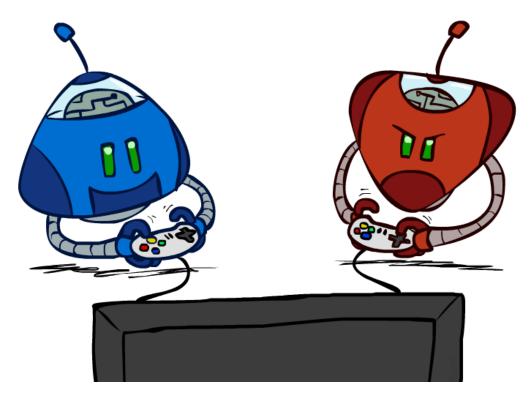
# AI: Representation and Problem Solving

## **Adversarial Search**



Instructor: Pat Virtue

Slide credits: CMU AI, http://ai.berkeley.edu

### Outline

History / Overview

Zero-Sum Games (Minimax)

Evaluation Functions <

Search Efficiency ( $\alpha$ - $\beta$  Pruning)

Games of Chance (Expectimax)



Game Playing State-of-the-Art

#### **Checkers:**

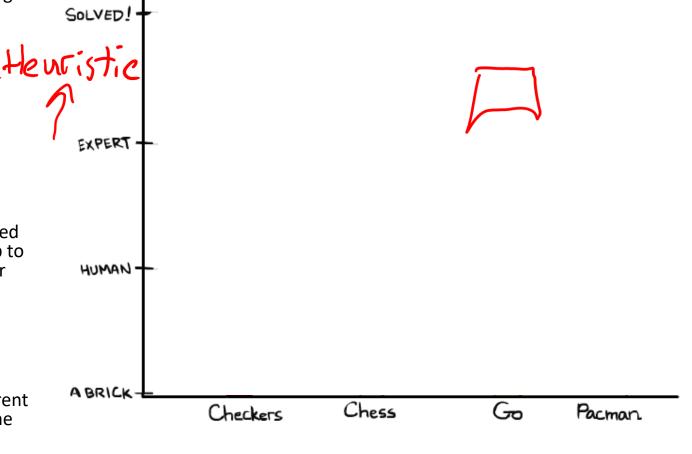
- 1950: First computer player.
- 1959: Samuel's self-taught program.
- 1994: First computer world champion: Chinook ended 40-year-reign of human champion Marion Tinsley using complete 8-piece endgame.
- 2007: Checkers solved! Endgame database of 39 trillion states

#### **Chess:**

- 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon, McCarthy.
- 1960s onward: gradual improvement under "standard model"
- 1997: special-purpose chess machine Deep Blue defeats human champion Gary Kasparov in a six-game match. Deep Blue examined 200M positions per second and extended some lines of search up to 40 ply. Current programs running on a PC rate > 3200 (vs 2870 for Magnus Carlsen).

#### Go:

- 1968: Zobrist's program plays legal Go, barely (b>300!)
- 2005-2014: Monte Carlo tree search enables rapid advances: current programs beat strong amateurs, and professionals with a 3-4 stone handicap.



## Types of Games

### Many different kinds of games!

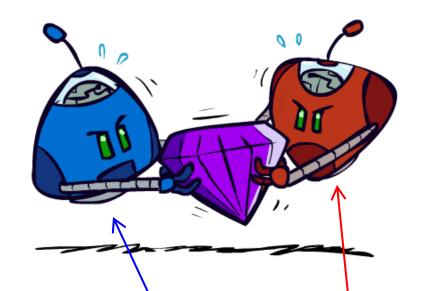
#### Axes:

- Deterministic or stochastic?
- Perfect information (fully observable)?
- One, two, or more players?
- Turn-taking or simultaneous?
- Zero sum?



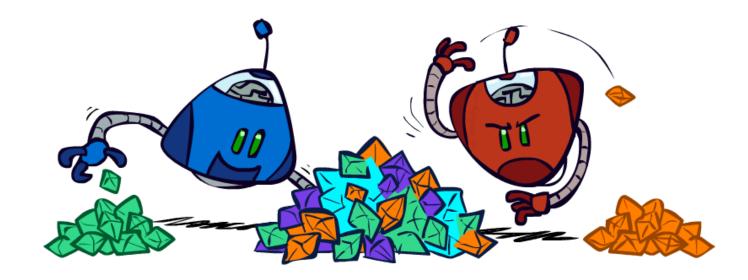
Want algorithms for calculating a *contingent plan* (a.k.a. strategy or policy) which recommends a move for every possible eventuality

### Zero-Sum Games





- Agents have opposite utilities
- Pure competition:
  - One *maximizes*,
  - the other *minimizes*



### **General Games**

- Agents have independent utilities
- Cooperation, indifference, competition, shifting alliances, and more are all possible

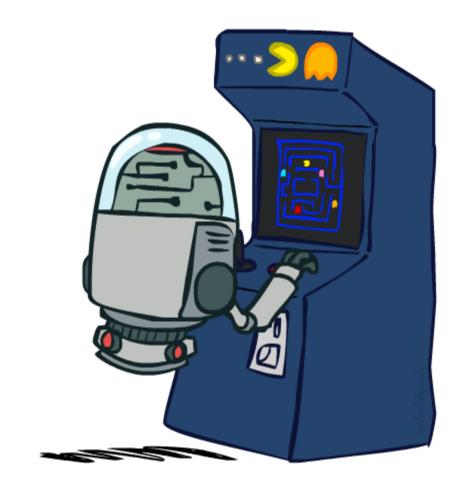
### "Standard" Games

### Standard games are:

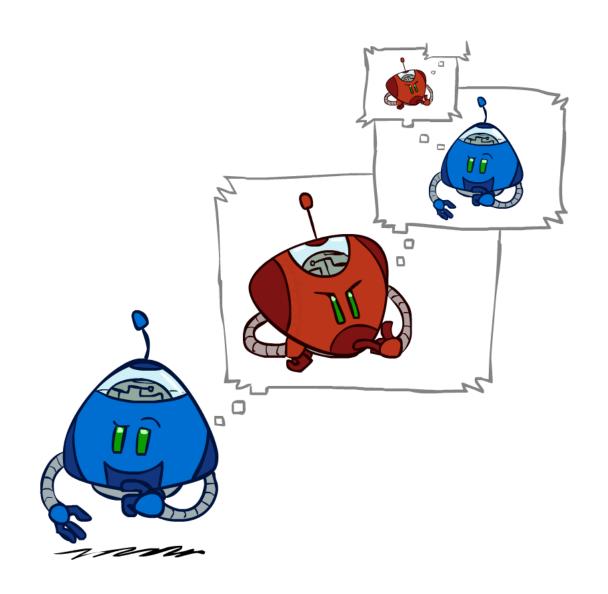
deterministic, observable, two-player, turn-taking, and zero-sum

### Game formulation:

- Initial state: s<sub>0</sub>
- Players: Player(s) indicates whose move it is
- Actions: Actions(s) for player on move
- Transition model: Result(s,a)
- Terminal test: Terminal-Test(s)
- Terminal values: Utility(s,p) for player p
   (Or just Utility(s) for player making the decision at root)



## Adversarial Search



## Minimax

**States** MAX (X) **Actions** Χ Values MIN (O) ХО 0 Х MAX (X) 0 X O X ΧÒ ХО MIN (O) X O X O O X X X O X O X X O X TERMINAL 0 Utility

## Minimax

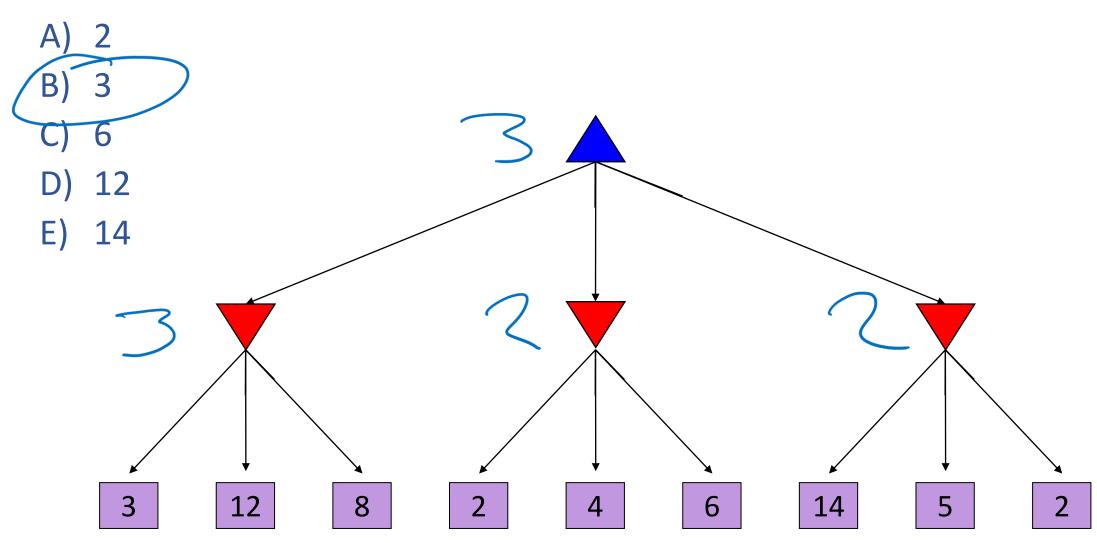


**States** 

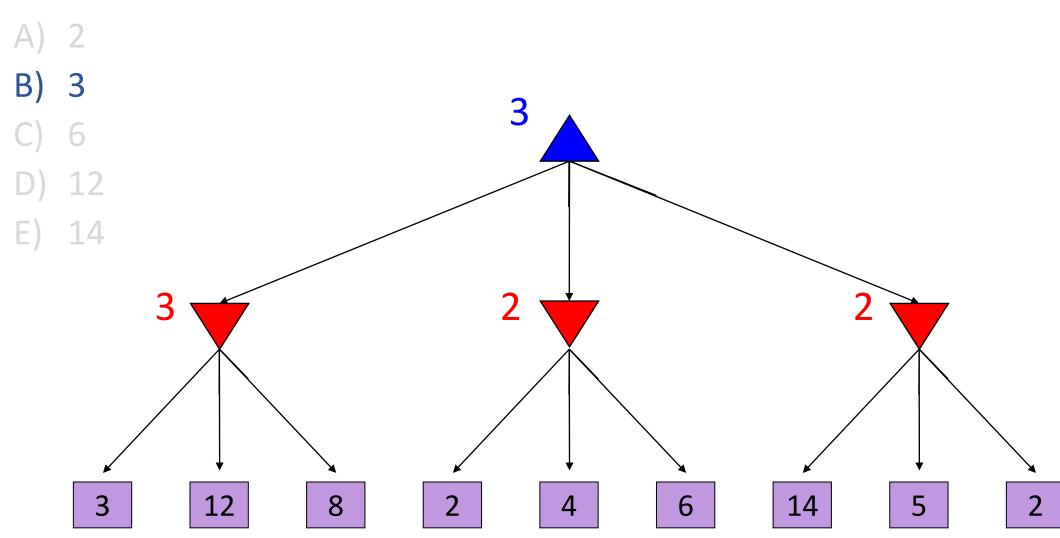
**Actions** 

Values 00

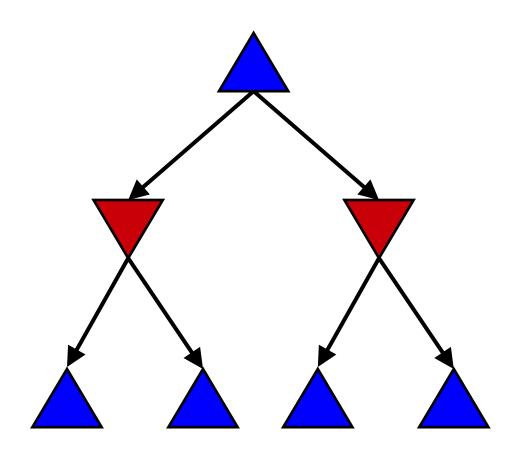
What is the minimax value at the root?



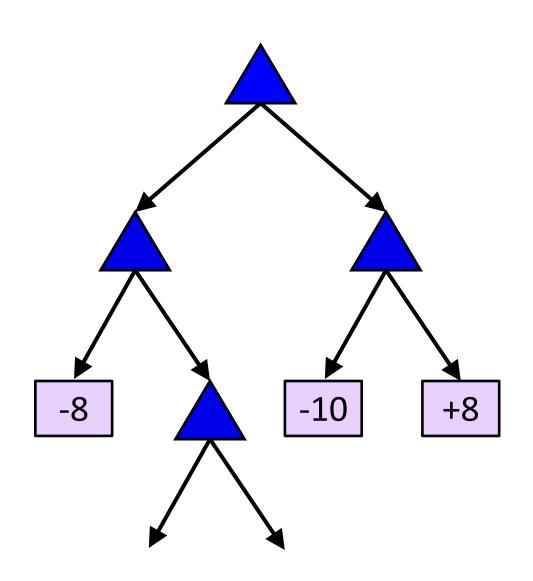
What is the minimax value at the root?



## Minimax Code

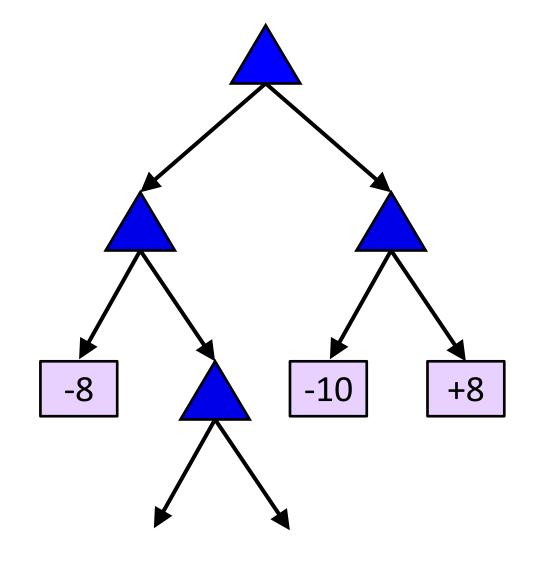


## Max Code



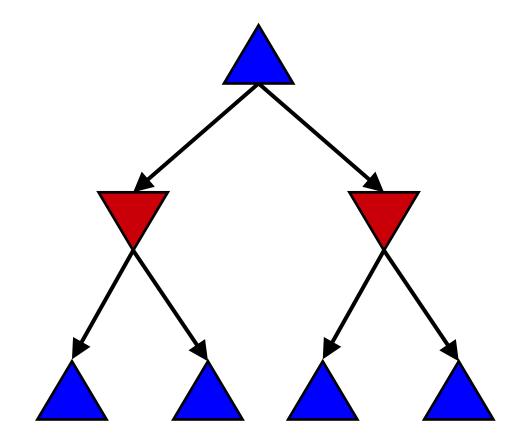
### Max Code

```
def max_value(state):
    if state.is_leaf:
        return state.value
    # TODO Also handle depth limit
    best_value = -10000000
    for action in state.actions:
        next_state = state.result(action)
        next_value = max_value(next_state)
        if next_value > best_value:
            best_value = next_value
    return best_value
```



### Minimax Code

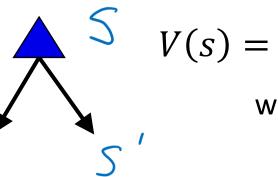
```
def max_value(state):
    if state.is_leaf:
        return state.value
    # TODO Also handle depth limit
    best_value = -10000000
    for action in state.actions:
        next_state = state.result(action)
        next_value = min_value(next_state)
        if next_value > best_value:
            best value = next value
    return best_value
def min_value(state):
```



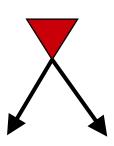
### Minimax Notation

```
a \in \{ action(5) \}
```

```
def max_value(state):
    if state.is leaf:
        return state.value
    # TODO Also handle depth limit
    best value = -10000000
    for action in state.actions:
        next_state = state.result(action)
        next value = min value(next state)
        if next_value > best_value:
            best value = next value
    return best_value
def min value(state):
```

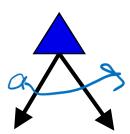


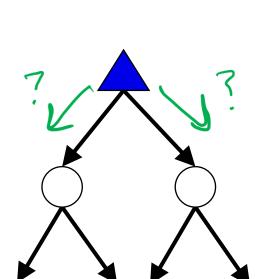
$$V(s) = \max_{a} V(s')$$
  
where  $s' = result(s, a)$ 



### Minimax Notation







$$V(s) = \max_{a} V(s'),$$
  
where  $s' = result(s, a)$   
 $\hat{a} = \underset{a}{\operatorname{argmax}} V(s'),$   
where  $s' = result(s, a)$ 

### Generic Game Tree Pseudocode

```
function minimax decision( state )
   return argmax a in state.actions value( state.result(a) )
function value( state )
   if state.is leaf
      return state.value
   if state.player is MAX
      return max a in state.actions value( state.result(a) )
   if state.player is MIN
      return min a in state.actions value( state.result(a) )
```

## Minimax Efficiency

#### How efficient is minimax?

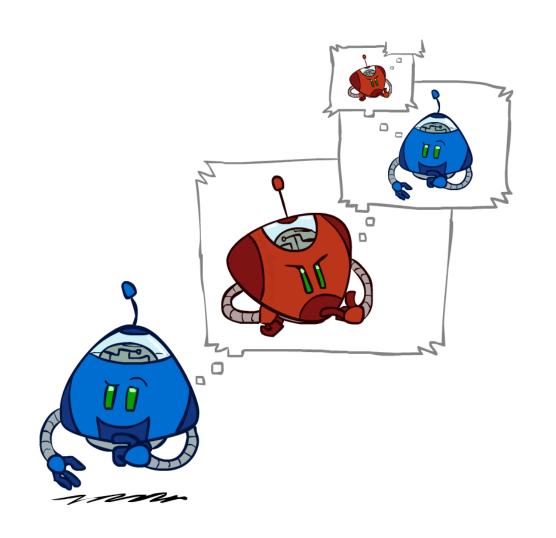
Just like (exhaustive) DFS

■ Time: O(b<sup>m</sup>)

Space: O(bm)

### Example: For chess, $b \approx 35$ , $m \approx 100$

- Exact solution is completely infeasible
- Humans can't do this either, so how do we play chess?
- Bounded rationality Herbert Simon



## Resource Limits



### Resource Limits

Problem: In realistic games, cannot search to leaves!

#### Solution 1: Bounded lookahead

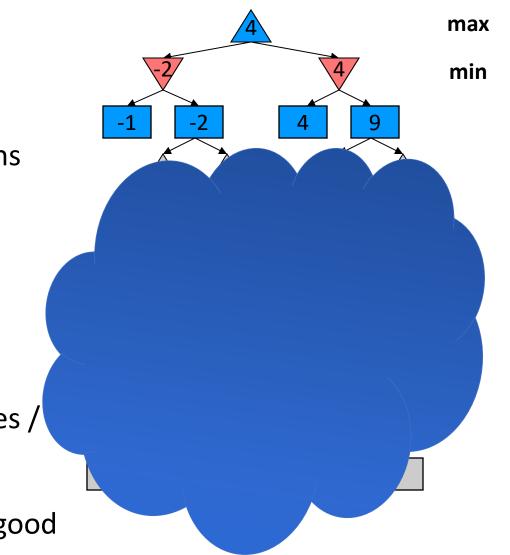
- Search only to a preset depth limit or horizon
- Use an evaluation function for non-terminal positions

Guarantee of optimal play is gone

More plies make a BIG difference

#### Example:

- Suppose we have 100 seconds, can explore 10K nodes / sec
- So can check 1M nodes per move
- For chess, b=~35 so reaches about depth 4 not so good



## Depth Matters

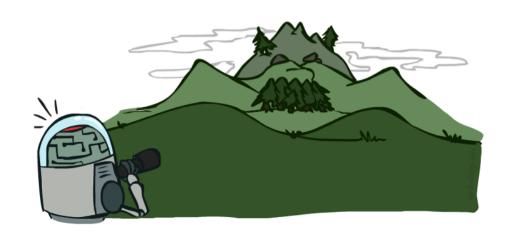
### Evaluation functions are always imperfect

### Deeper search => better play (usually)

 Or, deeper search gives same quality of play with a less accurate evaluation function

An important example of the tradeoff between complexity of features and complexity of computation

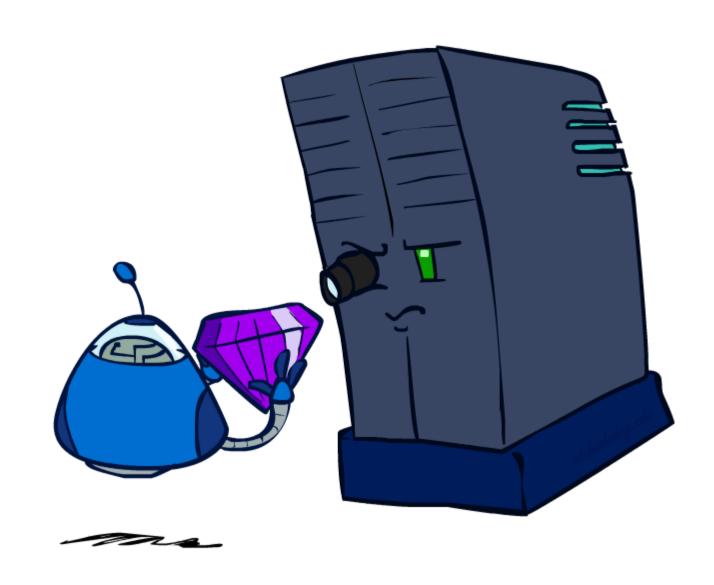




# Demo Limited Depth (2)

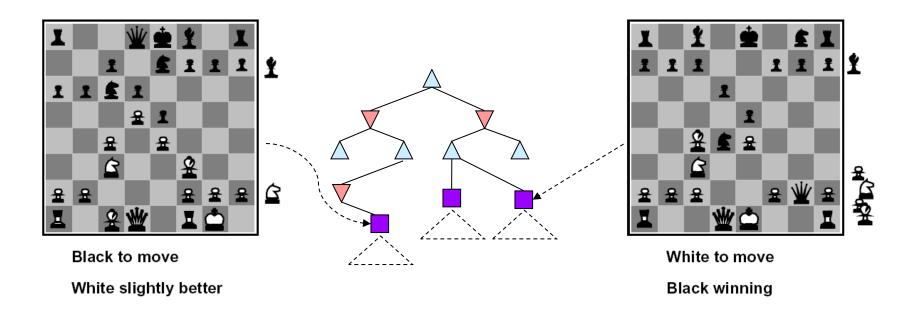
Demo Limited Depth (10)

## **Evaluation Functions**



### **Evaluation Functions**

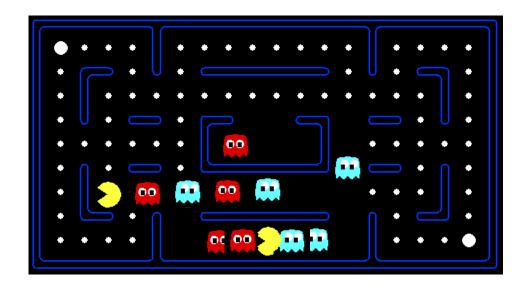
Evaluation functions score non-terminals in depth-limited search



Ideal function: returns the actual minimax value of the position In practice: typically weighted linear sum of features:

- EVAL(s) =  $w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$
- E.g.,  $w_1$  = 9,  $f_1(s)$  = (num white queens num black queens), etc.

## Evaluation for Pacman



### Generalized minimax

What if the game is not zero-sum, or has multiple players?

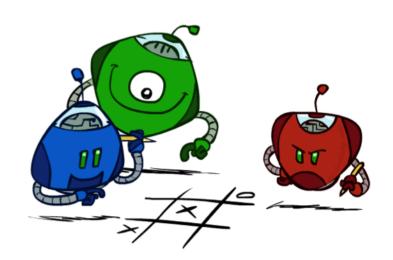
#### Generalization of minimax:

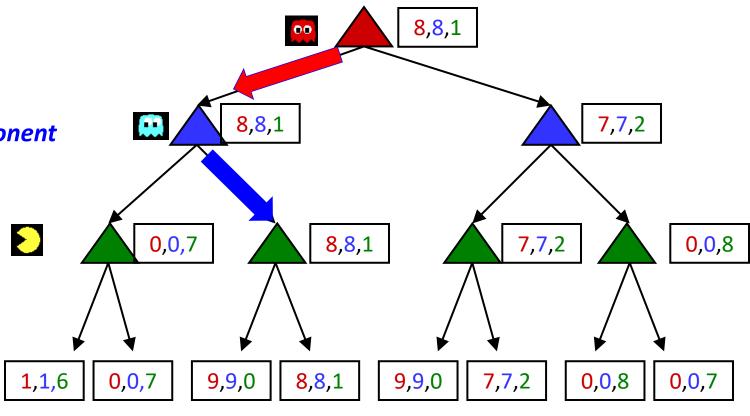
Terminals have utility tuples

Node values are also utility tuples

■ Each player maximizes its own component

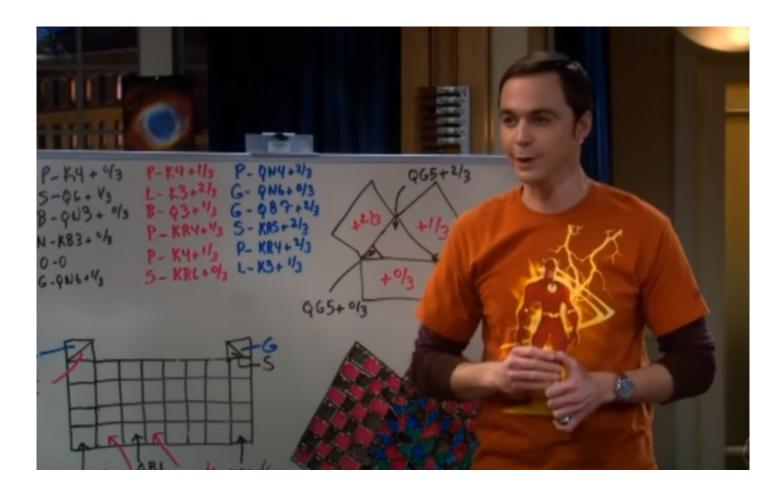
 Can give rise to cooperation and competition dynamically...







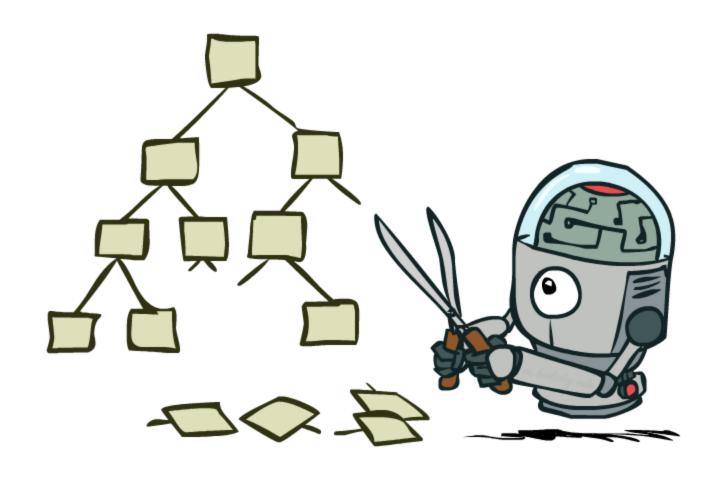
### Generalized minimax



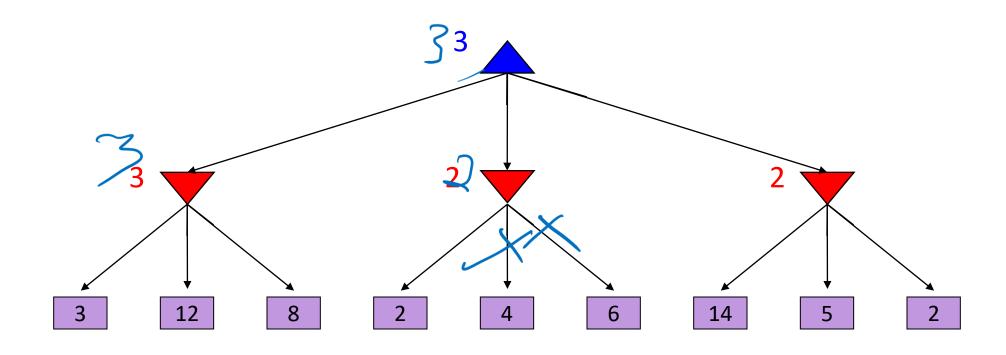
Three Person Chess

https://www.youtube.com/watch?v=HHVPutfveVs

## Game Tree Pruning

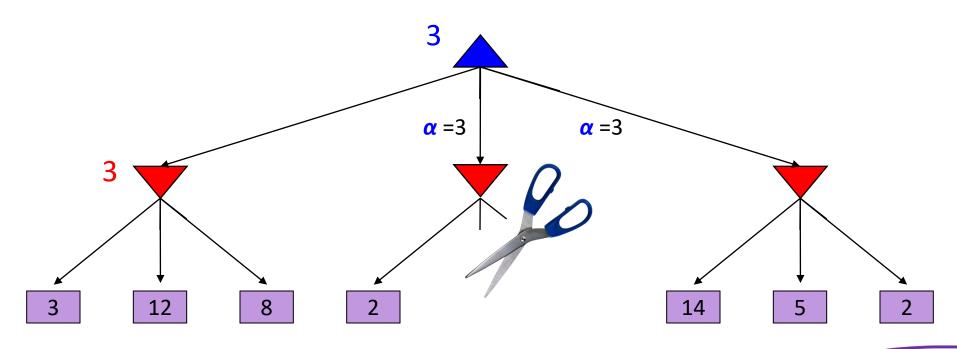


# Minimax Example

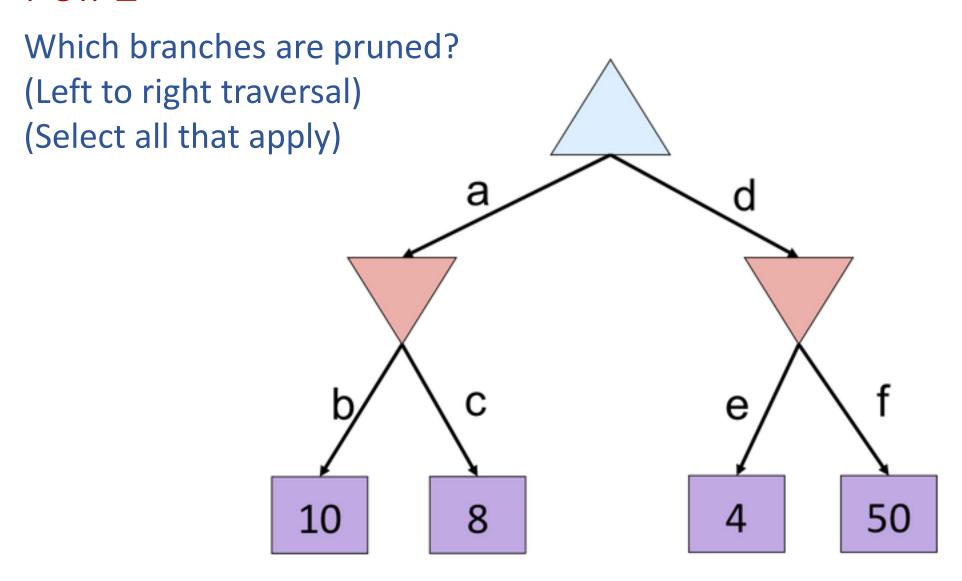


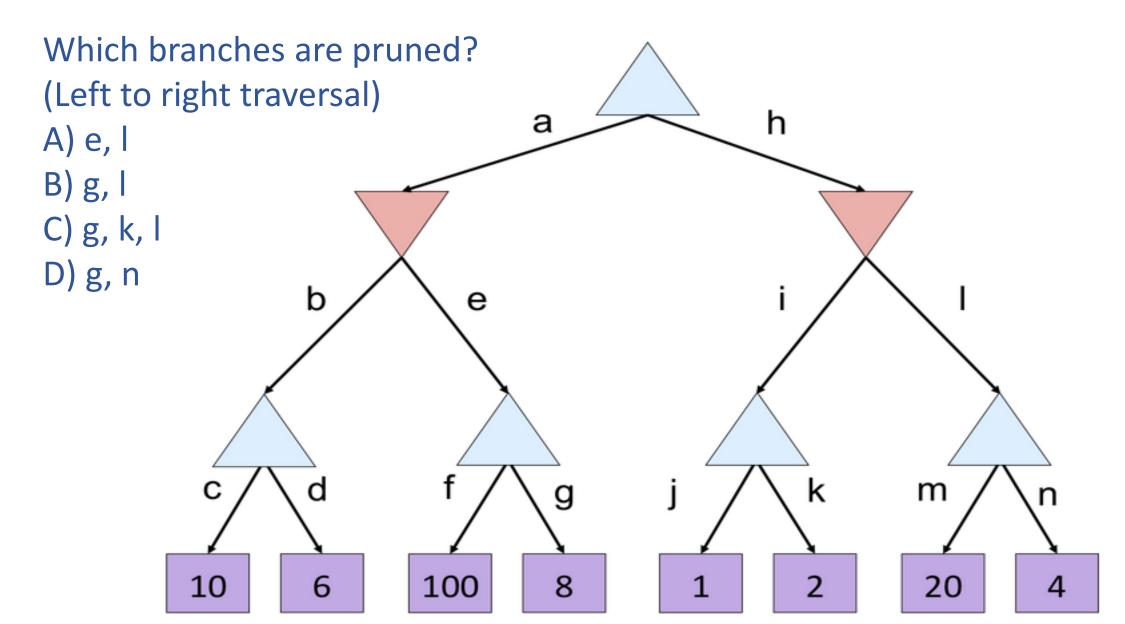
## Alpha-Beta Example

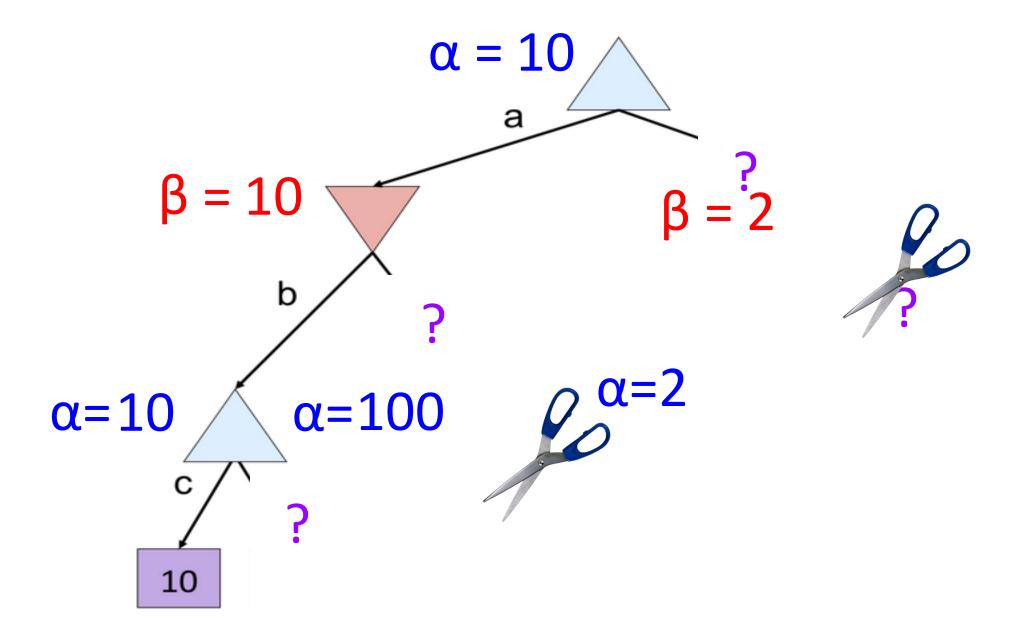
 $\alpha$  = best option so far from any MAX node on this path



**The order of generation matters**: more pruning is possible if good moves come first







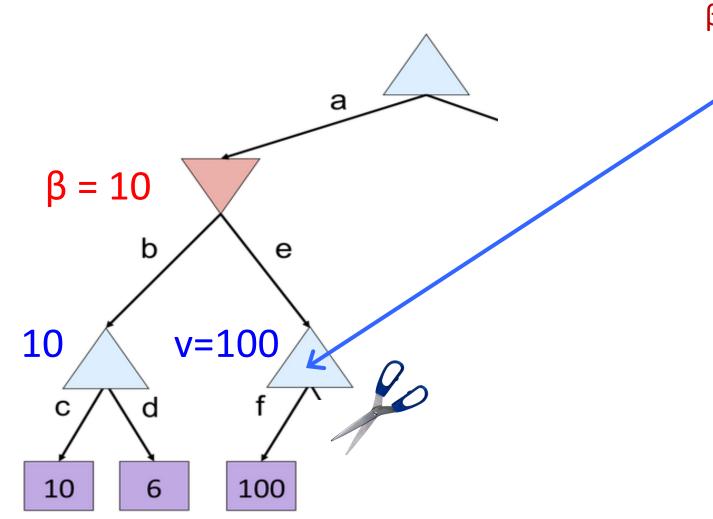
## Alpha-Beta Implementation

 $\alpha$ : MAX's best option on path to root  $\beta$ : MIN's best option on path to root

```
def max-value(state, \alpha, \beta):
    initialize v = -\infty
    for each successor of state:
        v = \max(v, value(successor, \alpha, \beta))
        if v \ge \beta
        return v
        \alpha = \max(\alpha, v)
    return v
```

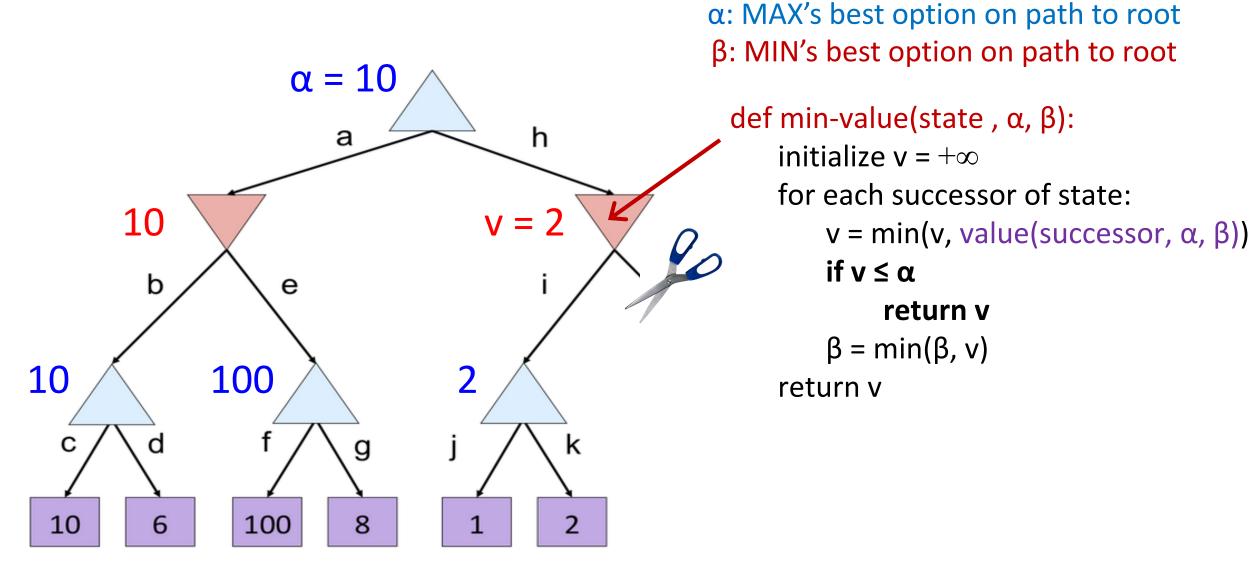
```
\label{eq:def-min-value} \begin{split} & \text{def min-value}(\text{state }, \alpha, \beta): \\ & \text{initialize } v = +\infty \\ & \text{for each successor of state:} \\ & v = \min(v, \text{value}(\text{successor}, \alpha, \beta)) \\ & \text{if } v \leq \alpha \\ & \text{return } v \\ & \beta = \min(\beta, v) \\ & \text{return } v \end{split}
```

# Alpha-Beta Poll 3



```
α: MAX's best option on path to root
β: MIN's best option on path to root
  def max-value(state, \alpha, \beta):
       initialize v = -\infty
       for each successor of state:
           v = max(v, value(successor, \alpha, \beta))
           if v \ge \beta
                 return v
           \alpha = \max(\alpha, v)
       return v
```

# Alpha-Beta Poll 3



# Alpha-Beta Pruning Properties

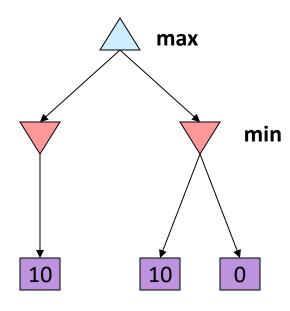
Theorem: This pruning has *no effect* on minimax value computed for the root!

#### Good child ordering improves effectiveness of pruning

Iterative deepening helps with this

#### With "perfect ordering":

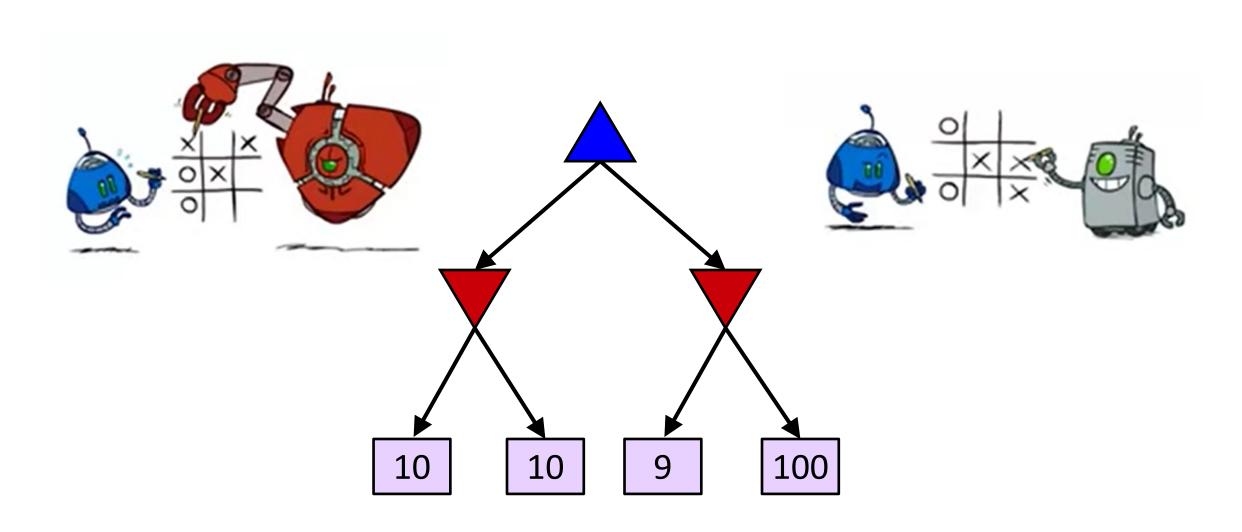
- Time complexity drops to O(b<sup>m/2</sup>)
- Doubles solvable depth!
- 1M nodes/move => depth=8, respectable



This is a simple example of metareasoning (computing about what to compute)

# Modeling Assumptions

Know your opponent



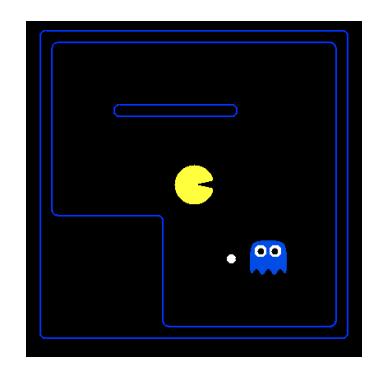
## Poll 4

How well would a minimax Pacman perform against a ghost that moves randomly?

- A. Better than against a minimax ghost
- B. Worse than against a minimax ghost
- C. Same as against a minimax ghost

### Fine print

- Pacman: uses depth 4 minimax as before
- Ghost: moves randomly



# Modeling Assumptions

#### Minimax autonomous vehicle?



Image: https://corporate.ford.com/innovation/autonomous-2021.html

## Minimax Driver?



https://youtu.be/5PRrwlkPdNI?t=52

Clip: How I Met Your Mother, CBS

# Modeling Assumptions

### Dangerous Pessimism

Assuming the worst case when it's not likely



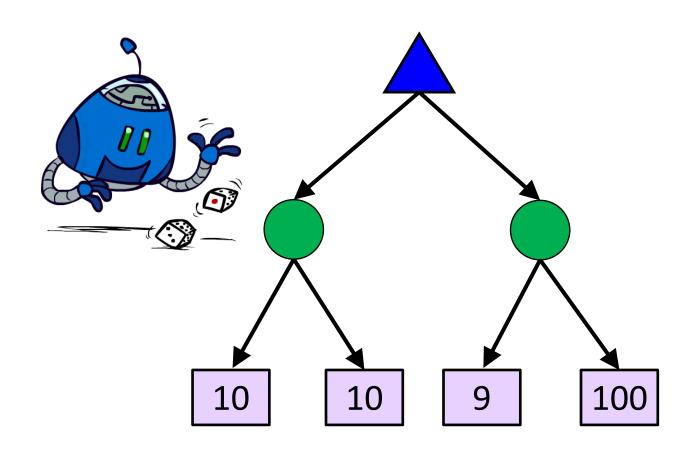
### **Dangerous Optimism**

Assuming chance when the world is adversarial

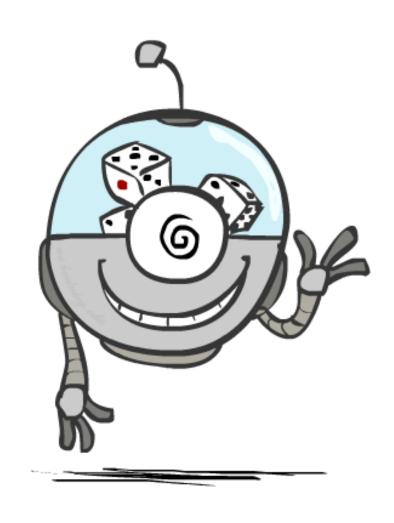


# Modeling Assumptions

Chance nodes: Expectimax



# Probabilities



## Probabilities

A random variable represents an event whose outcome is unknown

A probability distribution is an assignment of weights to outcomes

#### Example: Traffic on freeway

- Random variable: T = whether there's traffic
- Outcomes: T in {none, light, heavy}
- Distribution:

P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25



0.25



0.50



0.25

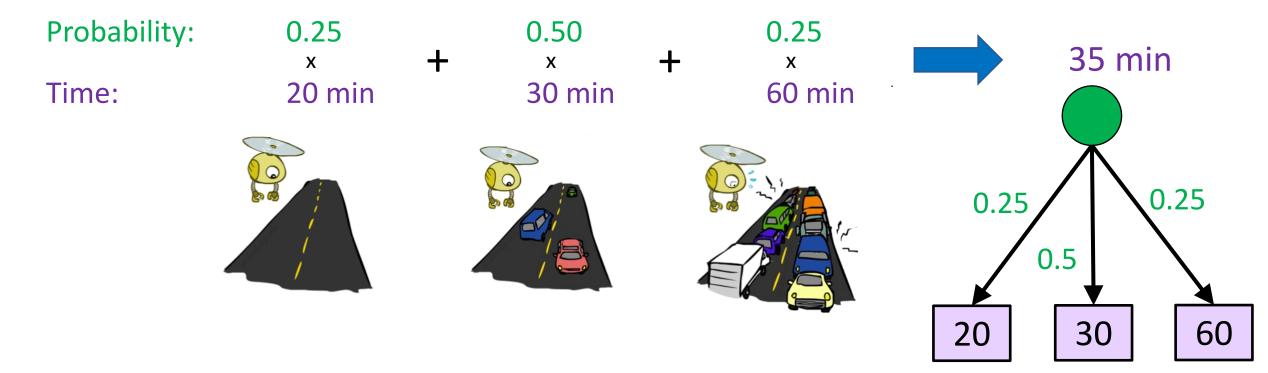
Probabilities over all possible outcomes sum to one

## **Expected Value**

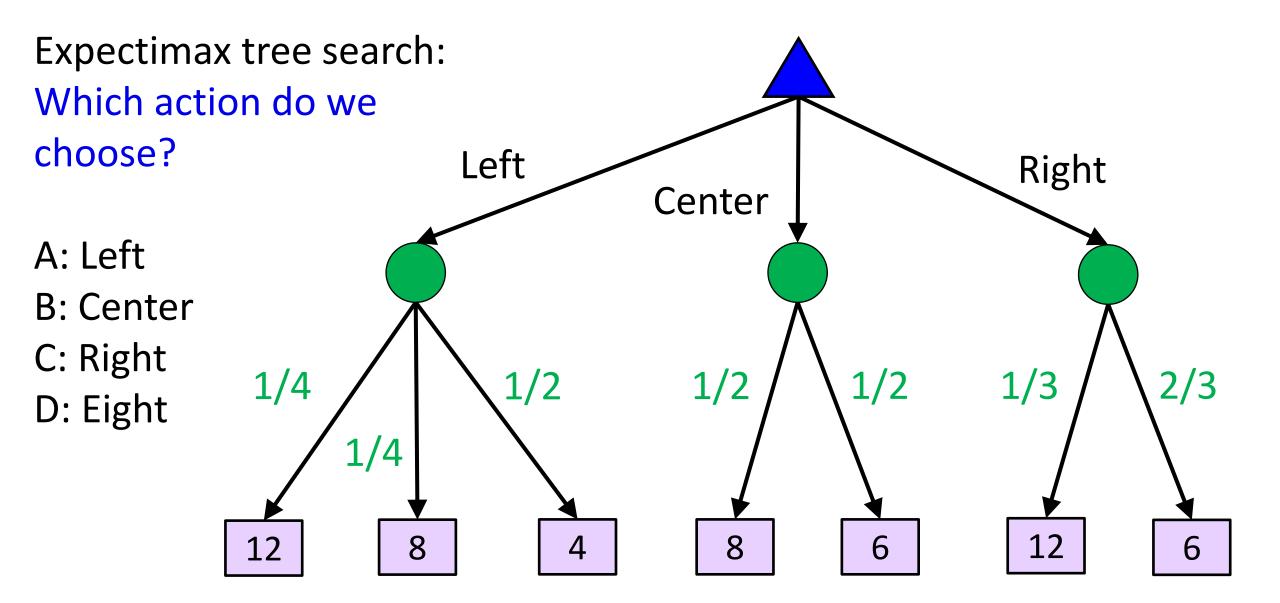
Expected value of a function of a random variable:

Average the values of each outcome, weighted by the probability of that outcome

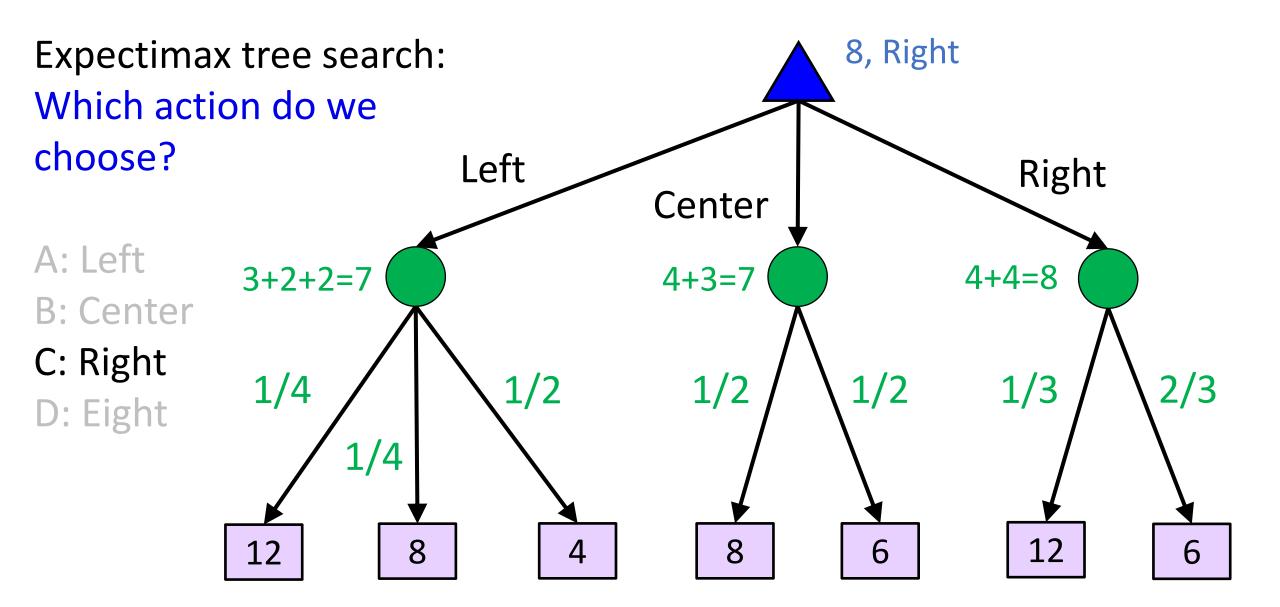
Example: How long to get to the airport?



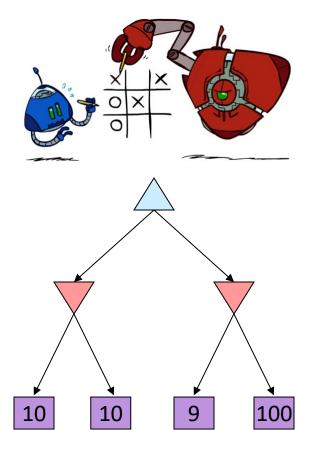
## Poll 5



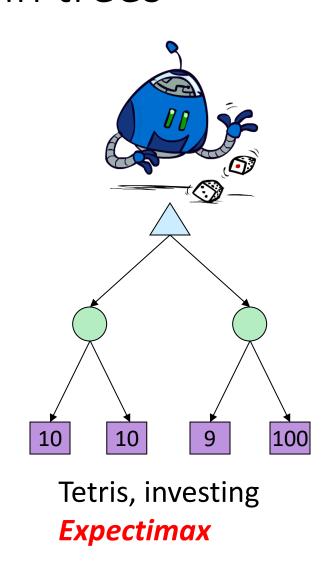
## Poll 5



## Chance outcomes in trees



Tictactoe, chess *Minimax* 

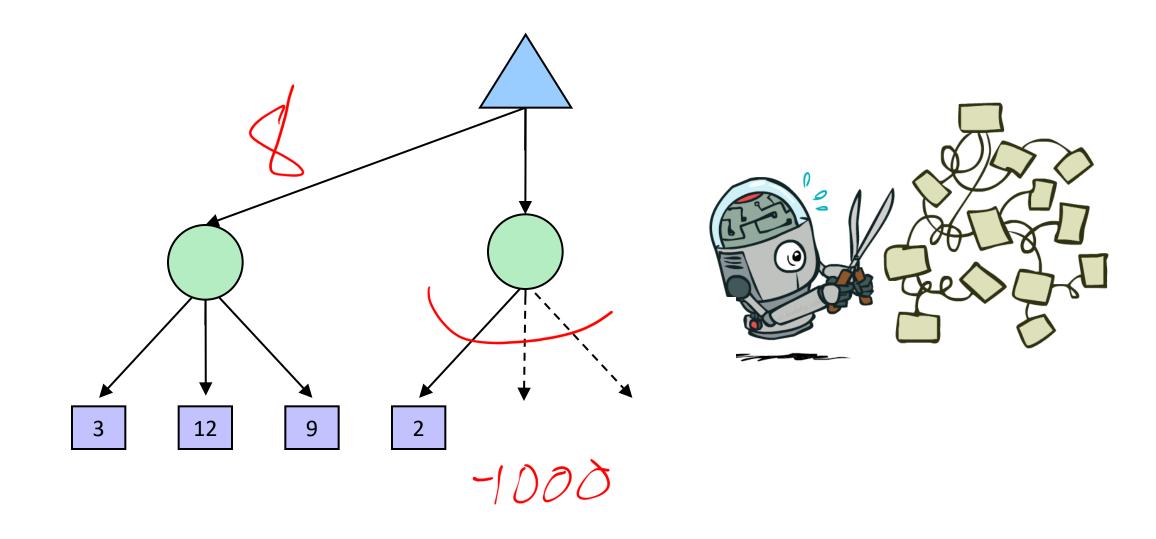


10 100 10 9 Backgammon, Monopoly **Expectiminimax** 

# Expectimax Code

```
function value( state )
   if state.is leaf
      return state.value
   if state.player is MAX
      return max a in state actions value (state.result(a))
   if state.player is MIN
      return min a in state.actions value( state.result(a) )
   if state.player is CHANCE
      return sum s in state.next states P(s) * value(s)
```

# Expectimax Pruning?



## **Expectimax Notation**

+

Time: 20 min x

Probability: 0.25



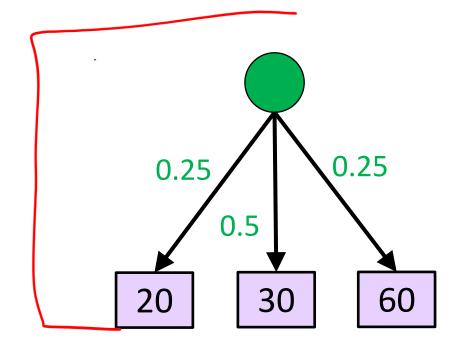






60 min x 0.25





### Max node notation

$$V(s) = \max_{a} V(s'),$$
  
where  $s' = result(s, a)$ 

### **Chance** node notation

$$V(s) = \sum_{s'} P(s') V(s')$$

# Preview: MDP/Reinforcement Learning Notation



$$V(s) = \max_{a} \sum_{s'} P(s') V(s')$$

# Preview: MDP/Reinforcement Learning Notation

Standard expectimax: 
$$V(s) = \max_{a} \sum_{s'} P(s'|s, a)V(s')$$

Bellman equations: 
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')]$$

Value iteration: 
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s$$

Q-iteration: 
$$Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall \, s, a$$

Policy extraction: 
$$\pi_V(s) = \operatorname*{argmax}_a \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')], \quad \forall \, s$$

Policy evaluation: 
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$$

Policy improvement: 
$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall \, s$$

# Preview: MDP/Reinforcement Learning Notation

Standard expectimax: 
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a)V(s')$$
 Bellman equations: 
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')]$$
 Value iteration: 
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_{k}(s')], \quad \forall \, s$$
 Q-iteration: 
$$Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \max_{a'} Q_{k}(s',a')], \quad \forall \, s,a$$
 Policy extraction: 
$$\pi_{V}(s) = \arg\max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')], \quad \forall \, s$$
 Policy evaluation: 
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_{k}^{\pi}(s')], \quad \forall \, s$$
 Policy improvement: 
$$\pi_{new}(s) = \arg\max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_{k}^{\pi}(s')], \quad \forall \, s$$