Warm-up:

Play Minesweeper or Wumpus World!



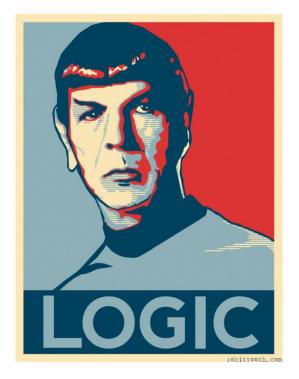
Monty Python Inference

There are ways of telling whether she is a witch

https://www.youtube.com/watch?v=rf71YotfykQ&t=52

AI: Representation and Problem Solving

Propositional Logic



Instructor: Pat Virtue

Slide credits: CMU AI, http://ai.berkeley.edu

AlphaGeometry

https://www.nature.com/articles/d41586-025-00406-7

NEWS 07 February 2025

DeepMind AI crushes tough maths problems on par with top human solvers

The company's AlphaGeometry 2 reaches the level of gold-medal students in the International Mathematical Olympiad.

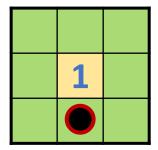
By Davide Castelvecchi

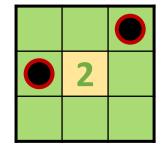
How do we solve Sudoku?

1			
	2	1	
		3	
			4

How do we play Minesweeper?

Numbers indicate how many mines are in the 8 adjacent cells





What are we trying to figure out?

- A path (a sequence of actions)?
- A complete solution?

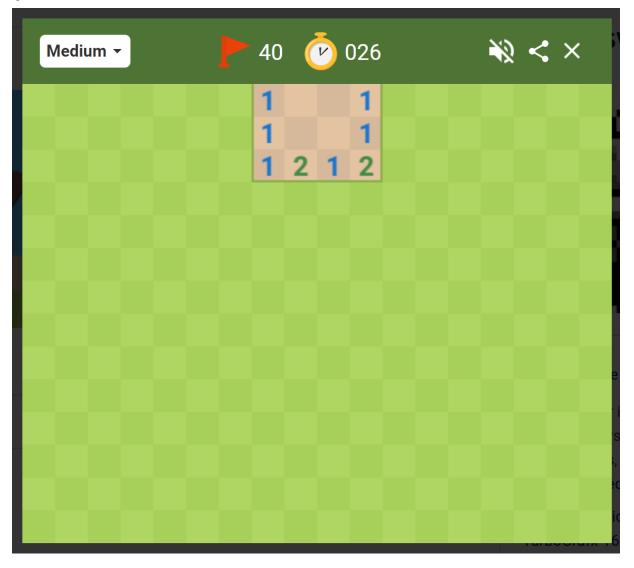
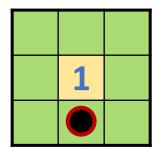
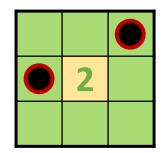


Image: Google Minesweeper game

Numbers indicate how many mines are in the 8 adjacent cells

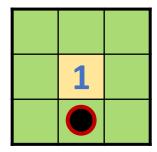


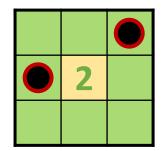


We're trying to figure out what to do next

- Which unvisited spaces that are definitely safe?
- Which unvisited spaces that are definitely dangerous?
- (What about the other spaces?)

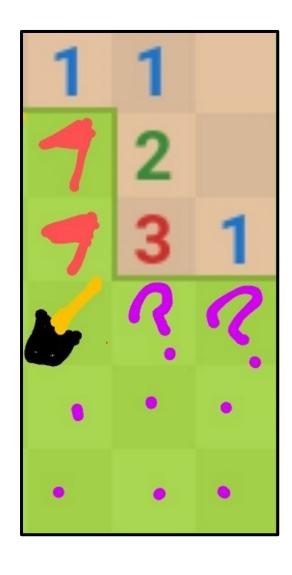
Numbers indicate how many mines are in the 8 adjacent cells





We're trying to figure out what to do next

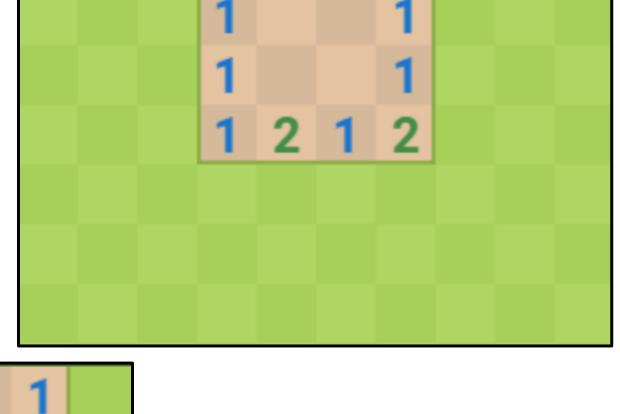
- Which unvisited spaces that are definitely safe?
- Which unvisited spaces that are definitely dangerous?
- (What about the other spaces?)

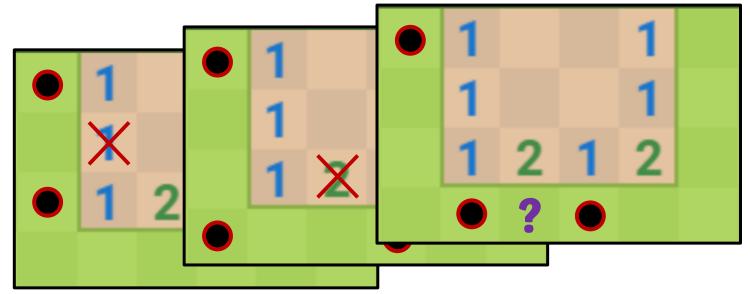


It may take a few logical steps to reason about:

- 1) What is possible
- 2) What is impossible
- 3) What is still unknown

Example human inference steps:

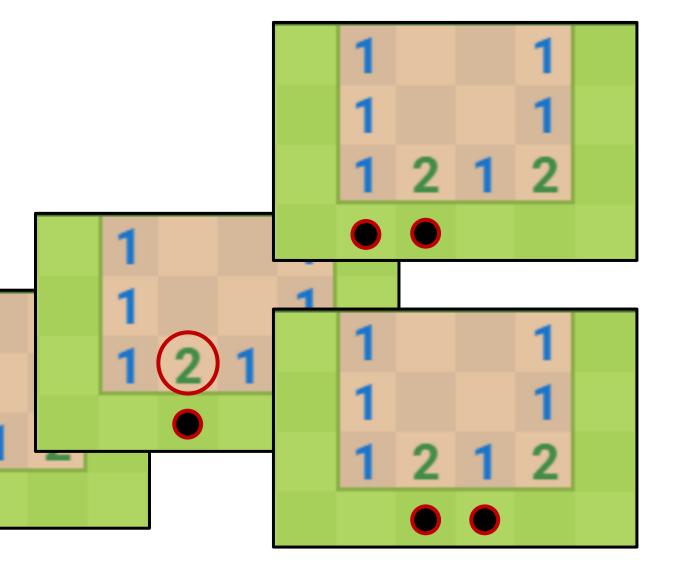




It may take a few logical steps to reason about:

- 1) What is possible
- 2) What is impossible
- 3) What is still unknown

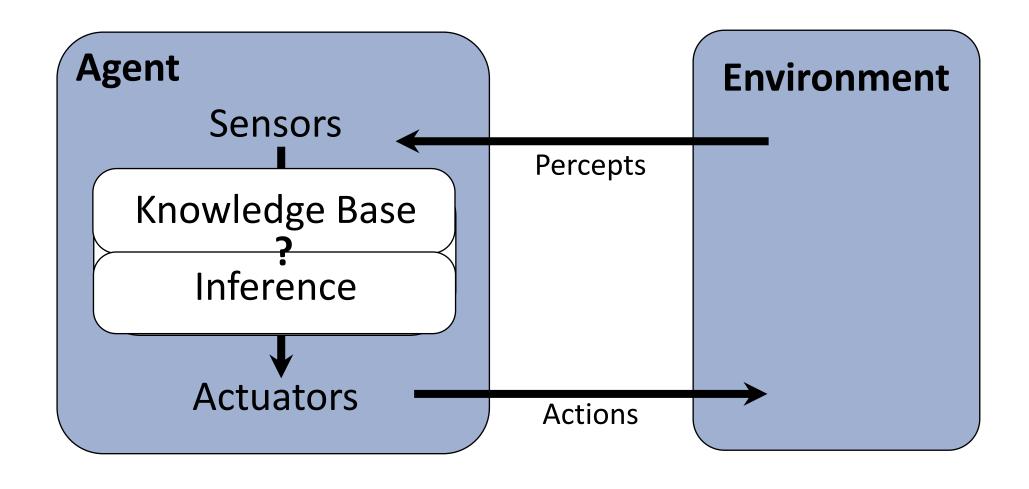
Example human inference steps:



High-level View: Logical Agents

Logical Agents

Logical agents and environments



Logical Agents

So what do we TELL our knowledge base (KB)?

- Facts (sentences)
 - The grass is green
 - The sky is blue
- Rules (sentences)
 - Eating too much candy makes you sick
 - When you're sick you don't go to school
- Percepts and Actions (sentences)
 - Pat ate too much candy today

What happens when we ASK the agent?

- Inference new sentences created from old
 - Pat is not going to school today

A Knowledge-based Agent

```
function KB-AGENT(percept) returns an action
  persistent: KB, a knowledge base
  persistent: t, an integer, initially 0
  TELL(KB, PROCESS-PERCEPT(percept, t))
  action ← ASK(KB, PROCESS-QUERY(t))
  TELL(KB, PROCESS-RESULT(action, t))
  t←t+1
  return action
```

Models and Knowledge Bases

Entailment and Satisifiability

Logical Agent Vocab

Model

An specific assignment of all symbols to True/False

Sentence

- Logical statement
- Composition of logic symbols and operators

KB

 Collection of sentences representing facts and rules we know about the world

Query

Sentence we want to know if it is provably True, provably False, or unsure.

Models and Knowledge Bases

Example: Sudoku

Model

Assignment of values to all variables

Knowledge Base

Collection of things we know to be true

- Rules of the world
- Observations
- Things we have figured out

1			
	2	1	
		3	
			4

Models and Knowledge Bases

Example: Minesweeper

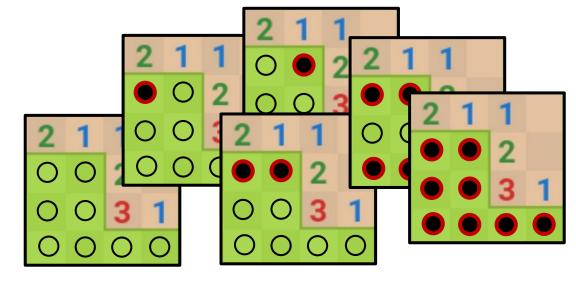
Model

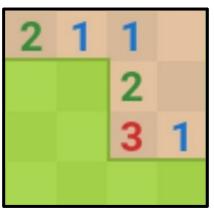
Assignment of values to all variables

Knowledge Base

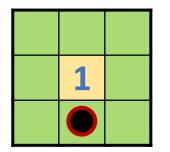
Collection of things we know to be true

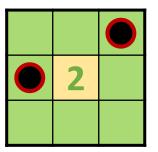
- Rules of the world
- Observations
- Things we have figured out





Numbers indicate how many mines





Entailment and Satisfiability

More formally

- Symbol (variable)
- Models (all symbols assigned a value)
- Satisfiable: there exists (at least one) model that meets the constraints
- Entailment: statement is true for all models that meet the constraints

How do we get a computer to do this?

Entailment and Satisfiability

What reasoning are we doing?

- Can I click here? / Is this definitely safe?
 - Yes: For all possible configurations (models), none of them have a mine in that location
 - No: There exists (at least) one possible configuration with a mine in that location
- Is it possibly safe?
 - Yes: There exists (at least) one possible configuration with a mine in that location
 - No: For all possible configurations (models), all of them have a mine in that location → It's definitely dangerous

Entailment: definitely safe

Satisfiability: possibly not safe

Satisfiability: possibly safe

Entailment: definitely not safe

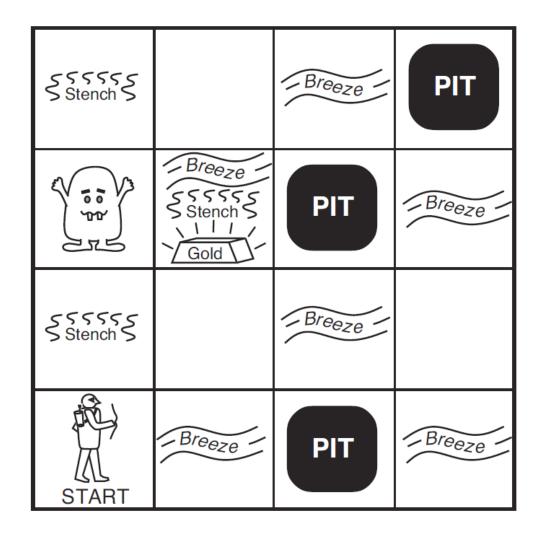
Wumpus World

We collect information as we move to a new grid in the world

- Breeze: if next to a Pit
- Stench: if next to a Wumpus
- Both
- Nothing
- Oh, and there's gold

We're trying to figure out what to do next

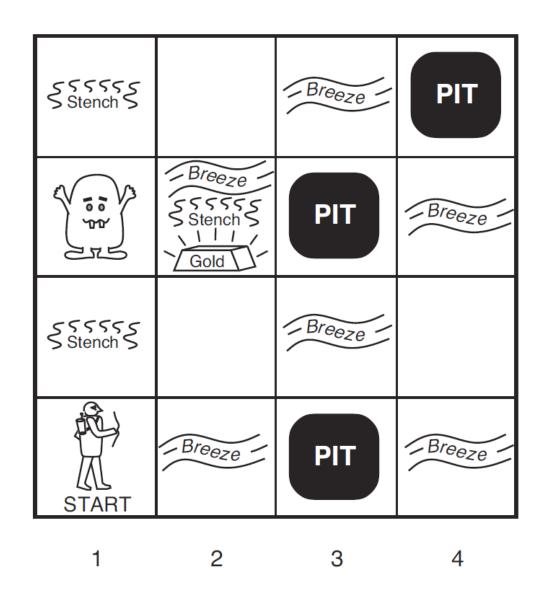
- Which unvisited spaces that are definitely safe?
- Which unvisited spaces that are definitely dangerous?
- (What about the other spaces?)



Wumpus World

Symbols for Wumpus World

- B_{ij} = breeze felt
- S_{ij} = stench smelt
- P_{ij} = pit here
- W_{ij} = wumpus here
- G = gold



3

2

http://thiagodnf.github.io/wumpus-world-simulator/

Wumpus World

Reasoning about how to get safely get more information!

http://thiagodnf.github.io/wumpus-world-simulator/

Propositional Logic

Poll 1

If we know that $A \lor B$ and $\neg B \lor C$ are true, what do we know about $A \lor C$?

- i. $A \lor C$ is guaranteed to be true
- ii. $A \lor C$ is guaranteed to be false
- iii. We don't have enough information to say anything definitive about $A \lor C$

Poll 1

If we know that $A \lor B$ and $\neg B \lor C$ are true, what do we know about $A \lor C$?

A	В	С	$A \lor B$	$\neg B \lor C$	$A \lor C$
false	false	false	false	true	false
false	false	true	false	true	true
false	true	false	true	false	false
false	true	true	true	true	true
true	false	false	true	true	true
true	false	true	true	true	true
true	true	false	true	false	true
true	true	true	true	true	true

Poll 2

If we know that $A \vee B$ and $\neg B \vee C$ are true, what do we know about A?

- i. A is guaranteed to be true
- ii. A is guaranteed to be false
- iii. We don't have enough information to say anything definitive about A

Propositional Logic

Symbol:

- Variable that can be true or false
- We'll try to use capital letters, e.g. A, B, P_{1,2}
- Often include True and False

Operators:

- ¬ A: not A
- A ∧ B: A and B (conjunction)
- A ∨ B: A or B (disjunction) Note: this is not an "exclusive or"
- \blacksquare A \Rightarrow B: A implies B (implication). If A then B
- A ⇔ B: A if and only if B (biconditional)

Sentences

Propositional Logic Syntax

Given: a set of proposition symbols $\{X_1, X_2, ..., X_n\}$

(we often add True and False for convenience)

X_i is a sentence

If α is a sentence then $\neg \alpha$ is a sentence If α and β are sentences then $\alpha \wedge \beta$ is a sentence If α and β are sentences then $\alpha \vee \beta$ is a sentence If α and β are sentences then $\alpha \Rightarrow \beta$ is a sentence If α and β are sentences then $\alpha \Leftrightarrow \beta$ is a sentence And p.s. there are no other sentences!

Notes on Operators

 $\alpha \vee \beta$ is inclusive or, not exclusive

Truth Tables

$\alpha \vee \beta$ is <u>inclusive or</u>, not exclusive

α	β	$\alpha \wedge \beta$
F	F	F
F	Т	F
Т	F	F
Т	Т	Т

α	β	$\alpha \vee \beta$
F	F	F
F	Т	Т
Т	F	Т
Т	Т	Т

Notes on Operators

 $\alpha \vee \beta$ is <u>inclusive</u> or, not exclusive

$$\alpha \Rightarrow \beta$$
 is equivalent to $\neg \alpha \lor \beta$

Says who?

Truth Tables

 $\alpha \Rightarrow \beta$ is equivalent to $\neg \alpha \lor \beta$

α	β	$\alpha \Rightarrow \beta$	$ eg \alpha$	¬α∨β
F	F	T	Т	Т
F	Т	Т	Т	Т
Т	F	F	F	F
Т	Т	Т	F	Т

Notes on Operators

 $\alpha \vee \beta$ is inclusive or, not exclusive

$$\alpha \Rightarrow \beta$$
 is equivalent to $\neg \alpha \lor \beta$

Says who?

$$\alpha \Leftrightarrow \beta$$
 is equivalent to $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$

Prove it!

Truth Tables

 $\alpha \Leftrightarrow \beta$ is equivalent to $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$

α	β	$\alpha \Leftrightarrow \beta$	$\alpha \Rightarrow \beta$	$\beta \Rightarrow \alpha$	$(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$
F	F	Т	Т	Т	Т
F	Т	F	Т	F	F
Т	F	F	F	Т	F
Т	Т	Т	Т	Т	Т

Equivalence: it's true in all models. Expressed as a logical sentence:

$$(\alpha \Leftrightarrow \beta) \Leftrightarrow [(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)]$$