Al: Representation and Problem Solving

Adversarial Search

Instructor: Pat Virtue
Slide credits: CMU Al, http://ai.berkeley.edu
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i Games of Chance (Expectimax)




Game Playing State-of-the-Art

Checkers: e /B praning

= 1950: First computer player.
= 1959: Samuel’s self-taught program.

= 1994: First computer world champion: Chinook ended 40-year-reign
of human champion Marion Tinsley using complete 8-piece
endgame.

= 2007: Checkers solved! Endgame database of 39 trillion states ‘”@ U\r\'s’}l-c

Chess:

= 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Siman,
McCarthy. )

= 1960s onward: gradual improvement under “standard mode

= 1997: special-purpose chess machine Deep Blue defeats human
~champion Gary Kasparov in a six-game match. Deep Blue examined
200M positions per second and extended some lines of search up to
40 ply. Current programs running on a PC rate > 3200 (vs 2870 for
Magnus Carlsen).

Go: 300

= 1968: Zobrist’s program plays legal Go, barely (b>300!)

= 2005-2014: Monte Carlo tree search enables rapid advances: current
programs B&aT strong amateurs, and professionals with a 3-4 stone
handicap.
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Types of Games \
MK X N D
Many different kinds of games!

[ Axes:
= Deterministic or stochastic?
= Perfect information (fully observable)?
" One, two, or more players?

2\- Turn-taking or simultaneous? &=
u

Zero sum?

Want algorithms for calculating a contingent plan (a.k.a. strategy or policy)
which recommends a move for every possible eventuality



/ero-Sum Games

Zero-Sum Games General Games
= Agents have opposite utilities = Agents have independent
= Pure competition: utilities
= One maximizes, = Cooperation, indifference,

competition, shifting alliances,
and more are all possible

» the other minimizes



“Standard” Games

e —

Game formulation:

= |nitial state: s,

= Players: Player(s) indicates whose move it is
= Actions: Actions(s) for player on move
= Transition model: Result(s,a)
= Terminal test: Terminal-Test(s)
* Terminal values: Utility(s,p) for player p
(Or just Utility(s) for player making the decision at root)



Adversarial Search




Minimax

States > MAX ()
Actions
ValueS MIN (O) X X X X X X
X X X
MAX (X) o
MIN (O) X X

x[o[x] [x[o[x] [x[o[xX

TERMINAL o|Xx| [o]o[x X
o) X/ x[o| [X]o|o

Utility -1 0 +1




Minimax

States
Actions
Values




Poll 1

What is the minimax value at the root?
A) 2




Poll 1

What is the minimax value at the root?

B) 3




Minimax Code




Max Code




Max Code

def max_value(state):

if state.is_leaf:
return state.value
# TODO Also handle depth limit &——

best value = -10000000

for action in state.actions:
next_state = state.result(action)

next _value = max_value(next_state)
 S———

if next_value > best value:
best_value = next_value

return best_value




Minimax Code

def max_value(state):
if state.is_leaf:
return state.value
# TODO Also handle depth limit
best value = -10000000

for action in state.actions:
next_state = state.result(action)

next _value = min_value(next_state)

LSy

it next_value > best value:
best value = next_value

return best_value

def min value(state):

& e




Minimax Notation < 2 action (555

def max_value(state):

if state.is_leaf: S V(S) — mC?X;V(S,)E

return state.value

r __
# TODO Also handle depth limit where ' = result(s, a)
/

best value = -10000000 j;

for action in state.actions:
next_state = state.result(action)

next _value = min_value(next_state)

it next_value > best value:
best value = next_value

return best_value

def min value(state):




Minimax Notation

v4

V(s) = max V(s),
a
“ where s' = result(s, a)

loesT qc tiors

—@nggj “chon ' for Joof

where s' = result(s,a)




Generic Game Tree Pseudocode

function minimax_decision( state )

return argmax i, ctate.actions vValue( state.result(a) )

)

function value( state )
if state.is leaf
return state.value

if state.player is MAX
return Max . i, ctate actions Value( state.result(a) )

if state.player is MIN
return min . ctate actions Value( state.result(a) )



Minimax Efficiency

How efficient is minimax?
= Just like (exhaustive) DFS
" Time: O(b™)

= Space: O(bm)

Example: For chess, b = 35, m = 100
= Exact solution is completely infeasible

= Humans can’t do this either, so how
do we play chess?

* Bounded rationality — Herbert Simon




Resource LiImits




Resource LiImits

Problem: In realistic games, cannot search to leaves! max

Solution 1: Bounded lookahead
= Search only to a preset depth limit or horizon
= Use an evaluation function for non-terminal positions

! Guarantee of optimal play is gone

More plies make a BIG difference

Example:

= Suppose we have 100 seconds, can explore 10K nodes /
sec

= So can check 1M nodes per move
" For chess, b="35 so reaches about depth 4 — not so good




Depth Matters

Evaluation functions are always imperfect A
00 _ *

Deeper search => better play (usually)

= Or, deeper search gives same quality
of play with a less accurate evaluation
function

An important example of the tradeoff
between complexity of features and
complexity of computation

[Demo: depth limited (L6D4, L6D5)]



Demo Limited Depth (2)



Demo Limited Depth (10)



Evaluation Functions




Evaluation Functions

Evaluation functions score non-terminals in depth-limited search

Black to move White to move

__________

White slightly better Black winning

ldeal function: returns the actual minimax value of the position

In practice: typically weighted linear sum of features:

= EVAL(S) = w,f1(s) + W, f5(s) + .. + W, f.(5)
" E.g., w,; =9, f(s) = (hum white queens — num black queens), etc.



Evaluation for Pacman




Generalized minimax

What if the game is not zero-sum, or has multiple players?

Generalization of minimax:

Terminals have utility tuples
Node values are also utility tuples

Each player maximizes its own component

Can give rise to cooperation and
competition dynamically...

& 8,8,1
[} 8,8,1 7,7,2
] 0,0,7 8,8,1 7,7,2 0,0,8
1,6 || 0,07 | 1990|881 ]990!|[772]]008]|| 007




Generalized minimax

Three Person Chess

https://www.youtube.com/watch?v=HHVPutfveVs


https://www.youtube.com/watch?v=HHVPutfveVs

Game Tree Pruning




Minimax Example

14




Alpha-Beta Example

o = best option so far from any
MAX node on this path

The order of generation matters: more pruning
is possible if good moves come first




Poll 2

Which branches are pruned?

(Left to right traversal)
(Select all that apply)

TN

10

50




Poll 3

Which branches are pruned?
(Left to right traversal)

A) e,
B) g,

C)g Kk, |
D) g, n
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Poll 3




Alpha-Beta Implementation

a: MAX’s best option on path to root
B: MIN’s best option on path to root

def max-value(state, a, B): def min-value(state, a, B):
initialize v = -0 initialize v = +oo
for each successor of state: for each successor of state:
v = max(v, value(successor, a, B)) v = min(v, value(successor, a, ))
ifv>P if v<a
return v return v
a = max(a, v) B = min(B, v)

return v return v



Alpha-Beta Poll 3

a: MAX’s best option on path to root
B: MIN’s best option on path to root

def max-value(state, a, B):

initialize v = -0

for each successor of state:
v = max(v, value(successor, a, 3))
ifv2P

returnv

o = max(a, v)

return v




Alpha-Beta Poll 3
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a: MAX’s best option on path to root
B: MIN’s best option on path to root

def min-value(state, a, B):
initialize v = +oo
for each successor of state:
v = min(v, value(successor, a, 3))
ifvsa
returnv
B =min(B, v)

return v



Alpha-Beta Pruning Properties

Theorem: This pruning has no effect on minimax value computed for the root!

Good child ordering improves effectiveness of pruning
" |[terative deepening helps with this

max
With “perfect ordering”: .
* Time complexity drops to O(b™/2) min
" Doubles solvable depth!
= 1M nodes/move => depth=8, respectable
10 10 0

This is a simple example of metareasoning (computing about what to compute)



Modeling Assumptions

Know your opponent

8

| ——

10 10 9 100




Poll 4

How well would a minimax Pacman perform against a
ghost that moves randomly?

A. Better than against a minimax ghost
B. Worse than against a minimax ghost

C. Same as against a minimax ghost

Fine print
" Pacman: uses depth 4 minimax as before

" Ghost: moves randomly [Demo: L7D6)]



Modeling Assumptions

Minimax autonomous vehicle?




Minimax Driver?

189441}

https://youtu.be/5PRrwlkPdNI?t=52
Clip: How | Met Your Mother, CBS



https://youtu.be/5PRrwlkPdNI?t=52

Modeling Assumptions

Dangerous Pessimism Dangerous Optimism
Assuming the worst case when it’s not likely Assuming chance when the world is adversarial




Modeling Assumptions

Chance nodes: Expectimax

10

10

100




Probabilities




Probabilities

A random variable represents an event whose outcome
is unknown

0.25

A probability distribution is an assignment of weights
to outcomes

0.50

Example: Traffic on freeway
= Random variable: T = whether there’s traffic
= Qutcomes: T in {none, light, heavy}
= Distribution:
P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) =0.25

Probabilities over all possible outcomes sum to one



Expected Value

Expected value of a function of a random variable:
Average the values of each outcome,
weighted by the probability of that outcome

Example: How long to get to the airport?

Probability: 0.25 0.50
X + X

30 min

Time:




Poll 5

Expectimax tree search:

Which action do we

choose?

A: Left

B: Center
C: Right
D: Eight

1/4

12

1/4

4
8

Left

Center

Right

1/3

12




Poll 5

Expectimax tree search:
Which action do we
choose?

C: Right

Left

Center

4+3=7

1/2

Right

A+4=8

1/3

12

2/3




Chance outcomes in trees

10| |10 9 100 10| |10 9 100
Tictactoe, chess Tetris, investing
10 9

Minimax Expectimax 10|| 9 10 (100

Backgammon, Monopoly
Expectiminimax




Expectimax Code

function value( state )
if state.is leaf
return state.value

if state.player is MAX
return Max , i, ctate actions Value( state.result(a) )

if state.player is MIN
return min . ctate actions Value( state.result(a) )

if state.player is CHANCE
return sum S in state.next_states P( S ) * Value( S )



Expectimax Pruning?




Expectimax Notation

Time: 20 min 30 min 60 min T
X + X 4 X
Probability: 0.25 0.50 0.25

—_

Max node notation Chance node notation
V(s) = max V(s"), \\ V(s) = 2 P(s")V(s)
a
S/

where s’ = result(s, a)



Preview: MDP/Reinforcement Learning Notation

V(is) = mc?xi[;(s’) V(S’;]




Preview: MDP/Reinforcement Learning Notation

Standard expectimax: V(s) = maxz P(s'|s,a)V(s")
ﬁ—_""---?;_ [

Bellman equations: V(s) = maxz P(s'|s,a)[R(s,a,s") + yV(s')]
a
Y
Value iteration: Viesr(s) = maxz P(s'|s,a)[R(s,a,s") + yVk(s)], Vs
a =
Q-iteration: Qi+1(s,a) = Z P(s'|s,a)[R(s,a,s") + ymax Qi (s’,a")], Vs,a
S/ 4
Policy extraction: my(s) = argmaxz P(s'|s,a)[R(s,a,s") +yV(s')], Vs
a S/
Policy evaluation: Vi,(s) = Z P(s'|s,m(s))[R(s,m(s),s") + yVF(s")], Vs
Y

Policy improvement: Tpew(S) = argmaxz P(s'|s,a)[R(s,a,s") +yVTold(s")], Vs
a
S/



Preview: MDP/Reinforcement Learning Notation

Standard expectimax: V(s) = maxz P(s'|s,a)V(s")
a =
Bellman equations: V(s) = maxz: P(s'|s,a)[R(s,a,s") + yV(s")]
a =
Value iteration: Vis1(s) = maxz P(s'ls,a)[R(s,a,s") +yVi(s))], Vs
a =
Q-iteration: Qr+1(s,a) = z P(s'|s,a)[R(s,a,s") + v max Qy (s',a")], Vs,a
a
S/
Policy extraction: my(s) = argmaxz P(s'|s,a)[R(s,a,s") + yV(s')], Vs
a S/
Policy evaluation: Vi,(s) = z P(s'|s,m(s))[R(s,m(s),s") + yVF(s")], Vs
Y

Policy improvement: Tnew(S) = argmaxz P(s'|s,a)[R(s,a,s") +yV™olda(s")], Vs
a
S/
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