Plan

Last Time
= Adversarial search

" Minimax
= Evaluation functions
"= Pruning

Today

= Adversarial search: Expectimax
= Constraint Satisfaction Problems

Expectimax

Adversarial search slides

Al: Representation and Problem Solving
Constraint Satisfaction Problems (CSPs)

Instructor: Pat Virtue

Slide credits: CMU Al, http://ai.berkeley.edu

What is Search For?

* Planning: sequences of actions
* The path to the goal is the important thing
* Paths have various costs, depths
e Heuristics give problem-specific guidance

* |dentification: assignments to variables
* The goal itself is important, not the path
* All paths at the same depth (for some formulations)

Are the warm-up assignments
planning or identification problems?

Warm-up as You Walk In

Assign Red, Green, or Blue
Neighbors must be different

- |

_ _ 6)

Sudoku
211
3

Constraint Satisfaction Problems

CSP is a special class of search problems
= Mostly identification problems
= Have specialized algorithms for them

Standard search problems:
= State is an arbitrary data structure
= Goal test can be any function over states

Constraint satisfaction problems (CSPs):

= State is defined by variables X; with values from a
domain D (sometimes D depends on i)

= Goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

Why study CSPs?

Many real-world problems can be formulated as CSPs

= Assignment problems: e.g., who teaches what class

= Timetabling problems: e.g., which class is offered when and where?

= Hardware configuration

" Transportation scheduling
= Factory scheduling

= Circuit layout

= Fault diagnosis

= ... lots more!

= Sometimes involve real-valued variables...

» Stephanie Rosenthal (She/Her) « 1st
Artificial Intelligence and Human-Computer Interaction
5mo . @

Hi Everyone. My amazing team at Microsoft is hiring a Scheduling/OR
specialist to help with our efforts to create an automated scheduling
service. Do you know anyone who fits the bill? Have them reach out
to me for more information.

Search Jobs | Microsoft Careers

Microsoft

jobs.careers.microsoft.com

Example: Map Coloring

* Variables: WA, NT, Q, NSW, V, SA, T
* Domains: D = {red, green, blue}
* Constraints: adjacent regions must have different colors

Implicit: WA = NT

Explicit: (WA,NT) € {(red,green), (red, blue), ...} Tasmapia

* Solutions are assignments satisfying all constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green,
V=red, SA=Dblue, T=green}

Vo]

Constraint Graphs

= Binary CSP: each constraint relates (at most) two
variables

" Binary constraint graph: nodes are variables, arcs
show constraints

= General-purpose CSP algorithms use the graph
structure to speed up search. E.g., Tasmania is an
independent subproblem!

Varieties of CSPs and Constraints

Example: N-Queens

* Formulation 1:
* Variables: X,
* Domains: {0, 1}
* Constraints

Vi, g,k (X5, X)) € {(0,0),(0,1),(1,0)}

Vi,gk (Xij, Xp;) € {(0,0),(0,1),(1,0)} X =
Vi, j, k (Xij, Xitk j+x) € 1(0,0),(0,1),(1,0)} 0,
Vi, j, k (Xij, Xitk j—k) € {(0,0),(0,1),(1,0)}

13

Example: N-Queens

* Formulation 2:
e Variables: Qk

* Domains: {1,2,3,... N}
* Constraints:

Implicit: V4,5 non-threatening(Q;, @;)

Explicit: (Q1,Q2) € {(1,3),(1,4),...}

14

Example: Sudoku

 Variables: Each (open) square

e Domains: {1,2,...,9}

1 8
8|4 116 \ ,
5 1 * Constraints:
- 3]s 9 9-way alldiff for each column
6 8 4 9-way alldiff for each row
2 915 1 9-way alldiff for each region
/ 2 (or can have a bunch
ralg.! ARK of pairwise inequality
2 3 / constraints)

15

Varieties of CSPs

* Discrete Variables We will cover today

* Finite domains
* Size d means O(d") complete assignments

e E.g., Boolean CSPs, including Boolean satisfiability (NP-
complete)

* Infinite domains (integers, strings, etc.)
* E.g., job scheduling, variables are start/end times for each job
| Linear constraints solvable,/nonlinear undecidable

We will cover in a later lecture (linear programming)
* Continuous variables

 E.g., start/end times for Hubble Telescope observations
| * Linear constraints solvable in polynomial time |

16

Varieties of Constraints

e Varieties of Constraints

e Unary constraints involve a single variable (equivalent
to reducing domains), e.g.:

SA # green Focus of today
* Binary constraints involve pairs of variables, e.g.:
SA = WA

e Higher-order constraints involve 3 or more variables:
e.g., sudoku constraints

* Preferences (soft constraints):
e E.g., red is better than green
* Often representable by a cost for each variable assignment
* Gives constrained optimization problems

17

Solving CSPs

Standard Search Formulation

e Standard search formulation of CSPs

* States defined by the values assigned
so far (partial assignments)
* |nitial state: the empty assignment, {}

* Successor function: assign a value to an
|unassigned variable | —Can be any unassigned variable

* Goal test: the current assignment is
complete and satisfies all constraints

* We'll start with the straightforward,
naive approach, then improve it

19

Poll 1: Search for CSPs

Should we use BFS or DFS? I:

— §

¢ &L ¢

Depth

* At eac
from t
variab

* Check

First Search

n node, assign a value
ne domain to the

e
feasibility (constraints)

when the assignment is
complete

o &

Demo — Naive Search

15-281: Artificial Intelligence OH Schedule Recitations ~ Exams Assignments Policies ~ Course Notes

agversarial oearc

9/10 Tue Contraint Satisfaction Problems AIMA Ch. 6.1-3, 6.5
CSP Demo

https://www.cs.cmu.edu/~15281/demos/csp_backtracking

Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs
Backtracking search = DFS + two improvements

ldea 1: One variable at a time
* Variable assignments are commutative
 [WA =red then NT = green] same as [NT = green then WA = red]
* Only need to consider assign value to a single variable at each step

ldea 2: Check constraints as you go
* Consider only values which do not conflict previous assignments
* May need some computation to check the constraints
* “Incremental goal test”

Can solve n-queens for n = 25

Backtracking Example

o

—]

¢ ¢ ¢
—
"o

oS

o,

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, ¢sp)

function RECURSIVE-BACKTRACKING(assignment, ¢sp) returns soln /failure
if assignment is complete then return assignment
var<— SELECT-UNASSIGNED- VARIABLE(VARIABLES|csp|, assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp| then
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

26

Backtracking Search

function RECURSIVE-BACKTRACKING(assignment, csp)

var<— SELECT-UNASSIGNED-VARIABLE
for each value

add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING(assignment, csp)

remove {var = value} from assignment

27

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, ¢sp)

function RECURSIVE-BACKTRACKING(assignment, ¢sp) returns soln /failure
if assignment is complete then return assignment
var<— SELECT-UNASSIGNED- VARIABLE(VARIABLES|csp|, assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp| then
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

28

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, ¢sp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
I if assignment is complete then return assignment I
var— SELECT- UNASSIGNED- VARIABLE(VARIABLES| csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp| then
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

No need to check constraints for a complete assignment

29

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, ¢sp)

function RECURSIVE-BACKTRACKING(assignment, ¢sp) returns soln /failure
if assignment is complete then return assignment
var<«— SELECT-UNASSIGNED- VARIABLE(VARIABLES[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
I if value is consistent with assignment given CONSTRAINTS[csp| then I
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

Checks consistency at each assignment

30

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, ¢sp)

function RECURSIVE-BACKTRACKING(assignment, ¢sp) returns soln /failure
if assignment is complete then return assignment
var<— SELECT-UNASSIGNED- VARIABLE(VARIABLES|csp|, assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given C-foNSTRAINTS[cspj then
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

= Backtracking = DFS + variable-ordering + fail-on-violation
= What are the decision points?

31

Demo — Backtracking

https://www.cs.cmu.edu/~15281/demos/csp backtracking

32

https://www.cs.cmu.edu/~15281/demos/csp_backtracking

Improving Backtracking

* General-purpose ideas give huge gains in speed

* Filtering: Can we detect inevitable failure early?

* Ordering:
* Which variable should be assigned next?
* |In what order should its values be tried?

e Structure: Can we exploit the problem structure?

33

Filtering

Filtering: Forward Checking

Filtering: Keep track of domains for unassigned variables and cross off
bad options

Forward checking: A simple way for filtering

e After a variable is assigned a value, check related constraints and
cross off values of unassigned variables which violate the
constraints

* Failure detected if some variables have no values remaining

Filtering: Forward Checking

* Filtering: Keep track of domains for unassigned variables and cross off bad options

* Forward checking: A simple way for filtering

e After a variable is assigned a value, check related constraints and cross off values of
unassigned variables which violate the constraints

* Failure detected if some variables have no values remaining

WA NT Q NSW \' SA

NT

WA
SA

NSW

Filtering: Forward Checking

Filtering: Keep track of domains for unassigned variables and cross off bad options

Forward checking: A simple way for filtering

e After a variable is assigned a value, check related constraints and cross off values of
unassigned variables which violate the constraints

* Failure detected if some variables have no values remaining

WA NT Q NSW V' SA
‘\—Lg,. T ICE T ICEICECICer 1

= — 1 MM Ireniren 1

Recall: Binary constraint graph for a binary CSP (i.e., each constraint has
© most two variables): nodes are variables, edges show constraints s

Filtering: Forward Checking

* Filtering: Keep track of domains for unassigned variables and cross off bad options

* Forward checking: A simple way for filtering

e After a variable is assigned a value, check related constraints and cross off values of
unassigned variables which violate the constraints

* Failure detected if some variables have no values remaining

‘\—Lgﬂ Il l|l l|l l|l I|l I|I II

[— EEfE[ErE[ET H] 1
[n] u] [m E[mem] w]

38

Filtering: Forward Checking

* Filtering: Keep track of domains for unassigned variables and cross off bad options

* Forward checking: A simple way for filtering

e After a variable is assigned a value, check related constraints and cross off values of
unassigned variables which violate the constraints

* Failure detected if some variables have no values remaining

NT Q NSW \'J SA
‘\—L;—- |I l|l M ireriren

o [FTEEFEErE[EIE]]

(™) 1 1 [m E[EE] 1
(o)
@@‘@ [(m] u] [m_ o] |
) FAIL — variable with no possible values

@ 39

Demo — Backtracking with Forward Checking

https://www.cs.cmu.edu/~15281/demos/csp backtracking

https://www.cs.cmu.edu/~15281/demos/csp_backtracking

Filtering: Constraint Propagation

 Limitations of simple forward checking: propagates information from assigned to
unassigned variables, but doesn't provide early detection for all failures

 NT and SA cannot both be blue! Why didn’t we detect this yet?
* Constraint propagation: reason from constraint to constraint
NT Q NSW vV SA

4\—% e

41

Consistency of A Single Arc

* An arc X — Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

* Enforce arc consistency: Remove values in domain of X if no corresponding legal Y exists

* Forward checking: Only enforce X - Y, V(X,Y) € E and Y newly assigned

(Remove values from the tail!)

WA NT Q NSW Vv SA

I I Ireireirei

K /

Recall: Binary constraint graph for a binary CSP (i.e., each constraint has
© most two variables): nodes are variables, edges show constraints

Consistency of A Single Arc

* An arc X — Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

* Enforce arc consistency: Remove values in domain of X if no corresponding legal Y exists

* Forward checking: Only enforce X - Y, V(X,Y) € E and Y newly assigned

NT WA

e

43

How to Enforce Arc Consistency of Entire CSP

* A simplistic algorithm: Cycle over the pairs of variables, enforcing arc-consistency,
repeating the cycle until no domains change for a whole cycle

* AC-3 (short for Arc Consistency Algorithm #3): A more efficient algorithm ignoring
constraints that have not been modified since they were last analyzed

44

AC-3: Enforce Arc Consistency of Entire CSP

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X;. Xp. ... X}
local variables:l queue, a queue of arcs, initially all the arcs in csp I

while gueue is not empty do
(X;. X;)— REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(.X;. X;) then
for each X in NEIGHBORS[.X;] do
add (X%, X)) to queue

function REMOVE-INCONSISTENT-VALUES(X, X;) returns true iff succeeds
removed «— false
for each r in DOMAIN[X,] do
if no value y in DOMAIN[X]] allows (z,y) to satisfy the constraint X; < X
then delete 2 from DOMAIN[X}]; removed « true
return removed

Constraint Propagation!

45

AC-3: Enforce Arc Consistency of Entire CSP

Queue:

SA->WA
NT->WA

Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
NT->WA
WA->SA
NT->SA
Q->SA

v NSW->SA

@IEI V->SA

Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:

NSW->SA
V->SA
WA->NT
SA->NT

Q->NT

Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

¢

SA

Vv

i\

NSW

T

;

Queue:

@

Remember: Delete from the tail!

Poll 2: After assigning Q to Green,
what gets added to the Queue?

N ;

Queue:

NSW

- == ° LN

Vv

A: NSW->Q, SA->Q, NT->Q
B: Q->NSW, Q->SA, Q->NT

54

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
NT->Q
SA->Q
NSW->Q

Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
SA->Q
NSW->Q
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
NSW->Q
WA->NT
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA

Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
WA->NT
SA->NT
Q->NT
0 WA->SA
NT->SA
Q->SA
NSW->SA
@ V->SA
V->NSW
Q->NSW
SA->NSW

Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
WA->NT

SA->NT

Q->NT

[WA->SA

NT->SA

Q->SA
NSW->SA
V->SA
V->NSW
Q->NSW
SA->NSW

Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
SA->NT
Q->NT
WA->SA

[NT->SA

Q->SA
| | | NSW->SA
V->SA
(DEEm VoNSW
Q->NSW
SA->NSW

Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
SA->NT

Q->NT

WA->SA

[NT->SA

Q->SA

e Backtrack on the assignment of Q

NSW->SA
V->SA
V->NSW
Q->NSW
SA->NSW

* Arc consistency detects failure earlier than forward checking

e Can be run as a preprocessor or after each assignment
 What'’s the downside of enforcing arc consistency?

Remember: Delete from the tail!

Limitations of Arc Consistency

» After enforcing arc consistency:
* Can have one solution left
e Can have multiple solutions left

e Can have no solutions left (and not
know it)

* Arc consistency only checks local
consistency conditions

* Arc consistency still runs inside a
backtracking search!

)
oG

What went
wrong here?

62

Backtracking Search with AC-3

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, ¢sp)

function RECURSIVE-BACKTRACKING(assignment, ¢sp) returns soln /failure

if assignment is complete then return assignment

var<— SELECT-UNASSIGNED- VARIABLE(VARIABLES|csp|, assignment, csp)

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment given CONSTRAINTS[csp| then

add {var = value} to assignment AC-3(csp)
result «— RECURSIVE-BACKTRACKING(assignment, =)
if result # failure then return result
remove {var = value} from assignment

return failure

 Where do you run AC-3?

63

Demo — Backtracking with AC-3 Forward checking only check arcs
connecting variables a variable that we

Compare just assigned.
e Backtracking with Forward Checking
* Backtracking with AC-3 With AC-3, we make sure all arcs are

consistent

64

Demo — Backtracking with AC-3 Forward checking only check arcs
connecting variables a variable that we

Compare just assigned.
e Backtracking with Forward Checking
* Backtracking with AC-3 With AC-3, we make sure all arcs are

consistent

65

Demo — Backtracking with AC-3

Compare
e Backtracking with Forward Checking
* Backtracking with AC-3

Forward checking only check arcs
connecting variables a variable that we
just assigned.

With AC-3, we can find existing
problems, such as the arc between
these two variables with only green left.

66

Complexity of a single run of AC-3

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X}, X5, ..., X}
local variables: queue, a queue of arcs, initially all the arcs in csp

while gueue is not empty do
(Xi, X,) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(X;, X;) then
for each X in NEIGHBORS[.X;] do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X, X)) returns true iff succeeds
removed «— false
for each z in DOMAIN[X;] do
if no value y in DOMAIN[X]] allows (z,y) to satisfy the constraint X; « X
then delete = from DOMAIN[X;]; removed — true
return removed

Recall that the whole backtracking algorithm with AC-3 will call AC-3 many times

Complexity of a single run of AC-3

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X}, X5, ..., X}
local variables: queue, a queue of arcs, initially all the arcs in csp

while gueue is not empty do
(X;, X;)«— REMOVE-FIRST(queue)
|if REI\-’[OVE—INCONSISTENT—VALEJES(X.Z-_, X;) then |
for each X} in NEIGHBORS[.X;| do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X, X)) returns true iff succeeds
removed «— false
for each z in DOMAIN[X;] do
if no value y in DOMAIN[X]] allows (z,y) to satisfy the constraint X; « X
then delete = from DOMAIN[X;]; removed — true
return removed

 An arcis added after a removal of
value at a node

* n node in total, each has < d values

* Total times of removal: O(nd)

68

Complexity of a single run of AC-3

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X}, X5, ..., X}
local variables: queue, a queue of arcs, initially all the arcs in csp

while gueue is not empty do
(Xi, X,) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT- VALUES(.X;. X;) then
for each X in NEIGHBORS[.X;] do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X, X)) returns true iff succeeds
removed «— false
for each z in DOMAIN[X;] do

if no value y in DOMAIN[X]] allows (z,y) to satisfy the constraint X; « X

then delete = from DOMAIN[X;]; removed — true
return removed

An arc is added after a removal of
value at a node

n node in total, each has < d values
Total times of removal: O(nd)

After a removal, < n arcs added
Total times of adding arcs: 0(n?d)

69

Complexity of a single run of AC-3

function AC-3(csp) returns the CSP, possibly with reduced domains * An arcis added after a removal of
inputs: csp, a binary CSP with variables { X}, X5, ..., X} value at a hode

local variables: queue, a queue of arcs, initially all the arcs in csp

* n node in total, each has < d values

while gueue is not empty do

(X:, X;) — REMOVE-FIRST(queue) * Total times of removal: 0(nd)
if REMOVE-INCONSISTENT-VALUES(X;, X;) then
for each X in NEIGHBORS[.X;] do * Aftera removal; < n arcs added
add (Xx, Xi) to queue « Total times of adding arcs: 0(n?d)

function REMOVE-INCONSISTENT-VALUES(X, X)) returns true iff succeeds
removed «— false
for each z in DOMAIN[X}] do * Check arc consistency per arc: O(dz)
if no value y in DOMAIN[X]] allows (z,y) to satisfy the constraint X; « X
then delete = from DOMAIN|X,|; removed < true
return removed

Complexity of a single run of AC-3 is at most 0 (n?d?)
(Not required) Zhang&Yap (2001) show that its complexity is O (n*d?)

70

Ordering

71

Ordering: Minimum Remaining Values

 Variable Ordering: Minimum remaining values (MRV):
* Choose the variable with the fewest legal left values in its domain

S A Soms ==

* Why min rather than max?

* Also called “most constrained variable”

* “Fail-fast” ordering

Demo — Coloring with a Complex Graph

Compare
* Backtracking with Forward Checking

e Backtracking + Forward Checking + Minimum Remaining Values (MRV)

Ordering: Least Constraining Value

* Value Ordering: Least Constraining Value

* Given a choice of variable, choose the least
constraining value

* j.e., the one that rules out the fewest values in
the remaining variables

* Note that it may take some computation to
determine this! (E.g., rerunning filtering)

<

35

Ordering: Least Constraining Value

* Value Ordering: Least Constraining Value

e Given a choice of variable, choose the least
constraining value

* j.e., the one that rules out the fewest values in
the remaining variables

* Note that it may take some computation to
determine this! (E.g., rerunning filtering)

* Why least rather than most?

* Combining these ordering ideas makes
1000 queens feasible

Demo — Coloring with a Complex Graph

Compare

* Bac
* Bac
* Bac
* Bac

Ktrac
Ktrac
Ktrac

Ktrac

king with Forward Checking
king with AC-3
king + Forward Checking + Minimum Remaining Values (MRV)

kKing + AC-3 + MRV + LCV

76

Summary: CSPs

e CSPs are a special kind of search problem:
 States are partial assignments
* Goal test defined by constraints mo|oT [W

* Basic solution: backtracking search |

e Speed-ups: =% -

e Ordering L‘* —
* Filtering B

* (Structure)

77

	Slide 1: Plan
	Slide 2: Expectimax
	Slide 3: AI: Representation and Problem Solving
	Slide 4: What is Search For?
	Slide 5: Warm-up as You Walk In
	Slide 6: Constraint Satisfaction Problems
	Slide 7: Why study CSPs?
	Slide 8: CSP Examples
	Slide 9: Example: Map Coloring
	Slide 10: Constraint Graphs
	Slide 11: Constraint Graphs
	Slide 12: Varieties of CSPs and Constraints
	Slide 13: Example: N-Queens
	Slide 14: Example: N-Queens
	Slide 15: Example: Sudoku
	Slide 16: Varieties of CSPs
	Slide 17: Varieties of Constraints
	Slide 18: Solving CSPs
	Slide 19: Standard Search Formulation
	Slide 20: Poll 1: Search for CSPs
	Slide 21: Depth First Search
	Slide 22: Demo – Naïve Search
	Slide 23: Backtracking Search
	Slide 24: Backtracking Search
	Slide 25: Backtracking Example
	Slide 26: Backtracking Search
	Slide 27: Backtracking Search
	Slide 28: Backtracking Search
	Slide 29: Backtracking Search
	Slide 30: Backtracking Search
	Slide 31: Backtracking Search
	Slide 32: Demo – Backtracking
	Slide 33: Improving Backtracking
	Slide 34: Filtering
	Slide 35: Filtering: Forward Checking
	Slide 36: Filtering: Forward Checking
	Slide 37: Filtering: Forward Checking
	Slide 38: Filtering: Forward Checking
	Slide 39: Filtering: Forward Checking
	Slide 40: Demo – Backtracking with Forward Checking
	Slide 41: Filtering: Constraint Propagation
	Slide 42: Consistency of A Single Arc
	Slide 43: Consistency of A Single Arc
	Slide 44: How to Enforce Arc Consistency of Entire CSP
	Slide 45: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 46: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 47: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 48: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 49: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 50: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 51: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 52: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 53: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 54: Poll 2: After assigning Q to Green, what gets added to the Queue?
	Slide 55: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 56: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 57: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 58: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 59: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 60: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 61: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 62: Limitations of Arc Consistency
	Slide 63: Backtracking Search with AC-3
	Slide 64: Demo – Backtracking with AC-3
	Slide 65: Demo – Backtracking with AC-3
	Slide 66: Demo – Backtracking with AC-3
	Slide 67: Complexity of a single run of AC-3
	Slide 68: Complexity of a single run of AC-3
	Slide 69: Complexity of a single run of AC-3
	Slide 70: Complexity of a single run of AC-3
	Slide 71: Ordering
	Slide 72: Ordering: Minimum Remaining Values
	Slide 73: Demo – Coloring with a Complex Graph
	Slide 74: Ordering: Least Constraining Value
	Slide 75: Ordering: Least Constraining Value
	Slide 76: Demo – Coloring with a Complex Graph
	Slide 77: Summary: CSPs

