Plan

Last Time
= Adversarial search

" Minimax
= Evaluation functions
"= Pruning

Today

= Adversarial search: Expectimax
= Constraint Satisfaction Problems

Expectimax

Adversarial search slides

Al: Representation and Problem Solving
Constraint Satisfaction Problems (CSPs)

Instructor: Pat Virtue

Slide credits: CMU Al, http://ai.berkeley.edu

What is Search For?

* Planning: sequences of actions 7

* The path to the goal is the important thing
e Paths have various costs, depths
e Heuristics give problem-specific guidance

* |dentification: assignments to variables
* The goal itself is important, not the path
* All paths at the same depth (for some formulations)

Are the warm-up assignments
planning or identification problems?

Warm-up as You Walk In

Assign Red, Green, or Blue

Constraint Satisfaction Problems

CSP is a special class of search problems
= Mostly identification problems
= Have specialized algorithms for them

Standard search problems:

= State is an arbitrary data structure
= Goal test can be any function over states

o

Constraint satisfaction problems (CSPs):

State is defined by variables X; with values from a
domain D (sometimes D depends on i)

" Goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

Why study CSPs?

Many real-world problems can be formulated as CSPs

= Assignment problems: e.g., who teaches what class
= Timetabling problems: e.g., which class is offered when and where?
= Hardware configuration

M|
El'rz;nsportation scheduling

= Factory scheduling

= . .

CerUIt IayOUt » Stephanie Rosenthal (She/Her) « 1st
Artificial Intelligence and Human-Computer Interaction
5mo . @

Hi Everyone. My amazing team at Microsoft is hiring a Scheduling/OR
specialist to help with our efforts to create an automated scheduling
service. Do you know anyone who fits the bill? Have them reach out
to me for more information.

= Fault diagnosis
= ... lots more!

= Sometimes involve real-valued variables...

Search Jobs | Microsoft Careers

Microsoft

jobs.careers.microsoft.com

Example: Map Coloring

* Variables: WA, NT, Q, NSW, V, SA, T
* Domains: D = {red, green, blue}
* Constraints: adjacent regions must have different colors

Implicit: WA = NT

Explicit: (WA,NT) € {(red,green), (red, blue), ...} Tasmapia

* Solutions are assignments satisfying all constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green,
V=red, SA=Dblue, T=green}

Vo]

Constraint Graphs

= Binary CSP: each constraint relates (at most) two
variables

= Binary constraint graph: nodes are variables, arcs

show constraints

= General-purpose CSP algorithms use the graph
structure to speed up search. E.g., Tasmania is an
independent subproblem!

11

Varieties of CSPs and Constraints

Example: N-Queens

¥
* Formulation 1: / y .
* Variables: X, N
* Domains: {0, 1}
* Constraints

Vi, g, k (XZJ7XZ+k,j—]€) S {(Ov 0),(0,1), (1, O>}

(\> Vi, g, k (XZ]a X’L—|—k,j—|—k) S {(07 O)a (07 1)7 (17 O)} L 0.3]

13

Example: N-Queens

* Formulation 2:
e Variables: Qk

* Domains: {1,2,3,... N}

* Constraints:

Implicit: ~ V2,7 non-threatening(Q;, Q;)
Explicit: ~ (Q1,Q2) € {(1,3),(1,4),...}

14

Example: Sudoku

 Variables: Each (open) square

e Domains: {1,2,...,9}

1 8
8|4 116 \ ,
5 1 * Constraints:
- 3]s 9 9-way alldiff for each column
6 8 4 9-way alldiff for each row
2 915 1 9-way alldiff for each region
/ 2 (or can have a bunch
ralg.! ARK of pairwise inequality
2 3 / constraints)

15

Varieties of CSPs ™ ji\fafkb)fi
(9 + \/@\Wj

* Discrete Variables We will cover today

* Finite domains
* Size d means O(d") complete assignments

e E.g., Boolean CSPs, including Boolean satisfiability (NP-
complete)

* Infinite domains (integers, strings, etc.)
* E.g., job scheduling, variables are start/end times for each job
| Linear constraints solvable,/nonlinear undecidable

We will cover in a later lecture (linear programming)J/
* Continuous variables

 E.g., start/end times for Hubble Telescope observations
| * Linear constraints solvable in polynomial time |

16

Varieties of Constraints

e Varieties of Constraints

e Unary constraints involve a single variable (equivalent
to reducing domains), e.g.:

SA # green Focus of today
* Binary constraints involve pairs of variables, e.g.:
SA = WA

e Higher-order constraints involve 3 or more variables:
e.g., sudoku constraints

—

* Preferences (soft constraints):

e E.g., red is better than green

* Often representable by a cost for each variable assignment
1\ * Gives constrained optimization problems

17

Solving CSPs

Standard Search Formulation

e Standard search formulation of CSPs

* States defined by the values assigned
so far (partial assignments)
* |nitial state: the empty assignment, {}

* Successor function: assign a value to an
|unassigned variable | —Can be any unassigned variable

* Goal test: the current assignment is
complete and satisfies all constraints

* We'll start with the straightforward,
naive approach, then improve it

19

Poll 1: Search for CSPs

Should we use BFS or DFS? I:

— §

¢ &L ¢

Depth First Search

* At each node, assign a value
from the domain to the
variable

* Check feasibility (constraints)
when the assignment is

complete

21

Demo — Naive Search

15-281: Artificial Intelligence OH

9/10 Tue

agversarial oearc

Contraint Satisfaction Problems

Schedule Recitations Exams

@AA Ch. 6.1-3, 6.5
CSP Demo

Assignments

Course Notes

https://www.cs.cmu.edu/~15281/demos/csp_backtracking

Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs
Backtracking search = DFS + two improvements

! ldea 1: One variable at a time

* Variable assignments are commutative
 [WA =red then NT = green] same as [NT = green then WA = red]
* Only need to consider assign value to a single variable at each step

S ldea 2: Check constraints as you go

* Consider only values which do not conflict previous assignments
* May need some computation to check the constraints
* “Incremental goal test”

Can solve n-queens for na

Backtracking Example

o

—]

- & ¢

/\

¢ . ¢
S

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, ¢sp)

functior(ﬂ(?[l RHI“\’E—BA(‘Kl‘RA(‘KIN(l(stsignmf'mﬁ, csp) returns soln /failure
if assegnmentis complete then re assignment
var<— SELECT-UNASSIGNED- VARIABLE(VARIABLES|csp|, assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp| then

add {var = value} to assignment

—’_% result %‘[ﬁE(‘.‘.URSI\ZE_—_EA(‘:KTRA(‘:KIN@(},S,@'zi_gn-m ent, csp)
if resull # failure then return result
remove {var = value} from assignment

return failure

26

Backtracking Search

function RECURSIVE-BACKTRACKING(assignment, csp)

var<— SELECT-UNASSIGNED-VARIABLE
for each value

add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING(assignment, csp)

remove {var = value} from assignment

27

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, ¢sp)

function RECURSIVE-BACKTRACKING(assignment, ¢sp) returns soln /failure
if assignment is complete then return assignment
var<— SELECT-UNASSIGNED- VARIABLE(VARIABLES|csp|, assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp| then
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

28

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, ¢sp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
I if assignment is complete then return assignment I
var— SELECT- UNASSIGNED- VARIABLE(VARIABLES| csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp| then
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

No need to check constraints for a complete assignment

29

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, ¢sp)

function RECURSIVE-BACKTRACKING(assignment, ¢sp) returns soln /failure
if assignment is complete then return assignment
var<«— SELECT-UNASSIGNED- VARIABLE(VARIABLES[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
I if value is consistent with assignment given CONSTRAINTS[csp| then I
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

Checks consistency at each assignment

30

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, ¢sp)

function RECURSIVE-BACKTRACKING(assignment, ¢sp) returns soln /failure
if assignment is complete then return assignment
var<— SELECT-UNASSIGNED- VARIABLE(VARIABLES|csp|, assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given C-foNSTRAINTS[cspj then
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

= Backtracking = DFS + variable-ordering + fail-on-violation
= What are the decision points?

31

Demo — Backtracking

https://www.cs.cmu.edu/~15281/demos/csp backtracking

32

https://www.cs.cmu.edu/~15281/demos/csp_backtracking

Improving Backtracking

* General-purpose ideas give huge gains in speed

* Filtering: Can we detect inevitable failure early?

j:(U\ﬂiﬂﬁ

* Ordering: <« - Hewc If)](5
* Which variable should be assigned next?
* |[n what order should its values be tried?

EStructure: Can we exploit the problem structure?

33

Filtering

Filtering: Forward Checking

Filtering: Keep track of domains for unassigned variables and cross off
bad options

Forward checking: A simple way for filtering

* After a variable is assigned a value, check related constraints and
cross off values of unassigned variables which violate the
constraints

* Failure detected if some variables have no values remaining

Filtering: Forward Checking

* Filtering: Keep track of domains for unassigned variables and cross off bad options

* Forward checking: A simple way for filtering

e After a variable is assigned a value, check related constraints and cross off values of
unassigned variables which violate the constraints

* Failure detected if some variables have no values remaining

WA NT Q NSW \' SA

M ireigen

A
/ 4

36

Filtering: Forward Checking

Filtering: Keep track of domains for unassigned variables and cross off bad options

Forward checking: A simple way for filtering

e After a variable is assigned a value, check related constraints and cross off values of
unassigned variables which violate the constraints

* Failure detected if some variables have no values remaining

WA NT Q NSW \'} SA
(ErE[Er e[E[Er e[R E[E .
| M B _E[m

RS

(S Recall: Binary constraint graph for a binary CSP (i.e., each constraint has
© most two variables): nodes are variables, edges show constraints s

Filtering: Forward Checking

* Filtering: Keep track of domains for unassigned variables and cross off bad options

* Forward checking: A simple way for filtering

e After a variable is assigned a value, check related constraints and cross off values of
unassigned variables which violate the constraints

* Failure detected if some variables have no values remaining

‘\—Lgﬂ Il l|l l|l l|l I|l I|I II

[— EEfE[ErE[ET H] 1
[n] u] [m E[mem] w]

38

Filtering: Forward Checking

* Filtering: Keep track of domains for unassigned variables and cross off bad options

* Forward checking: A simple way for filtering

e After a variable is assigned a value, check related constraints and cross off values of
unassigned variables which violate the constraints

* Failure detected if some variables have no values remaining

NT Q NSW \'J SA
‘\—L;—- |I l|l M ireriren

o [FTEEFEErE[EIE]]

(™) 1 1 [m E[EE] 1
(o)
@‘@"@ [(am] u] 1 | <—
) FAIL — variable with no possible values

@ 39

Demo — Backtracking with Forward Checking

https://www.cs.cmu.edu/~15281/demos/csp backtracking

https://www.cs.cmu.edu/~15281/demos/csp_backtracking

Filtering: Constraint Propagation

 Limitations of simple forward checking: propagates information from assigned to
unassigned variables, but doesn't provide early detection for all failures

 NT and SA cannot both be blue! Why didn’t we detect this yet?
* Constraint propagation: reason from constraint to constraint
NT Q NSW vV SA

4\—% e

41

Consistency of A Single Arc

* An arc X — Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

* Enforce arc consistency: Remove values in domain of X if no corresponding legal Y exists

* Forward checking: Only enforce X - Y, V(X,Y) € E and Y newly assigned

(Remove values from the tail!)

WA NT Q NSW Vv SA

I I Ireireirei

= _—

Recall: Binary constraint graph for a binary CSP (i.e., each constraint has
© most two variables): nodes are variables, edges show constraints

Consistency of A Single Arc

* An arc X — Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

* Enforce arc consistency: Remove values in domain of X if no corresponding legal Y exists

* Forward checking: Only enforce X - Y, V(X,Y) € E and Y newly assigned

43

How to Enforce Arc Consistency of Entire CSP

* A simplistic algorithm: Cycle over the pairs of variables, enforcing arc-consistency,
repeating the cycle until no domains change for a whole cycle

* AC-3 (short for Arc Consistency Algorithm #3): A more efficient algorithm ignoring
constraints that have not been modified since they were last analyzed

44

AC-3: Enforce Arc Consistency of Entire CSP

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X;. Xp. ... X}
local variables:l queue, a queue of arcs, initially all the arcs in csp I

while gueue is not empty do
(X;. X;)— REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(.X;. X;) then
for each X in NEIGHBORS[.X;] do
add (X%, X)) to queue

function REMOVE-INCONSISTENT-VALUES(X, X;) returns true iff succeeds
removed «— false
for each r in DOMAIN[X,] do
if no value y in DOMAIN[X]] allows (z,y) to satisfy the constraint X; < X
then delete 2 from DOMAIN[X}]; removed « true
return removed

Constraint Propagation!

45

AC-3: Enforce Arc Consistency of Entire CSP

Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Q->SA
NSW->SA

@IEI V->SA

f

Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:

NSW->SA
V->SA
WA->NT
SA->NT

Q->NT

Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

¢

SA

Vv

i\

NSW

T

;

Queue:

@

Remember: Delete from the tail!

Poll 2: After assigning Q to Green,
what gets added to the Queue?

N ;

Queue:

NSW

- == ° LN

Vv

A: NSW->Q, SA->Q, NT->Q
B: Q->NSW, Q->SA, Q->NT

54

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
NT->Q
SA->Q
NSW->Q

Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
SA->Q
NSW->Q
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
NSW->Q
WA->NT
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA

Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
WA->NT
SA->NT
Q->NT
0 WA->SA
NT->SA
Q->SA
NSW->SA
@ V->SA
V->NSW
Q->NSW
SA->NSW

Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
WA->NT

SA->NT

Q->NT

[WA->SA

NT->SA

Q->SA
NSW->SA
V->SA
V->NSW
Q->NSW
SA->NSW

Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
SA->NT
Q->NT
WA->SA

[NT->SA

Q->SA
| | | NSW->SA
V->SA
(DEEm VoNSW
Q->NSW
SA->NSW

Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
SA->NT

Q->NT

WA->SA

[NT->SA

Q->SA

e Backtrack on the assignment of Q

NSW->SA
V->SA
V->NSW
Q->NSW
SA->NSW

* Arc consistency detects failure earlier than forward checking

e Can be run as a preprocessor or after each assignment
 What'’s the downside of enforcing arc consistency?

Remember: Delete from the tail!

Limitations of Arc Consistency

» After enforcing arc consistency:
* Can have one solution left
e Can have multiple solutions left

e Can have no solutions left (and not
know it)

* Arc consistency only checks local @ /
consistency conditions ‘
* Arc consistency still runs inside a

backtracking search! What went

wrong here?

62

Backtracking Search with AC-3

Vo —

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, ¢sp)
function RECURSIVE-BACKTRACKING(assignment, ¢sp) returns soln /failure

if assignment is complete then return_gssignment
var <4 SELECT-UNASSIGNED- VARIABLE(VARIABLES|csp], assignment, csp)

Ve
AC-S —

for each value M)ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp| then

add {var = value} to assignment AC-3(csp)
———esult — RECURSTVE-BACKTRACKIN G(assignment, =)

if result # failure then return result
remove {var = value} from assignment

return failure

?/‘% Where do you run AC-3?

Demo — Backtracking with AC-3 Forward checking only check arcs
connecting variables a variable that we

Compare just assigned.
e Backtracking with Forward Checking
* Backtracking with AC-3 With AC-3, we make sure all arcs are

consistent

64

Demo — Backtracking with AC-3 Forward checking only check arcs
connecting variables a variable that we

Compare just assigned.
e Backtracking with Forward Checking
* Backtracking with AC-3 With AC-3, we make sure all arcs are

consistent

65

Demo — Backtracking with AC-3

Compare
e Backtracking with Forward Checking
* Backtracking with AC-3

Forward checking only check arcs
connecting variables a variable that we
just assigned.

With AC-3, we can find existing
problems, such as the arc between
these two variables with only green left.

66

Complexity of a single run of AC-3

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X}, X5, ..., X}
local variables: queue, a queue of arcs, initially all the arcs in csp

while gueue is not empty do
(Xi, X,) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(X;, X;) then
for each X} in NEIGHBORS[.X;] do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X, X)) returns true iff succeeds
removed «— false
for each z in DOMAIN[X;] do
if no value y in DOMAIN[X]] allows (z,y) to satisfy the constraint X; « X
then delete = from DOMAIN[X;]; removed — true
return removed

Recall that the whole backtracking algorithm with AC-3 will call AC-3 many times

Complexity of a single run of AC-3

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X}, X5, ..., X}
local variables: queue, a queue of arcs, initially all the arcs in csp

while gueue is not empty do
(X;, X;)«— REMOVE-FIRST(queue)
|if REI\-’[OVE—INCONSISTENT—VALEJES(X.Z-_, X;) then |
for each X} in NEIGHBORS[.X;| do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X, X)) returns true iff succeeds
removed «— false
for each z in DOMAIN[X;] do
if no value y in DOMAIN[X]] allows (z,y) to satisfy the constraint X; « X
then delete = from DOMAIN[X;]; removed — true
return removed

 An arcis added after a removal of
value at a node

* n node in total, each has < d values

* Total times of removal: O(nd)

68

Complexity of a single run of AC-3

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X}, X5, ..., X}
local variables: queue, a queue of arcs, initially all the arcs in csp

while gueue is not empty do
(Xi, X,) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT- VALUES(.X;. X;) then
for each X in NEIGHBORS[.X;] do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X, X)) returns true iff succeeds
removed «— false
for each z in DOMAIN[X;] do

if no value y in DOMAIN[X]] allows (z,y) to satisfy the constraint X; « X

then delete = from DOMAIN[X;]; removed — true
return removed

An arc is added after a removal of
value at a node

n node in total, each has < d values
Total times of removal: O(nd)

After a removal, < n arcs added
Total times of adding arcs: 0(n?d)

69

Complexity of a single run of AC-3

function AC-3(csp) returns the CSP, possibly with reduced domains * An arcis added after a removal of
inputs: csp, a binary CSP with variables { X}, X5, ..., X} value at a hode

local variables: queue, a queue of arcs, initially all the arcs in csp

* n node in total, each has < d values

while gueue is not empty do

(X:, X;) — REMOVE-FIRST(queue) * Total times of removal: 0(nd)
if REMOVE-INCONSISTENT-VALUES(X;, X;) then
for each X in NEIGHBORS[.X;] do * Aftera removal; < n arcs added
add (Xx, Xi) to queue « Total times of adding arcs: 0(n?d)

function REMOVE-INCONSISTENT-VALUES(X, X)) returns true iff succeeds
removed «— false
for each z in DOMAIN[X}] do * Check arc consistency per arc: O(dz)
if no value y in DOMAIN[X]] allows (z,y) to satisfy the constraint X; « X
then delete = from DOMAIN|X,|; removed < true
return removed

Complexity of a single run of AC-3 is at most 0 (n?d?)
(Not required) Zhang&Yap (2001) show that its complexity is O (n*d?)

70

Ordering

71

Ordering: Minimum Remaining Values L C Values

Ordering: Minimum remaining values (MRV):
/ * Choose the variable with the fewest legal left values in its domain

H;*‘HE—*C\/—-%

* Why min rather than max?

* Also called “most constrained variable”

* “Fail-fast” ordering

Demo — Coloring with a Complex Graph

Compare
* Backtracking with Forward Checking

e Backtracking + Forward Checking + Minimum Remaining Values (MRV)

Ordering: Least Constraining Value

@Ordering: Least Constraining Value
iven a choice of variable, choose the least

constraining value 2
* i.e., the one that rules out the fewest values in ‘_Lb
the remaining variables ‘

* Note that it may take some computation to
determine this! (E.g., rerunning filtering)

\10\ '

\la\
% Z /O

=
=

Ordering: Least Constraining Value

* Value Ordering: Least Constraining Value

e Given a choice of variable, choose the least
constraining value

* j.e., the one that rules out the fewest values in \/af
the remaining variables

VC v
* Note that it may take some computation to \}y qLZ /

determine this! (E.g., rerunning filtering)

* Why least rather than most?

* Combining these ordering ideas makes
1000 queens feasible

Demo — Coloring with a Complex Graph

Compare

* Backtracking with Forward Checking

* Backtracking with AC-3

e Backtracking + Forward Checking + Minimum Remaining Values (MRV)
* Backtracking + AC-3 + MRV + LCV

76

Summary: CSPs

e CSPs are a special kind of search problem:

 States are partial assignments
* Goal test defined by constraints mo|oT [W [

* Basic solution: backtracking search |

e Speed-ups: =T -

e Ordering L‘* —
* Filtering B

/ (Structure)

77

	Slide 1: Plan
	Slide 2: Expectimax
	Slide 3: AI: Representation and Problem Solving
	Slide 4: What is Search For?
	Slide 5: Warm-up as You Walk In
	Slide 6: Constraint Satisfaction Problems
	Slide 7: Why study CSPs?
	Slide 8: CSP Examples
	Slide 9: Example: Map Coloring
	Slide 10: Constraint Graphs
	Slide 11: Constraint Graphs
	Slide 12: Varieties of CSPs and Constraints
	Slide 13: Example: N-Queens
	Slide 14: Example: N-Queens
	Slide 15: Example: Sudoku
	Slide 16: Varieties of CSPs
	Slide 17: Varieties of Constraints
	Slide 18: Solving CSPs
	Slide 19: Standard Search Formulation
	Slide 20: Poll 1: Search for CSPs
	Slide 21: Depth First Search
	Slide 22: Demo – Naïve Search
	Slide 23: Backtracking Search
	Slide 24: Backtracking Search
	Slide 25: Backtracking Example
	Slide 26: Backtracking Search
	Slide 27: Backtracking Search
	Slide 28: Backtracking Search
	Slide 29: Backtracking Search
	Slide 30: Backtracking Search
	Slide 31: Backtracking Search
	Slide 32: Demo – Backtracking
	Slide 33: Improving Backtracking
	Slide 34: Filtering
	Slide 35: Filtering: Forward Checking
	Slide 36: Filtering: Forward Checking
	Slide 37: Filtering: Forward Checking
	Slide 38: Filtering: Forward Checking
	Slide 39: Filtering: Forward Checking
	Slide 40: Demo – Backtracking with Forward Checking
	Slide 41: Filtering: Constraint Propagation
	Slide 42: Consistency of A Single Arc
	Slide 43: Consistency of A Single Arc
	Slide 44: How to Enforce Arc Consistency of Entire CSP
	Slide 45: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 46: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 47: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 48: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 49: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 50: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 51: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 52: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 53: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 54: Poll 2: After assigning Q to Green, what gets added to the Queue?
	Slide 55: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 56: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 57: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 58: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 59: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 60: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 61: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 62: Limitations of Arc Consistency
	Slide 63: Backtracking Search with AC-3
	Slide 64: Demo – Backtracking with AC-3
	Slide 65: Demo – Backtracking with AC-3
	Slide 66: Demo – Backtracking with AC-3
	Slide 67: Complexity of a single run of AC-3
	Slide 68: Complexity of a single run of AC-3
	Slide 69: Complexity of a single run of AC-3
	Slide 70: Complexity of a single run of AC-3
	Slide 71: Ordering
	Slide 72: Ordering: Minimum Remaining Values
	Slide 73: Demo – Coloring with a Complex Graph
	Slide 74: Ordering: Least Constraining Value
	Slide 75: Ordering: Least Constraining Value
	Slide 76: Demo – Coloring with a Complex Graph
	Slide 77: Summary: CSPs

