Al: Representation and Problem Solving

Adversarial Search

Instructor: Pat Virtue
Slide credits: CMU Al, http://ai.berkeley.edu

Outline

History / Overview

@ro-Sum Games (Minimax)

Evaluation Functions &——

Search Efficiency (a-B Pruning)

i Games of Chance (Expectimax)

Game Playing State-of-the-Art

Checkers: e /B praning

= 1950: First computer player.
= 1959: Samuel’s self-taught program.

= 1994: First computer world champion: Chinook ended 40-year-reign
of human champion Marion Tinsley using complete 8-piece
endgame.

= 2007: Checkers solved! Endgame database of 39 trillion states ‘”@ U\r\'s’}l-c

Chess:

= 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Siman,
McCarthy.)

= 1960s onward: gradual improvement under “standard mode

= 1997: special-purpose chess machine Deep Blue defeats human
~champion Gary Kasparov in a six-game match. Deep Blue examined
200M positions per second and extended some lines of search up to
40 ply. Current programs running on a PC rate > 3200 (vs 2870 for
Magnus Carlsen).

Go: 300

= 1968: Zobrist’s program plays legal Go, barely (b>300!)

= 2005-2014: Monte Carlo tree search enables rapid advances: current
programs B&aT strong amateurs, and professionals with a 3-4 stone
handicap.

III

SolLVED) -

7

EAPERTY -

HUMAN =~

ABRILK

Checkers

Chess

Pacman.

Types of Games \
MK X N D
Many different kinds of games!

[Axes:
= Deterministic or stochastic?
= Perfect information (fully observable)?
" One, two, or more players?

2\- Turn-taking or simultaneous? &=
u

Zero sum?

Want algorithms for calculating a contingent plan (a.k.a. strategy or policy)
which recommends a move for every possible eventuality

/ero-Sum Games

Zero-Sum Games General Games
= Agents have opposite utilities = Agents have independent
= Pure competition: utilities
= One maximizes, = Cooperation, indifference,

competition, shifting alliances,
and more are all possible

» the other minimizes

“Standard” Games

e —

Game formulation:

= |nitial state: s,

= Players: Player(s) indicates whose move it is
= Actions: Actions(s) for player on move
= Transition model: Result(s,a)
= Terminal test: Terminal-Test(s)
* Terminal values: Utility(s,p) for player p
(Or just Utility(s) for player making the decision at root)

Adversarial Search

Minimax

States > MAX ()
Actions
ValueS MIN (O) X X X X X X
X X X
MAX (X) o
MIN (O) X X

x[o[x] [x[o[x] [x[o[xX

TERMINAL o|Xx| [o]o[x X
o) X/ x[o| [X]o|o

Utility -1 0 +1

Minimax

States
Actions
Values

Poll 1

What is the minimax value at the root?
A) 2

Poll 1

What is the minimax value at the root?

B) 3

Minimax Code

Max Code

Max Code

def max_value(state):

if state.is_leaf:
return state.value
TODO Also handle depth limit &——

best value = -10000000

for action in state.actions:
next_state = state.result(action)

next _value = max_value(next_state)
 S———

if next_value > best value:
best_value = next_value

return best_value

Minimax Code

def max_value(state):
if state.is_leaf:
return state.value
TODO Also handle depth limit
best value = -10000000

for action in state.actions:
next_state = state.result(action)

next _value = min_value(next_state)

LSy

it next_value > best value:
best value = next_value

return best_value

def min value(state):

& e

Minimax Notation < 2 action (555

def max_value(state):

if state.is_leaf: S V(S) — mC?X;V(S,)E

return state.value

r __
TODO Also handle depth limit where ' = result(s, a)
/

best value = -10000000 j;

for action in state.actions:
next_state = state.result(action)

next _value = min_value(next_state)

it next_value > best value:
best value = next_value

return best_value

def min value(state):

Minimax Notation

v4

V(s) = max V(s),
a
“ where s' = result(s, a)

loesT qc tiors

—@nggj “chon ' for Joof

where s' = result(s,a)

Generic Game Tree Pseudocode

function minimax_decision(state)

return argmax i, ctate.actions vValue(state.result(a))

)

function value(state)
if state.is leaf
return state.value

if state.player is MAX
return Max . i, ctate actions Value(state.result(a))

if state.player is MIN
return min . ctate actions Value(state.result(a))

Minimax Efficiency

How efficient is minimax?
= Just like (exhaustive) DFS
" Time: O(b™)

= Space: O(bm)

Example: For chess, b = 35, m = 100
= Exact solution is completely infeasible

= Humans can’t do this either, so how
do we play chess?

* Bounded rationality — Herbert Simon

Resource LiImits

Resource LiImits

Problem: In realistic games, cannot search to leaves! max

Solution 1: Bounded lookahead
= Search only to a preset depth limit or horizon
= Use an evaluation function for non-terminal positions

! Guarantee of optimal play is gone

More plies make a BIG difference

Example:

= Suppose we have 100 seconds, can explore 10K nodes /
sec

= So can check 1M nodes per move
" For chess, b="35 so reaches about depth 4 — not so good

Depth Matters

Evaluation functions are always imperfect A
00 _ *

Deeper search => better play (usually)

= Or, deeper search gives same quality
of play with a less accurate evaluation
function

An important example of the tradeoff
between complexity of features and
complexity of computation

[Demo: depth limited (L6D4, L6D5)]

Demo Limited Depth (2)

Demo Limited Depth (10)

Evaluation Functions

Evaluation Functions

Evaluation functions score non-terminals in depth-limited search

Black to move White to move

White slightly better Black winning

ldeal function: returns the actual minimax value of the position

In practice: typically weighted linear sum of features:

= EVAL(S) = w,f1(s) + W, f5(s) + .. + W, f.(5)
" E.g., w,; =9, f(s) = (hum white queens — num black queens), etc.

Evaluation for Pacman

Generalized minimax

What if the game is not zero-sum, or has multiple players?

Generalization of minimax:

Terminals have utility tuples
Node values are also utility tuples

Each player maximizes its own component

Can give rise to cooperation and
competition dynamically...

& 8,8,1
[} 8,8,1 7,7,2
] 0,0,7 8,8,1 7,7,2 0,0,8
1,6 || 0,07 | 1990|881]990!|[772]]008]|| 007

Generalized minimax

Three Person Chess

https://www.youtube.com/watch?v=HHVPutfveVs

https://www.youtube.com/watch?v=HHVPutfveVs

Game Tree Pruning

Minimax Example

14

Alpha-Beta Example

o = best option so far from any
MAX node on this path

The order of generation matters: more pruning
is possible if good moves come first

Poll 2

Which branches are pruned?

(Left to right traversal)
(Select all that apply)

TN

10

50

Poll 3

Which branches are pruned?
(Left to right traversal)

A) e,
B) g,

C)g Kk, |
D) g, n

1

/S

/N

100

8

'/

"/

3

20

N

Poll 3

Alpha-Beta Implementation

a: MAX’s best option on path to root
B: MIN’s best option on path to root

def max-value(state, a, B): def min-value(state, a, B):
initialize v = -0 initialize v = +oo
for each successor of state: for each successor of state:
v = max(v, value(successor, a, B)) v = min(v, value(successor, a,))
ifv>P if v<a
return v return v
a = max(a, v) B = min(B, v)

return v return v

Alpha-Beta Poll 3

a: MAX’s best option on path to root
B: MIN’s best option on path to root

def max-value(state, a, B):

initialize v = -0

for each successor of state:
v = max(v, value(successor, a, 3))
ifv2P

returnv

o = max(a, v)

return v

Alpha-Beta Poll 3

10
b e

a=10
a A h

10 100
AN fg

10

6

sz‘?{p

100

8

a: MAX’s best option on path to root
B: MIN’s best option on path to root

def min-value(state, a, B):
initialize v = +oo
for each successor of state:
v = min(v, value(successor, a, 3))
ifvsa
returnv
B =min(B, v)

return v

Alpha-Beta Pruning Properties

Theorem: This pruning has no effect on minimax value computed for the root!

Good child ordering improves effectiveness of pruning
" |[terative deepening helps with this

max
With “perfect ordering”: .
* Time complexity drops to O(b™/2) min
" Doubles solvable depth!
= 1M nodes/move => depth=8, respectable
10 10 0

This is a simple example of metareasoning (computing about what to compute)

Modeling Assumptions

Know your opponent

8

| ——

10 10 9 100

Poll 4

How well would a minimax Pacman perform against a
ghost that moves randomly?

A. Better than against a minimax ghost
B. Worse than against a minimax ghost

C. Same as against a minimax ghost

Fine print
" Pacman: uses depth 4 minimax as before

" Ghost: moves randomly [Demo: L7D6)]

Modeling Assumptions

Minimax autonomous vehicle?

Minimax Driver?

189441}

https://youtu.be/5PRrwlkPdNI?t=52
Clip: How | Met Your Mother, CBS

https://youtu.be/5PRrwlkPdNI?t=52

Modeling Assumptions

Dangerous Pessimism Dangerous Optimism
Assuming the worst case when it’s not likely Assuming chance when the world is adversarial

Modeling Assumptions

Chance nodes: Expectimax

10

10

100

Probabilities

Probabilities

A random variable represents an event whose outcome
is unknown

0.25

A probability distribution is an assignment of weights
to outcomes

0.50

Example: Traffic on freeway
= Random variable: T = whether there’s traffic
= Qutcomes: T in {none, light, heavy}
= Distribution:
P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) =0.25

Probabilities over all possible outcomes sum to one

Expected Value

Expected value of a function of a random variable:
Average the values of each outcome,
weighted by the probability of that outcome

Example: How long to get to the airport?

Probability: 0.25 0.50
X + X

30 min

Time:

Poll 5

Expectimax tree search:

Which action do we

choose?

A: Left

B: Center
C: Right
D: Eight

1/4

12

1/4

4
8

Left

Center

Right

1/3

12

Poll 5

Expectimax tree search:
Which action do we
choose?

C: Right

Left

Center

4+3=7

1/2

Right

A+4=8

1/3

12

2/3

Chance outcomes in trees

10| |10 9 100 10| |10 9 100
Tictactoe, chess Tetris, investing
10 9

Minimax Expectimax 10|| 9 10 (100

Backgammon, Monopoly
Expectiminimax

Expectimax Code

function value(state)
if state.is leaf
return state.value

if state.player is MAX
return Max , i, ctate actions Value(state.result(a))

if state.player is MIN
return min . ctate actions Value(state.result(a))

if state.player is CHANCE
return sum S in state.next_states P(S) * Value(S)

Expectimax Pruning?

Expectimax Notation

Time: 20 min 30 min 60 min T
X + X 4 X
Probability: 0.25 0.50 0.25

—_

Max node notation Chance node notation
V(s) = max V(s"), \\ V(s) = 2 P(s")V(s)
a
S/

where s’ = result(s, a)

Preview: MDP/Reinforcement Learning Notation

V(is) = mc?xi[;(s’) V(S’;]

Preview: MDP/Reinforcement Learning Notation

Standard expectimax: V(s) = maxz P(s'|s,a)V(s")
ﬁ—_""---?;_ [

Bellman equations: V(s) = maxz P(s'|s,a)[R(s,a,s") + yV(s')]
a
Y
Value iteration: Viesr(s) = maxz P(s'|s,a)[R(s,a,s") + yVk(s)], Vs
a =
Q-iteration: Qi+1(s,a) = Z P(s'|s,a)[R(s,a,s") + ymax Qi (s’,a")], Vs,a
S/ 4
Policy extraction: my(s) = argmaxz P(s'|s,a)[R(s,a,s") +yV(s')], Vs
a S/
Policy evaluation: Vi,(s) = Z P(s'|s,m(s))[R(s,m(s),s") + yVF(s")], Vs
Y

Policy improvement: Tpew(S) = argmaxz P(s'|s,a)[R(s,a,s") +yVTold(s")], Vs
a
S/

Preview: MDP/Reinforcement Learning Notation

Standard expectimax: V(s) = maxz P(s'|s,a)V(s")
a =
Bellman equations: V(s) = maxz: P(s'|s,a)[R(s,a,s") + yV(s")]
a =
Value iteration: Vis1(s) = maxz P(s'ls,a)[R(s,a,s") +yVi(s))], Vs
a =
Q-iteration: Qr+1(s,a) = z P(s'|s,a)[R(s,a,s") + v max Qy (s',a")], Vs,a
a
S/
Policy extraction: my(s) = argmaxz P(s'|s,a)[R(s,a,s") + yV(s')], Vs
a S/
Policy evaluation: Vi,(s) = z P(s'|s,m(s))[R(s,m(s),s") + yVF(s")], Vs
Y

Policy improvement: Tnew(S) = argmaxz P(s'|s,a)[R(s,a,s") +yV™olda(s")], Vs
a
S/

	Slide 1: AI: Representation and Problem Solving
	Slide 2: Outline
	Slide 3: Game Playing State-of-the-Art
	Slide 5: Types of Games
	Slide 6: Zero-Sum Games
	Slide 7: “Standard” Games
	Slide 8: Adversarial Search
	Slide 10: Minimax
	Slide 11: Minimax
	Slide 12: Poll 1
	Slide 13: Poll 1
	Slide 14: Minimax Code
	Slide 15: Max Code
	Slide 16: Max Code
	Slide 17: Minimax Code
	Slide 18: Minimax Notation
	Slide 19: Minimax Notation
	Slide 20: Generic Game Tree Pseudocode
	Slide 21: Minimax Efficiency
	Slide 22: Resource Limits
	Slide 23: Resource Limits
	Slide 24: Depth Matters
	Slide 25: Demo Limited Depth (2)
	Slide 26: Demo Limited Depth (10)
	Slide 27: Evaluation Functions
	Slide 28: Evaluation Functions
	Slide 29: Evaluation for Pacman
	Slide 30: Generalized minimax
	Slide 31: Generalized minimax
	Slide 32: Game Tree Pruning
	Slide 33: Minimax Example
	Slide 34: Alpha-Beta Example
	Slide 35: Poll 2
	Slide 36: Poll 3
	Slide 37: Poll 3
	Slide 38: Alpha-Beta Implementation
	Slide 39: Alpha-Beta Poll 3
	Slide 40: Alpha-Beta Poll 3
	Slide 41: Alpha-Beta Pruning Properties
	Slide 42: Modeling Assumptions
	Slide 44: Poll 4
	Slide 47: Modeling Assumptions
	Slide 48: Minimax Driver?
	Slide 49: Modeling Assumptions
	Slide 50: Modeling Assumptions
	Slide 52: Probabilities
	Slide 53: Probabilities
	Slide 54: Expected Value
	Slide 55: Poll 5
	Slide 56: Poll 5
	Slide 57: Chance outcomes in trees
	Slide 58: Expectimax Code
	Slide 59: Expectimax Pruning?
	Slide 60: Expectimax Notation
	Slide 61: Preview: MDP/Reinforcement Learning Notation
	Slide 62: Preview: MDP/Reinforcement Learning Notation
	Slide 63: Preview: MDP/Reinforcement Learning Notation

