Al: Representation and Problem Solving

Adversarial Search

Instructor: Pat Virtue
Slide credits: CMU Al, http://ai.berkeley.edu
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History / Overview

Zero-Sum Games (Minimax)
Evaluation Functions

Search Efficiency (a-B Pruning)

Games of Chance (Expectimax)




Game Playing State-of-the-Art

Checkers:

1950: First computer player.
1959: Samuel’s self-taught program.

1994: First computer world champion: Chinook ended 40-year-reign
of human champion Marion Tinsley using complete 8-piece
endgame.

2007: Checkers solved! Endgame database of 39 trillion states

Chess:

1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon,
McCarthy.

1960s onward: gradual improvement under “standard model”

1997: special-purpose chess machine Deep Blue defeats human
champion Gary Kasparov in a six-game match. Deep Blue examined
200M positions per second and extended some lines of search up to
40 ply. Current programs running on a PC rate > 3200 (vs 2870 for
Magnus Carlsen).

Go:

1968: Zobrist’s program plays legal Go, barely (b>300!)

2005-2014: Monte Carlo tree search enables rapid advances: current
programs beat strong amateurs, and professionals with a 3-4 stone
handicap.
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Game Playing State-of-the-Art

Checkers:

1950: First computer player.
1959: Samuel’s self-taught program.

1994: First computer world champion: Chinook ended 40-year-reign
of human champion Marion Tinsley using complete 8-piece
endgame.

2007: Checkers solved! Endgame database of 39 trillion states

Chess:

1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon,
McCarthy.

1960s onward: gradual improvement under “standard mode

1997: special-purpose chess machine Deep Blue defeats human
champion Gary Kasparov in a six-game match. Deep Blue examined
200M positions per second and extended some lines of search up to
40 ply. Current programs running on a PC rate > 3200 (vs 2870 for
Magnus Carlsen).
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Go:

1968: Zobrist’s program plays legal Go, barely (b>300!)

2005-2014: Monte Carlo tree search enables rapid advances: current
programs beat strong amateurs, and professionals with a 3-4 stone
handicap.

2015: AlphaGo from DeepMind beats Lee Sedol
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Behavior from Computation

[Demo: mystery pacman (L6D1)]



Types of Games

Many different kinds of games!

AXxes:

= Deterministic or stochastic?

= Perfect information (fully observable)?
" One, two, or more players?

T = T

" Turn-taking or simultaneous?
= Zerosum?

Want algorithms for calculating a contingent plan (a.k.a. strategy or policy)
which recommends a move for every possible eventuality



/ero-Sum Games

= Zero-Sum Games " General Games
= Agents have opposite utilities = Agents have independent utilities
" Pure compef¥jtion: = Cooperation, indifference,
» One maximizes, the other minimizes competition, shifting alliances, and

more are all possible



“Standard” Games

Standard games are deterministic, observable,
two-player, turn-taking, zero-sum

Game formulation:
" |nitial state: s,
» Players: Player(s) indicates whose move it is
= Actions: Actions(s) for player on move
" Transition model: Result(s,a)
=" Terminal test: Terminal-Test(s)
= Terminal values: Utility(s,p) for player p
= Or just Utility(s) for player making the decision at root




Adversarial Search




Single-Agent Trees
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Minimax

States MAX ()
Actions
X X X
ValueS MIN (O) X X X
X X X
XJo X Jo] X
MAX (X) 0
x[o[x| [X[o X0
MIN (O) X X
|
Xlo[x| [X[o[x] [X[o[x
TERMINAL | [0|X| [0][O[X X
0 X/ x|o| [X/oo
Utility -1 0 +1
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Minimax Code




Max Code




Max Code

def max_value(state):
if state.is_leaf:
return state.value
# TODO Also handle depth limit
best value = -10000000

for action in state.actions:
next_state = state.result(action)

next _value = max_value(next_state)

if next_value > best value:
best_value = next_value

return best_value



Minimax Code

def max_value(state):
if state.is_leaf:
return state.value
# TODO Also handle depth limit
best value = -10000000

for action in state.actions:
next_state = state.result(action)

next _value = min_value(next_state)

it next_value > best value:
best value = next_value

return best_value

def min value(state):



Minimax Notation

def max_value(state):

_ /
if state.is_leaf: V(S) T mC?X V(S )r
return state.value

r __
# TODO Also handle depth limit where ' = result(s, a)
best value = -10000000

for action in state.actions:
next_state = state.result(action)

next _value = min_value(next_state)

it next_value > best value:
best value = next_value

return best_value

def min value(state):




Minimax Notation

V(s) = max V(s),
a
where s' = result(s, a)

d = argmax V(s'),
a
where s’ = result(s, a)



Generic Game Tree Pseudocode

function minimax_decision( state )

return argmax i, ctate.actions vValue( state.result(a) )

function value( state )
if state.is leaf
return state.value

if state.player is MAX
return Max . i, ctate actions Value( state.result(a) )

if state.player is MIN
return min . ctate actions Value( state.result(a) )



Minimax Efficiency

How efficient is minimax?
= Just like (exhaustive) DFS

* Time: O(b™)

= Space: O(bm)

Example: For chess, b = 35, m = 100 \1
= Exact solution is completely infeasible )
= Humans can’t do this either, so how do a”
we play chess?
" Bounded rationality — Herbert Simon
)




Resource LiImits




Resource LiImits

Problem: In realistic games, cannot search to leaves!

Solution 1: Bounded lookahead
= Search only to a preset depth limit or horizon
= Use an evaluation function for non-terminal positions

Guarantee of optimal play is gone

More plies make a BIG difference

Example:

= Suppose we have 100 seconds, can explore 10K nodes / sec
= So can check 1M nodes per move

= For chess, b="35 so reaches about depth 4 — not so good




Depth Matters

Evaluation functions are always
imperfect

Deeper search => better play
(usually)

Or, deeper search gives same quality
of play with a less accurate
evaluation function

An important example of the
tradeoff between complexity of
features and complexity of
computation

[Demo: depth limited (L6D4, L6D5)]



Demo Limited Depth (2)



Demo Limited Depth (10)



Evaluation Functions




Evaluation Functions

Evaluation functions score non-terminals in depth-limited search

Black to move White to move

__________

White slightly better Black winning

ldeal function: returns the actual minimax value of the position

In practice: typically weighted linear sum of features:

= EVAL(S) = w,f1(s) + W, f5(s) + .. + W, f.(5)
" E.g., w,; =9, f(s) = (hum white queens — num black queens), etc.



Evaluation for Pacman




Generalized minimax

What if the game is not zero-sum, or has multiple players?

Generalization of minimax:

Terminals have utility tuples
Node values are also utility tuples

Each player maximizes its own component

Can give rise to cooperation and
competition dynamically...

& 8,8,1
[} 8,8,1 7,7,2
] 0,0,7 8,8,1 7,7,2 0,0,8
1,6 || 0,07 | 1990|881 ]990!|[772]]008]|| 007




Generalized minimax

Three Person Chess

https://www.youtube.com/watch?v=HHVPutfveVs


https://www.youtube.com/watch?v=HHVPutfveVs

Game Tree Pruning




Minimax Example




Alpha-Beta Example

o = best option so far from any
MAX node on this path

The order of generation matters: more pruning
is possible if good moves come first



Example

Which branches are pruned?

(Left to right traversal)
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Which branches are pruned?

(Left to right traversal)
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Alpha-Beta Implementation

a: MAX’s best option on path to root
B: MIN’s best option on path to root

def max-value(state, a, B): def min-value(state, a, B):
initialize v = -0 initialize v = +oo
for each successor of state: for each successor of state:
v = max(v, value(successor, a, B)) v = min(v, value(successor, a, ))
ifv>P if v<a
return v return v
a = max(a, v) B = min(B, v)

return v return v



Alpha-Beta Poll 3

a: MAX’s best option on path to root
B: MIN’s best option on path to root

def max-value(state, a, B):

initialize v = -0

for each successor of state:
v = max(v, value(successor, a, 3))
ifv2P

returnv

o = max(a, v)

return v




Alpha-Beta Poll 3
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a: MAX’s best option on path to root
B: MIN’s best option on path to root

def min-value(state, a, B):
initialize v = +oo
for each successor of state:
v = min(v, value(successor, a, 3))
ifvsa
returnv
B =min(B, v)

return v



Alpha-Beta Pruning Properties

Theorem: This pruning has no effect on minimax value computed for the root!

Good child ordering improves effectiveness of pruning
" |[terative deepening helps with this

max
With “perfect ordering”: .
* Time complexity drops to O(b™/2) min
" Doubles solvable depth!
= 1M nodes/move => depth=8, respectable
10 10 0

This is a simple example of metareasoning (computing about what to compute)



Modeling Assumptions

Know your opponent

8

| ——

10 10 9 100




Poll 4

How well would a minimax Pacman perform against a
ghost that moves randomly?

A. Better than against a minimax ghost

B. Worse than against a minimax ghost

C. Same as against a minimax ghost

Fine print

= Points: +500 win, -500 lose, -1 each move
" Pacman: uses depth 4 minimax as before
" Ghost: moves randomly




Modeling Assumptions

Minimax autonomous vehicle?




Minimax Driver?

189441}

https://youtu.be/5PRrwlkPdNI?t=52
Clip: How | Met Your Mother, CBS



https://youtu.be/5PRrwlkPdNI?t=52

Modeling Assumptions

Dangerous Pessimism Dangerous Optimism
Assuming the worst case when it’s not likely Assuming chance when the world is adversarial




Modeling Assumptions

Chance nodes: Expectimax

10

10

100




Assumptions vs. Reality

Minimax Random
Ghost Ghost
Minimax Won 5/5 Won 5/5
Pacman Avg. Score: 493 Avg. Score: 464
Expectimax
Pacman

Results from playing 5 games



Chance outcomes in trees

10| |10 9 100 10| |10 9 100
Tictactoe, chess Tetris, investing
10 9

Minimax Expectimax 10|| 9 10 (100

Backgammon, Monopoly
Expectiminimax




Probabilities




Probabilities

A random variable represents an event whose outcome
is unknown

0.25

A probability distribution is an assignment of weights
to outcomes

0.50

Example: Traffic on freeway
= Random variable: T = whether there’s traffic
= Qutcomes: T in {none, light, heavy}
= Distribution:
P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) =0.25

Probabilities over all possible outcomes sum to one



Expected Value

Expected value of a function of a random variable:
Average the values of each outcome,
weighted by the probability of that outcome

Example: How long to get to the airport?

Time: 20 min 30 min 60 min
X + X + X 35 min
Probability: 0.50 0.25




Expectations

Time: 20 min
X +
Probability: 0.25

Max node notation Chance node notation
V(s) = max V(s'), V(s) = 2 P(s")V(s)
a
S/

where s’ = result(s, a)



Example

Expectimax tree search

Left

Center

Right

1/3

12

2/3




Expectimax Pruning?




Expectimax Code

function value( state )
if state.is leaf
return state.value

if state.player is MAX
return Max , i, ctate actions Value( state.result(a) )

if state.player is MIN
return min . ctate actions Value( state.result(a) )

if state.player is CHANCE
return sum S in state.next_states P( S ) * Value( S )



Preview: MDP/Reinforcement Learning Notation

V(is) = méiXE P(s")V(s"




Preview: MDP/Reinforcement Learning Notation

Standard expectimax: V(s) = maxz P(s'|s,a)V(s")
a =
Bellman equations: V(s) = maxz P(s'|s,a)[R(s,a,s") + yV(s')]
a
Y
Value iteration: Vis1(s) = maxz P(s'ls,a)[R(s,a,s") +yVi(s)], Vs
a =
Q-iteration: Qi+1(s,a) = Z P(s'|s,a)[R(s,a,s") + ymax Qi (s’,a")], Vs,a
S/ 4
Policy extraction: my(s) = argmaxz P(s'|s,a)[R(s,a,s") +yV(s')], Vs
a S/
Policy evaluation: Vi,(s) = Z P(s'|s,m(s))[R(s,m(s),s") + yVF(s")], Vs
Y

Policy improvement: Tpew(S) = argmaxz P(s'|s,a)[R(s,a,s") +yVTold(s")], Vs
a
S/



Preview: MDP/Reinforcement Learning Notation

Standard expectimax: V(s) = maxz P(s'|s,a)V(s")
a =
Bellman equations: V(s) = maxz: P(s'|s,a)[R(s,a,s") + yV(s")]
a =
Value iteration: Vis1(s) = maxz P(s'ls,a)[R(s,a,s") +yVi(s))], Vs
a =
Q-iteration: Qr+1(s,a) = z P(s'|s,a)[R(s,a,s") + v max Qy (s',a")], Vs,a
a
S/
Policy extraction: my(s) = argmaxz P(s'|s,a)[R(s,a,s") + yV(s')], Vs
a S/
Policy evaluation: Vi,(s) = z P(s'|s,m(s))[R(s,m(s),s") + yVF(s")], Vs
Y

Policy improvement: Tnew(S) = argmaxz P(s'|s,a)[R(s,a,s") +yV™olda(s")], Vs
a
S/



Why Expectimax?

Pretty great model for an agent in the world
Choose the action that has the: highest expected value




Bonus Question

Let’s say you know that your opponent is actually running a depth 1
minimax, using the result 80% of the time, and moving randomly

otherwise

Question: What tree search should you use?
A: Minimax

B: Expectimax

C: Something completely different



summary

Games require decisions when optimality is impossible
* Bounded-depth search and approximate evaluation functions

Games force efficient use of computation
* Alpha-beta pruning

Game playing has produced important research ideas

= Reinforcement learning (checkers)

" [terative deepening (chess)

= Monte Carlo tree search (Go)

= Solution methods for partial-information games in economics (poker)

Video games present much greater challenges — lots to do!
= b =105, |S| =10%° m = 10,000
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