Al: Representation and Problem Solving

Adversarial Search

Instructor: Pat Virtue
Slide credits: CMU Al, http://ai.berkeley.edu

Outline

History / Overview

Zero-Sum Games (Minimax)
Evaluation Functions

Search Efficiency (a-B Pruning)

Games of Chance (Expectimax)

Game Playing State-of-the-Art

Checkers:

1950: First computer player.
1959: Samuel’s self-taught program.

1994: First computer world champion: Chinook ended 40-year-reign
of human champion Marion Tinsley using complete 8-piece
endgame.

2007: Checkers solved! Endgame database of 39 trillion states

Chess:

1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon,
McCarthy.

1960s onward: gradual improvement under “standard model”

1997: special-purpose chess machine Deep Blue defeats human
champion Gary Kasparov in a six-game match. Deep Blue examined
200M positions per second and extended some lines of search up to
40 ply. Current programs running on a PC rate > 3200 (vs 2870 for
Magnus Carlsen).

Go:

1968: Zobrist’s program plays legal Go, barely (b>300!)

2005-2014: Monte Carlo tree search enables rapid advances: current
programs beat strong amateurs, and professionals with a 3-4 stone
handicap.

SolLVED) -

EAPERTY -

HUMAN =~

ABRILK

Checkers

Chess

Pacman.

Game Playing State-of-the-Art

Checkers:

1950: First computer player.
1959: Samuel’s self-taught program.

1994: First computer world champion: Chinook ended 40-year-reign
of human champion Marion Tinsley using complete 8-piece
endgame.

2007: Checkers solved! Endgame database of 39 trillion states

Chess:

1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon,
McCarthy.

1960s onward: gradual improvement under “standard mode

1997: special-purpose chess machine Deep Blue defeats human
champion Gary Kasparov in a six-game match. Deep Blue examined
200M positions per second and extended some lines of search up to
40 ply. Current programs running on a PC rate > 3200 (vs 2870 for
Magnus Carlsen).

III

Go:

1968: Zobrist’s program plays legal Go, barely (b>300!)

2005-2014: Monte Carlo tree search enables rapid advances: current
programs beat strong amateurs, and professionals with a 3-4 stone
handicap.

2015: AlphaGo from DeepMind beats Lee Sedol

SoLVED! +

ERPERY +

HUWMAN -1

ABR\CK =

Checkers

Chess

FPacman.

Behavior from Computation

[Demo: mystery pacman (L6D1)]

Types of Games

Many different kinds of games!

AXxes:

= Deterministic or stochastic?

= Perfect information (fully observable)?
" One, two, or more players?

T = T

" Turn-taking or simultaneous?
= Zerosum?

Want algorithms for calculating a contingent plan (a.k.a. strategy or policy)
which recommends a move for every possible eventuality

/ero-Sum Games

= Zero-Sum Games " General Games
= Agents have opposite utilities = Agents have independent utilities
" Pure compef¥jtion: = Cooperation, indifference,
» One maximizes, the other minimizes competition, shifting alliances, and

more are all possible

“Standard” Games

Standard games are deterministic, observable,
two-player, turn-taking, zero-sum

Game formulation:
" |nitial state: s,
» Players: Player(s) indicates whose move it is
= Actions: Actions(s) for player on move
" Transition model: Result(s,a)
=" Terminal test: Terminal-Test(s)
= Terminal values: Utility(s,p) for player p
= Or just Utility(s) for player making the decision at root

Adversarial Search

Single-Agent Trees

€
/\

T T~ T~
O B B

Minimax

States MAX ()
Actions
X X X
ValueS MIN (O) X X X
X X X
XJo X Jo] X
MAX (X) 0
x[o[x| [X[o X0
MIN (O) X X
|
Xlo[x| [X[o[x] [X[o[x
TERMINAL | [0|X| [0][O[X X
0 X/ x|o| [X/oo
Utility -1 0 +1

Minimax

States

Actions

Values & -

Minimax

States

Actions

Values & -

Minimax Code

Max Code

Max Code

def max_value(state):
if state.is_leaf:
return state.value
TODO Also handle depth limit
best value = -10000000

for action in state.actions:
next_state = state.result(action)

next _value = max_value(next_state)

if next_value > best value:
best_value = next_value

return best_value

Minimax Code

def max_value(state):
if state.is_leaf:
return state.value
TODO Also handle depth limit
best value = -10000000

for action in state.actions:
next_state = state.result(action)

next _value = min_value(next_state)

it next_value > best value:
best value = next_value

return best_value

def min value(state):

Minimax Notation

def max_value(state):

_ /
if state.is_leaf: V(S) T mC?X V(S)r
return state.value

r __
TODO Also handle depth limit where ' = result(s, a)
best value = -10000000

for action in state.actions:
next_state = state.result(action)

next _value = min_value(next_state)

it next_value > best value:
best value = next_value

return best_value

def min value(state):

Minimax Notation

V(s) = max V(s),
a
where s' = result(s, a)

d = argmax V(s'),
a
where s’ = result(s, a)

Generic Game Tree Pseudocode

function minimax_decision(state)

return argmax i, ctate.actions vValue(state.result(a))

function value(state)
if state.is leaf
return state.value

if state.player is MAX
return Max . i, ctate actions Value(state.result(a))

if state.player is MIN
return min . ctate actions Value(state.result(a))

Minimax Efficiency

How efficient is minimax?
= Just like (exhaustive) DFS

* Time: O(b™)

= Space: O(bm)

Example: For chess, b = 35, m = 100 \1
= Exact solution is completely infeasible)
= Humans can’t do this either, so how do a”
we play chess?
" Bounded rationality — Herbert Simon
)

Resource LiImits

Resource LiImits

Problem: In realistic games, cannot search to leaves!

Solution 1: Bounded lookahead
= Search only to a preset depth limit or horizon
= Use an evaluation function for non-terminal positions

Guarantee of optimal play is gone

More plies make a BIG difference

Example:

= Suppose we have 100 seconds, can explore 10K nodes / sec
= So can check 1M nodes per move

= For chess, b="35 so reaches about depth 4 — not so good

Depth Matters

Evaluation functions are always
imperfect

Deeper search => better play
(usually)

Or, deeper search gives same quality
of play with a less accurate
evaluation function

An important example of the
tradeoff between complexity of
features and complexity of
computation

[Demo: depth limited (L6D4, L6D5)]

Demo Limited Depth (2)

Demo Limited Depth (10)

Evaluation Functions

Evaluation Functions

Evaluation functions score non-terminals in depth-limited search

Black to move White to move

White slightly better Black winning

ldeal function: returns the actual minimax value of the position

In practice: typically weighted linear sum of features:

= EVAL(S) = w,f1(s) + W, f5(s) + .. + W, f.(5)
" E.g., w,; =9, f(s) = (hum white queens — num black queens), etc.

Evaluation for Pacman

Generalized minimax

What if the game is not zero-sum, or has multiple players?

Generalization of minimax:

Terminals have utility tuples
Node values are also utility tuples

Each player maximizes its own component

Can give rise to cooperation and
competition dynamically...

& 8,8,1
[} 8,8,1 7,7,2
] 0,0,7 8,8,1 7,7,2 0,0,8
1,6 || 0,07 | 1990|881]990!|[772]]008]|| 007

Generalized minimax

Three Person Chess

https://www.youtube.com/watch?v=HHVPutfveVs

https://www.youtube.com/watch?v=HHVPutfveVs

Game Tree Pruning

Minimax Example

Alpha-Beta Example

o = best option so far from any
MAX node on this path

The order of generation matters: more pruning
is possible if good moves come first

Example

Which branches are pruned?

(Left to right traversal)

10

50

Example

Which branches are pruned?

(Left to right traversal)

1

/S

/N

100

8

'/

"/

3

20

N

Alpha-Beta Implementation

a: MAX’s best option on path to root
B: MIN’s best option on path to root

def max-value(state, a, B): def min-value(state, a, B):
initialize v = -0 initialize v = +oo
for each successor of state: for each successor of state:
v = max(v, value(successor, a, B)) v = min(v, value(successor, a,))
ifv>P if v<a
return v return v
a = max(a, v) B = min(B, v)

return v return v

Alpha-Beta Poll 3

a: MAX’s best option on path to root
B: MIN’s best option on path to root

def max-value(state, a, B):

initialize v = -0

for each successor of state:
v = max(v, value(successor, a, 3))
ifv2P

returnv

o = max(a, v)

return v

Alpha-Beta Poll 3

10
b e

a=10
a A h

10 100
AN fg

10

6

sz‘?{p

100

8

a: MAX’s best option on path to root
B: MIN’s best option on path to root

def min-value(state, a, B):
initialize v = +oo
for each successor of state:
v = min(v, value(successor, a, 3))
ifvsa
returnv
B =min(B, v)

return v

Alpha-Beta Pruning Properties

Theorem: This pruning has no effect on minimax value computed for the root!

Good child ordering improves effectiveness of pruning
" |[terative deepening helps with this

max
With “perfect ordering”: .
* Time complexity drops to O(b™/2) min
" Doubles solvable depth!
= 1M nodes/move => depth=8, respectable
10 10 0

This is a simple example of metareasoning (computing about what to compute)

Modeling Assumptions

Know your opponent

8

| ——

10 10 9 100

Poll 4

How well would a minimax Pacman perform against a
ghost that moves randomly?

A. Better than against a minimax ghost

B. Worse than against a minimax ghost

C. Same as against a minimax ghost

Fine print

= Points: +500 win, -500 lose, -1 each move
" Pacman: uses depth 4 minimax as before
" Ghost: moves randomly

Modeling Assumptions

Minimax autonomous vehicle?

Minimax Driver?

189441}

https://youtu.be/5PRrwlkPdNI?t=52
Clip: How | Met Your Mother, CBS

https://youtu.be/5PRrwlkPdNI?t=52

Modeling Assumptions

Dangerous Pessimism Dangerous Optimism
Assuming the worst case when it’s not likely Assuming chance when the world is adversarial

Modeling Assumptions

Chance nodes: Expectimax

10

10

100

Assumptions vs. Reality

Minimax Random
Ghost Ghost
Minimax Won 5/5 Won 5/5
Pacman Avg. Score: 493 Avg. Score: 464
Expectimax
Pacman

Results from playing 5 games

Chance outcomes in trees

10| |10 9 100 10| |10 9 100
Tictactoe, chess Tetris, investing
10 9

Minimax Expectimax 10|| 9 10 (100

Backgammon, Monopoly
Expectiminimax

Probabilities

Probabilities

A random variable represents an event whose outcome
is unknown

0.25

A probability distribution is an assignment of weights
to outcomes

0.50

Example: Traffic on freeway
= Random variable: T = whether there’s traffic
= Qutcomes: T in {none, light, heavy}
= Distribution:
P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) =0.25

Probabilities over all possible outcomes sum to one

Expected Value

Expected value of a function of a random variable:
Average the values of each outcome,
weighted by the probability of that outcome

Example: How long to get to the airport?

Time: 20 min 30 min 60 min
X + X + X 35 min
Probability: 0.50 0.25

Expectations

Time: 20 min
X +
Probability: 0.25

Max node notation Chance node notation
V(s) = max V(s'), V(s) = 2 P(s")V(s)
a
S/

where s’ = result(s, a)

Example

Expectimax tree search

Left

Center

Right

1/3

12

2/3

Expectimax Pruning?

Expectimax Code

function value(state)
if state.is leaf
return state.value

if state.player is MAX
return Max , i, ctate actions Value(state.result(a))

if state.player is MIN
return min . ctate actions Value(state.result(a))

if state.player is CHANCE
return sum S in state.next_states P(S) * Value(S)

Preview: MDP/Reinforcement Learning Notation

V(is) = méiXE P(s")V(s"

Preview: MDP/Reinforcement Learning Notation

Standard expectimax: V(s) = maxz P(s'|s,a)V(s")
a =
Bellman equations: V(s) = maxz P(s'|s,a)[R(s,a,s") + yV(s')]
a
Y
Value iteration: Vis1(s) = maxz P(s'ls,a)[R(s,a,s") +yVi(s)], Vs
a =
Q-iteration: Qi+1(s,a) = Z P(s'|s,a)[R(s,a,s") + ymax Qi (s’,a")], Vs,a
S/ 4
Policy extraction: my(s) = argmaxz P(s'|s,a)[R(s,a,s") +yV(s')], Vs
a S/
Policy evaluation: Vi,(s) = Z P(s'|s,m(s))[R(s,m(s),s") + yVF(s")], Vs
Y

Policy improvement: Tpew(S) = argmaxz P(s'|s,a)[R(s,a,s") +yVTold(s")], Vs
a
S/

Preview: MDP/Reinforcement Learning Notation

Standard expectimax: V(s) = maxz P(s'|s,a)V(s")
a =
Bellman equations: V(s) = maxz: P(s'|s,a)[R(s,a,s") + yV(s")]
a =
Value iteration: Vis1(s) = maxz P(s'ls,a)[R(s,a,s") +yVi(s))], Vs
a =
Q-iteration: Qr+1(s,a) = z P(s'|s,a)[R(s,a,s") + v max Qy (s',a")], Vs,a
a
S/
Policy extraction: my(s) = argmaxz P(s'|s,a)[R(s,a,s") + yV(s')], Vs
a S/
Policy evaluation: Vi,(s) = z P(s'|s,m(s))[R(s,m(s),s") + yVF(s")], Vs
Y

Policy improvement: Tnew(S) = argmaxz P(s'|s,a)[R(s,a,s") +yV™olda(s")], Vs
a
S/

Why Expectimax?

Pretty great model for an agent in the world
Choose the action that has the: highest expected value

Bonus Question

Let’s say you know that your opponent is actually running a depth 1
minimax, using the result 80% of the time, and moving randomly

otherwise

Question: What tree search should you use?
A: Minimax

B: Expectimax

C: Something completely different

summary

Games require decisions when optimality is impossible
* Bounded-depth search and approximate evaluation functions

Games force efficient use of computation
* Alpha-beta pruning

Game playing has produced important research ideas

= Reinforcement learning (checkers)

" [terative deepening (chess)

= Monte Carlo tree search (Go)

= Solution methods for partial-information games in economics (poker)

Video games present much greater challenges — lots to do!
= b =105, |S| =10%° m = 10,000

	Slide 1: AI: Representation and Problem Solving
	Slide 2: Outline
	Slide 3: Game Playing State-of-the-Art
	Slide 4: Game Playing State-of-the-Art
	Slide 5: Behavior from Computation
	Slide 6: Types of Games
	Slide 7: Zero-Sum Games
	Slide 8: “Standard” Games
	Slide 9: Adversarial Search
	Slide 10: Single-Agent Trees
	Slide 11: Minimax
	Slide 12: Minimax
	Slide 13: Minimax
	Slide 14: Minimax Code
	Slide 15: Max Code
	Slide 16: Max Code
	Slide 17: Minimax Code
	Slide 18: Minimax Notation
	Slide 19: Minimax Notation
	Slide 20: Generic Game Tree Pseudocode
	Slide 21: Minimax Efficiency
	Slide 22: Resource Limits
	Slide 23: Resource Limits
	Slide 24: Depth Matters
	Slide 25: Demo Limited Depth (2)
	Slide 26: Demo Limited Depth (10)
	Slide 27: Evaluation Functions
	Slide 28: Evaluation Functions
	Slide 29: Evaluation for Pacman
	Slide 30: Generalized minimax
	Slide 31: Generalized minimax
	Slide 32: Game Tree Pruning
	Slide 33: Minimax Example
	Slide 34: Alpha-Beta Example
	Slide 35: Example
	Slide 36: Example
	Slide 37: Alpha-Beta Implementation
	Slide 38: Alpha-Beta Poll 3
	Slide 39: Alpha-Beta Poll 3
	Slide 40: Alpha-Beta Pruning Properties
	Slide 41: Modeling Assumptions
	Slide 43: Poll 4
	Slide 46: Modeling Assumptions
	Slide 47: Minimax Driver?
	Slide 48: Modeling Assumptions
	Slide 49: Modeling Assumptions
	Slide 50: Assumptions vs. Reality
	Slide 51: Chance outcomes in trees
	Slide 52: Probabilities
	Slide 53: Probabilities
	Slide 54: Expected Value
	Slide 55: Expectations
	Slide 56: Example
	Slide 57: Expectimax Pruning?
	Slide 58: Expectimax Code
	Slide 59: Preview: MDP/Reinforcement Learning Notation
	Slide 60: Preview: MDP/Reinforcement Learning Notation
	Slide 61: Preview: MDP/Reinforcement Learning Notation
	Slide 62: Why Expectimax?
	Slide 63: Bonus Question
	Slide 64: Summary

