
AI: Representation and Problem Solving

Adversarial Search

Instructor: Pat Virtue

Slide credits: CMU AI, http://ai.berkeley.edu

Outline

History / Overview

Zero-Sum Games (Minimax)

Evaluation Functions

Search Efficiency (α-β Pruning)

Games of Chance (Expectimax)

Game Playing State-of-the-Art
Checkers:
▪ 1950: First computer player.

▪ 1959: Samuel’s self-taught program.

▪ 1994: First computer world champion: Chinook ended 40-year-reign
of human champion Marion Tinsley using complete 8-piece
endgame.

▪ 2007: Checkers solved! Endgame database of 39 trillion states

Chess:
▪ 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon,

McCarthy.

▪ 1960s onward: gradual improvement under “standard model”

▪ 1997: special-purpose chess machine Deep Blue defeats human
champion Gary Kasparov in a six-game match. Deep Blue examined
200M positions per second and extended some lines of search up to
40 ply. Current programs running on a PC rate > 3200 (vs 2870 for
Magnus Carlsen).

Go:
▪ 1968: Zobrist’s program plays legal Go, barely (b>300!)

▪ 2005-2014: Monte Carlo tree search enables rapid advances: current
programs beat strong amateurs, and professionals with a 3-4 stone
handicap.

Many different kinds of games!

Axes:
▪ Deterministic or stochastic?

▪ Perfect information (fully observable)?

▪ One, two, or more players?

▪ Turn-taking or simultaneous?

▪ Zero sum?

Want algorithms for calculating a contingent plan (a.k.a. strategy or policy)
which recommends a move for every possible eventuality

Types of Games

Zero-Sum Games

Zero-Sum Games

▪ Agents have opposite utilities

▪ Pure competition:

▪ One maximizes,

▪ the other minimizes

General Games

▪ Agents have independent
utilities

▪ Cooperation, indifference,
competition, shifting alliances,
and more are all possible

“Standard” Games

Standard games are:

 deterministic, observable, two-player,

 turn-taking, and zero-sum

Game formulation:

▪ Initial state: s0

▪ Players: Player(s) indicates whose move it is

▪ Actions: Actions(s) for player on move

▪ Transition model: Result(s,a)

▪ Terminal test: Terminal-Test(s)

▪ Terminal values: Utility(s,p) for player p

 (Or just Utility(s) for player making the decision at root)

Adversarial Search

Minimax

States

Actions

Values

Minimax

States

Actions

Values

Poll 1

12 8 5 23 2 144 6

What is the minimax value at the root?

A) 2

B) 3

C) 6

D) 12

E) 14

Poll 1

12 8 5 23 2 144 6

3 2 2

3

What is the minimax value at the root?

A) 2

B) 3

C) 6

D) 12

E) 14

Minimax Code

Max Code

+8-10-8

Max Code

+8-10-8

Minimax Code

Minimax Notation

𝑉 𝑠 = max
𝑎

 𝑉 𝑠′ ,

 where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

𝑎 = argmax
𝑎

 𝑉 𝑠′ ,

 where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

ො𝑎 = argmax
𝑎

 𝑉 𝑠′ ,

 where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

Minimax Notation

𝑉 𝑠 = max
𝑎

 𝑉 𝑠′ ,

 where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

Generic Game Tree Pseudocode

function minimax_decision(state)

 return argmax a in state.actions value(state.result(a))

function value(state)
if state.is_leaf
 return state.value

if state.player is MAX
 return max a in state.actions value(state.result(a))

if state.player is MIN
 return min a in state.actions value(state.result(a))

Minimax Efficiency

How efficient is minimax?

▪ Just like (exhaustive) DFS

▪ Time: O(bm)

▪ Space: O(bm)

Example: For chess, b  35, m  100
▪ Exact solution is completely infeasible

▪ Humans can’t do this either, so how
do we play chess?

▪ Bounded rationality – Herbert Simon

Resource Limits

Resource Limits

Problem: In realistic games, cannot search to leaves!

Solution 1: Bounded lookahead
▪ Search only to a preset depth limit or horizon
▪ Use an evaluation function for non-terminal positions

Guarantee of optimal play is gone

More plies make a BIG difference

Example:
▪ Suppose we have 100 seconds, can explore 10K nodes /

sec
▪ So can check 1M nodes per move
▪ For chess, b=~35 so reaches about depth 4 – not so good

? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Depth Matters

Evaluation functions are always imperfect

Deeper search => better play (usually)

▪ Or, deeper search gives same quality
of play with a less accurate evaluation
function

An important example of the tradeoff
between complexity of features and
complexity of computation

[Demo: depth limited (L6D4, L6D5)]

Demo Limited Depth (2)

Demo Limited Depth (10)

Evaluation Functions

Evaluation Functions
Evaluation functions score non-terminals in depth-limited search

Ideal function: returns the actual minimax value of the position

In practice: typically weighted linear sum of features:
▪ EVAL(s) = w1 f1(s) + w2 f2(s) + …. + wn fn(s)
▪ E.g., w1 = 9, f1(s) = (num white queens – num black queens), etc.

Evaluation for Pacman

Generalized minimax

What if the game is not zero-sum, or has multiple players?

Generalization of minimax:
▪ Terminals have utility tuples
▪ Node values are also utility tuples
▪ Each player maximizes its own component
▪ Can give rise to cooperation and
 competition dynamically…

1,1,6 0,0,7 9,9,0 8,8,1 9,9,0 7,7,2 0,0,8 0,0,7

0,0,7 8,8,1 7,7,2 0,0,8

8,8,1 7,7,2

8,8,1

Generalized minimax

Three Person Chess
https://www.youtube.com/watch?v=HHVPutfveVs

https://www.youtube.com/watch?v=HHVPutfveVs

Game Tree Pruning

Minimax Example

12 8 5 23 2 144 6

3 2 2

3

Alpha-Beta Example

12 8 5 23 2 14

α =3 α =3

α = best option so far from any
MAX node on this path

The order of generation matters: more pruning
is possible if good moves come first

3

3

Poll 2
Which branches are pruned?
(Left to right traversal)
(Select all that apply)

Poll 3

Which branches are pruned?
(Left to right traversal)
A) e, l
B) g, l
C) g, k, l
D) g, n

1

Poll 3

?

10

?

?

10

10 100

?

?

2

2

?

β =

α =

α= α= α=

β =

Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α
 return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β
 return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Alpha-Beta Poll 3

10 v=100

β = 10

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β
 return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Alpha-Beta Poll 3

10

10 100 2

v = 2

α = 10
def min-value(state , α, β):

initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α
 return v
β = min(β, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Alpha-Beta Pruning Properties
Theorem: This pruning has no effect on minimax value computed for the root!

Good child ordering improves effectiveness of pruning

▪ Iterative deepening helps with this

With “perfect ordering”:

▪ Time complexity drops to O(bm/2)

▪ Doubles solvable depth!

▪ 1M nodes/move => depth=8, respectable

This is a simple example of metareasoning (computing about what to compute)

10 10 0

max

min

Modeling Assumptions
Know your opponent

10091010

How well would a minimax Pacman perform against a

ghost that moves randomly?

A. Better than against a minimax ghost

B. Worse than against a minimax ghost

C. Same as against a minimax ghost

Poll 4

Fine print
▪ Pacman: uses depth 4 minimax as before
▪ Ghost: moves randomly [Demo: L7D6)]

Modeling Assumptions
Minimax autonomous vehicle?

Image: https://corporate.ford.com/innovation/autonomous-2021.html

Clip: How I Met Your Mother, CBS

Minimax Driver?

https://youtu.be/5PRrwlkPdNI?t=52

https://youtu.be/5PRrwlkPdNI?t=52

Modeling Assumptions

Dangerous Optimism
Assuming chance when the world is adversarial

Dangerous Pessimism
Assuming the worst case when it’s not likely

Modeling Assumptions

Chance nodes: Expectimax

10091010

Probabilities

Probabilities

A random variable represents an event whose outcome
is unknown

A probability distribution is an assignment of weights
to outcomes

Example: Traffic on freeway
▪ Random variable: T = whether there’s traffic
▪ Outcomes: T in {none, light, heavy}
▪ Distribution:

 P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

Probabilities over all possible outcomes sum to one

0.25

0.50

0.25

Expected value of a function of a random variable:

Average the values of each outcome,

weighted by the probability of that outcome

Example: How long to get to the airport?

Expected Value

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
35 minx x x+ +

6020 30

0.25

0.5

0.25

Poll 5

Expectimax tree search:
Which action do we
choose?

A: Left
B: Center
C: Right
D: Eight

412 8 8 6 12 6

1/4

1/4

1/2 1/2 1/2 1/3 2/3

Left
Center

Right

Poll 5

Expectimax tree search:
Which action do we
choose?

A: Left
B: Center
C: Right
D: Eight

412 8 8 6 12 6

1/4

1/4

1/2 1/2 1/2 1/3 2/3

Left
Center

Right

4+3=73+2+2=7 4+4=8

8, Right

Chance outcomes in trees

10 10 9 10010 10 9 100

9 10 9 1010 100

Tictactoe, chess
Minimax

Tetris, investing
Expectimax

Backgammon, Monopoly
Expectiminimax

Expectimax Code

function value(state)
if state.is_leaf
 return state.value

if state.player is MAX
 return max a in state.actions value(state.result(a))

if state.player is MIN
 return min a in state.actions value(state.result(a))

if state.player is CHANCE
 return sum s in state.next_states P(s) * value(s)

Expectimax Pruning?

12 93 2

Expectimax Notation

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
x x x+ +

6020 30

0.25

0.5

0.25

𝑉 𝑠 = max
𝑎

 𝑉 𝑠′ ,

 where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

Max node notation Chance node notation

𝑉 𝑠 = ෍

𝑠′

𝑃 𝑠′ 𝑉(𝑠′)

𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃(𝑠′) 𝑉(𝑠′)

Preview: MDP/Reinforcement Learning Notation

Preview: MDP/Reinforcement Learning Notation

Standard expectimax: 𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 max
𝑎′

𝑄𝑘(𝑠′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy evaluation:

Policy improvement:

Preview: MDP/Reinforcement Learning Notation

Standard expectimax: 𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 max
𝑎′

𝑄𝑘(𝑠′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy evaluation:

Policy improvement:

	Slide 1: AI: Representation and Problem Solving
	Slide 2: Outline
	Slide 3: Game Playing State-of-the-Art
	Slide 5: Types of Games
	Slide 6: Zero-Sum Games
	Slide 7: “Standard” Games
	Slide 8: Adversarial Search
	Slide 10: Minimax
	Slide 11: Minimax
	Slide 12: Poll 1
	Slide 13: Poll 1
	Slide 14: Minimax Code
	Slide 15: Max Code
	Slide 16: Max Code
	Slide 17: Minimax Code
	Slide 18: Minimax Notation
	Slide 19: Minimax Notation
	Slide 20: Generic Game Tree Pseudocode
	Slide 21: Minimax Efficiency
	Slide 22: Resource Limits
	Slide 23: Resource Limits
	Slide 24: Depth Matters
	Slide 25: Demo Limited Depth (2)
	Slide 26: Demo Limited Depth (10)
	Slide 27: Evaluation Functions
	Slide 28: Evaluation Functions
	Slide 29: Evaluation for Pacman
	Slide 30: Generalized minimax
	Slide 31: Generalized minimax
	Slide 32: Game Tree Pruning
	Slide 33: Minimax Example
	Slide 34: Alpha-Beta Example
	Slide 35: Poll 2
	Slide 36: Poll 3
	Slide 37: Poll 3
	Slide 38: Alpha-Beta Implementation
	Slide 39: Alpha-Beta Poll 3
	Slide 40: Alpha-Beta Poll 3
	Slide 41: Alpha-Beta Pruning Properties
	Slide 42: Modeling Assumptions
	Slide 44: Poll 4
	Slide 47: Modeling Assumptions
	Slide 48: Minimax Driver?
	Slide 49: Modeling Assumptions
	Slide 50: Modeling Assumptions
	Slide 52: Probabilities
	Slide 53: Probabilities
	Slide 54: Expected Value
	Slide 55: Poll 5
	Slide 56: Poll 5
	Slide 57: Chance outcomes in trees
	Slide 58: Expectimax Code
	Slide 59: Expectimax Pruning?
	Slide 60: Expectimax Notation
	Slide 61: Preview: MDP/Reinforcement Learning Notation
	Slide 62: Preview: MDP/Reinforcement Learning Notation
	Slide 63: Preview: MDP/Reinforcement Learning Notation

