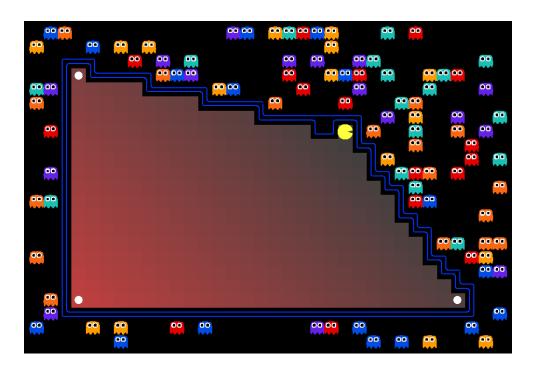
Warm-up: What to eat?

We are trying healthy by finding the optimal amount of food to purchase. We can choose the amount of stir-fry (ounce) and boba (fluid ounces).

Healthy Squad Goals


- $2000 \le \text{Calories} \le 2500$
- Sugar ≤ 100 g
- Calcium \geq 700 mg

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

What is the cheapest way to stay "healthy" with this menu? How much stir-fry (ounce) and boba (fluid ounces) should we buy?

AI: Representation and Problem Solving

Linear Programming

Instructor: Pat Virtue

Slide credits: CMU AI with drawings from http://ai.berkeley.edu

Warm-up: What to eat?

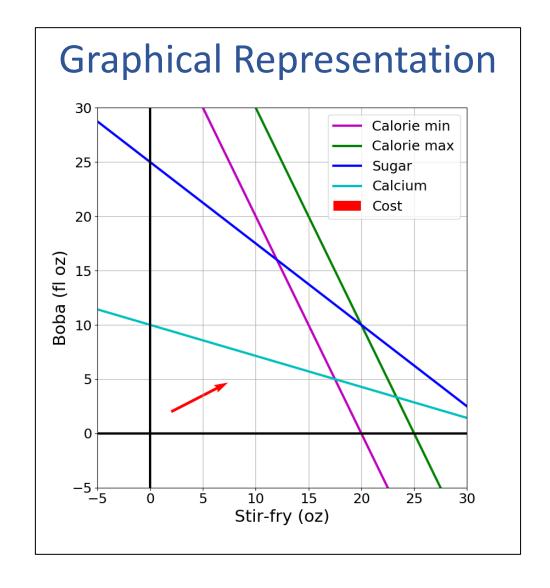
We are trying healthy by finding the optimal amount of food to purchase. We can choose the amount of stir-fry (ounce) and boba (fluid ounces).

Healthy Squad Goals

- $2000 \le \text{Calories} \le 2500$
- Sugar ≤ 100 g
- Calcium \geq 700 mg

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

What is the cheapest way to stay "healthy" with this menu? How much stir-fry (ounce) and boba (fluid ounces) should we buy?


Optimization

Problem Description

Optimization Representation

 $\min_{\mathbf{x}}.\quad \mathbf{c}^{\mathsf{T}}\mathbf{x}$

s.t. $A\mathbf{x} \leq \mathbf{b}$

Constraint Satisfaction Problems

Map coloring

Any **x**

s.t. **x** satisfies constraints

"such that"

Assume vectors are column vectors

Diet Problem

Any \mathbf{x}

s.t. **x** satisfies constraints

Healthy Squad Goals

- $2000 \le \text{Calories} \le 2500$
- Sugar ≤ 100 g
- Calcium ≥ 700 mg

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

Diet Problem

 $\min_{\mathbf{x}} cost(\mathbf{x})$ Objective function

s.t. **x** satisfies constraints

Healthy Squad Goals

- $2000 \le \text{Calories} \le 2500$
- Sugar ≤ 100 g
- Calcium ≥ 700 mg

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

Diet Problem

 $\min_{\mathbf{x}} cost(\mathbf{x})$

s.t. $calories(\mathbf{x})$ contained $sugar(\mathbf{x}) \leq limit$ $calcium(\mathbf{x}) \geq limit$

Healthy Squad Goals

- $2000 \le \text{Calories} \le 2500$
- Sugar ≤ 100 g
- Calcium ≥ 700 mg

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

Diet Problem

$$\min_{x_1, x_2} 1x_1 + 0.5 x_2$$
s.t.
$$100 x_1 + 50 x_2 \ge 2000$$

$$100 x_1 + 50 x_2 \le 2500$$

$$3 x_1 + 4 x_2 \le 100$$

$$20 x_1 + 70 x_2 \ge 700$$

Healthy Squad Goals

- $2000 \le \text{Calories} \le 2500$
- Sugar ≤ 100 g
- Calcium \geq 700 mg

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

Diet Problem

$$\min_{x_1, x_2} c_1 x_1 + c_2 x_2$$
s.t.
$$a_{1,1} x_1 + a_{1,2} x_2 \ge b_1$$

$$a_{2,1} x_1 + a_{2,2} x_2 \le b_2$$

$$a_{3,1} x_1 + a_{3,2} x_2 \le b_3$$

$$a_{4,1} x_1 + a_{4,2} x_2 \ge b_4$$

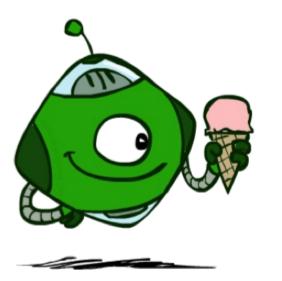
Cost

Limit

$$\mathbf{b} = \begin{bmatrix} 2000 \\ 2500 \\ 100 \\ 700 \end{bmatrix}$$

Calorie min Calorie max Sugar Calcium

Diet Problem


$$\min_{\mathbf{x}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{x}$$

$$a_{1,1} x_1 + a_{1,2} x_2 \ge b_1$$

$$a_{2,1} x_1 + a_{2,2} x_2 \le b_2$$

$$a_{3,1} x_1 + a_{3,2} x_2 \le b_3$$

$$a_{4,1} x_1 + a_{4,2} x_2 \ge b_4$$

Cost

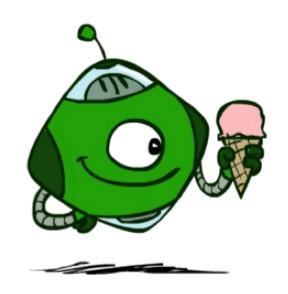
$$\mathbf{c} = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$$

$$A = \begin{bmatrix} 100 & 50 \\ 100 & 50 \\ 3 & 4 \\ 20 & 70 \end{bmatrix}$$

Limit

$$= \begin{bmatrix} 2000 \\ 2500 \\ 100 \\ 700 \end{bmatrix} \begin{array}{c} \text{Calorie min} \\ \text{Calorie max} \\ \text{Sugar} \\ \text{Calcium} \end{array}$$

Calorie min Sugar Calcium


Diet Problem

$$\min_{\mathbf{x}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{x}$$
s.t.
$$-a_{1,1} x_1 - a_{1,2} x_2 \le -b_1$$

$$a_{2,1} x_1 + a_{2,2} x_2 \le b_2$$

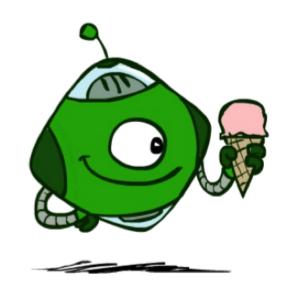
$$a_{3,1} x_1 + a_{3,2} x_2 \le b_3$$

$$-a_{4,1} x_1 - a_{4,2} x_2 \le -b_4$$

Cost $\mathbf{c} = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$

$$A = \begin{bmatrix} 100 & 50 \\ 100 & 50 \\ 3 & 4 \\ 20 & 70 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 2000 \\ 2500 \\ 100 \\ 700 \end{bmatrix} \quad \begin{array}{c} \text{Calorie min} \\ \text{Calorie max} \\ \text{Sugar} \\ \text{Calcium} \\ \end{array}$$

$$\mathbf{b} = \begin{bmatrix} 2000 \\ 2500 \\ 100 \\ 700 \end{bmatrix}$$


Diet Problem

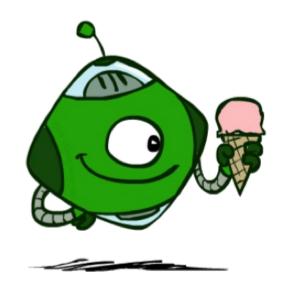
$$\min_{\mathbf{x}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{x}$$
s.t.
$$a_{1,1} x_1 + a_{1,2} x_2 \le b_1$$

$$a_{2,1} x_1 + a_{2,2} x_2 \le b_2$$

 $a_{3.1} x_1 + a_{3.2} x_2 \le b_3$

 $a_{4.1} x_1 + a_{4.2} x_2 \le b_4$

$$\mathbf{c} = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$$


$$A = \begin{bmatrix} -100 & -50 \\ 100 & 50 \\ 3 & 4 \\ -20 & -70 \end{bmatrix}$$

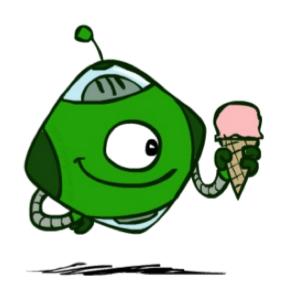
$$A = \begin{bmatrix} -100 & -50 \\ 100 & 50 \\ 3 & 4 \\ -20 & -70 \end{bmatrix} \mathbf{b} = \begin{bmatrix} -2000 \\ 2500 \\ 100 \\ -700 \end{bmatrix} \begin{array}{c} \text{Calorie min} \\ \text{Calorie max} \\ \text{Sugar} \\ \text{Calcium} \\ \end{array}$$

Diet Problem

$$\min_{\mathbf{x}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{x}$$

s.t.
$$A\mathbf{x} \leq \mathbf{b}$$

Cost


$$\mathbf{c} = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$$

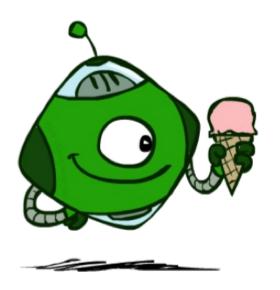
$$A = \begin{bmatrix} -100 & -50 \\ 100 & 50 \\ 3 & 4 \\ -20 & -70 \end{bmatrix} \mathbf{b} = \begin{bmatrix} -2000 \\ 2500 \\ 100 \\ -700 \end{bmatrix} \begin{array}{c} \text{Calorie min} \\ \text{Calorie max} \\ \text{Sugar} \\ \text{Calcium} \\ \end{bmatrix}$$

What has to increase to add more nutrition constraints?

$$\min_{\mathbf{x}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{x}$$

s.t. $A\mathbf{x} \leq \mathbf{b}$

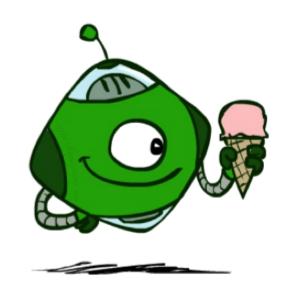
Select all that apply


- A) length **x**
- B) length c
- C) height A
- D) width A
- E) length **b**

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

What has to increase to add more nutrition constraints?

s.t. $A\mathbf{x} \leq \mathbf{b}$

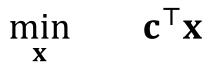

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix} \qquad A = \begin{bmatrix} -100 & -50 \\ 100 & 50 \\ 3 & 4 \\ -20 & -70 \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} -2000 \\ 2500 \\ 100 \\ -700 \end{bmatrix}$$

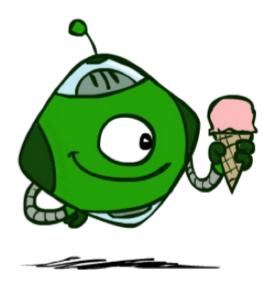
What has to increase to add more menu items?

$$\min_{\mathbf{x}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{x}$$

s.t. $A\mathbf{x} \leq \mathbf{b}$



Select all that apply

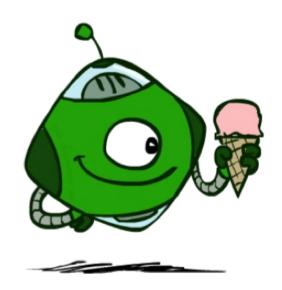

- A) length **x**
- B) length c
- C) height A
- D) width A
- E) length **b**

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

What has to increase to add more nutrition constraints?

s.t. $A\mathbf{x} \leq \mathbf{b}$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix} \qquad A = \begin{bmatrix} -100 & -50 \\ 100 & 50 \\ 3 & 4 \\ -20 & -70 \end{bmatrix}$$


$$\mathbf{b} = \begin{bmatrix} -2000 \\ 2500 \\ 100 \\ -700 \end{bmatrix}$$

Question

If $A \in \mathbb{R}^{M \times N}$, which of the following also equals N?

$$\min_{\mathbf{x}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{x}$$

s.t. $A\mathbf{x} \leq \mathbf{b}$

Select all that apply

- A) length **x**
- B) length c
- C) length **b**

Linear Programming

Linear objective with linear constraints

As opposed to general optimization

min.
$$f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \le 0$, $i = 1 \dots M$
 $\mathbf{a}_i^{\mathsf{T}} \mathbf{x} = \mathbf{b}_i$, $i = 1 \dots P$

Linear Programming

Different formulations

$$\min_{\mathbf{x}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{x}$$

s.t.
$$A\mathbf{x} \leq \mathbf{b}$$

General form

min.
$$\mathbf{c}^{\mathsf{T}}\mathbf{x} + \mathbf{d}$$

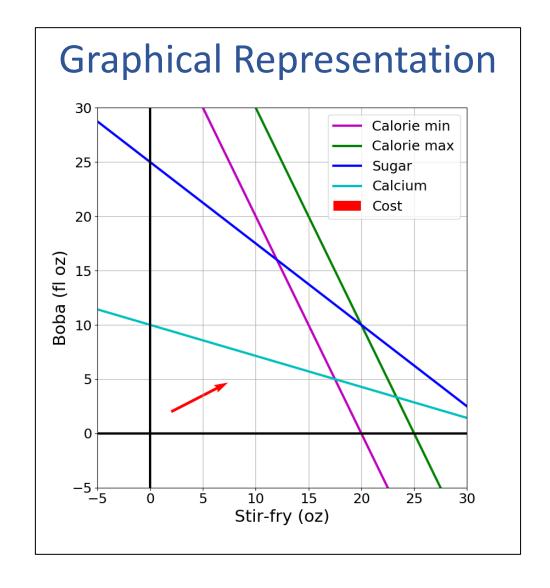
s.t. $G\mathbf{x} \leq \mathbf{h}$
 $A\mathbf{x} = \mathbf{b}$

Standard form

$$\begin{array}{ll}
\min_{\mathbf{x}} & \mathbf{c}^{\mathsf{T}} \mathbf{x} \\
\text{s.t.} & \mathbf{A} \mathbf{x} = \mathbf{b} \\
\mathbf{x} \geq 0
\end{array}$$

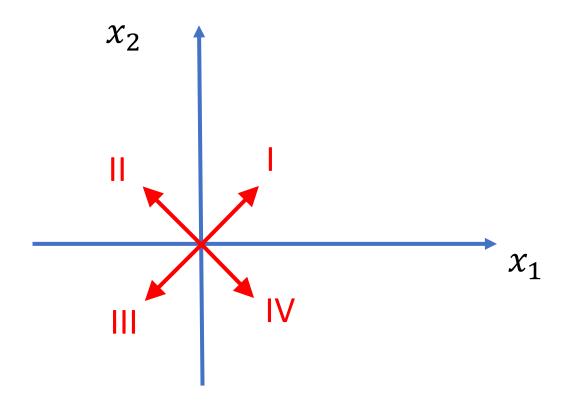
Important to pay attention to form!

Can switch between formulations!


Optimization

Problem Description

Optimization Representation


 $\min_{\mathbf{x}} \quad \mathbf{c}^{\mathsf{T}}\mathbf{x}$

s.t. $A\mathbf{x} \leq \mathbf{b}$

Which of these points have cost $\mathbf{c}^{\mathsf{T}}\mathbf{x} = 0$?

for cost vector:
$$\mathbf{c} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$$

