
Plan
Last time

▪ Tree search vs graph search

Today

▪ Uniform cost search

▪ Heuristics

▪ Greedy search

▪ A* search

▪ Optimality

▪ [More on heuristics]



Uniform Cost Search
Back to Lecture 2 slides



AI: Representation and Problem Solving

Informed Search

Instructor: Pat Virtue

Slide credits: CMU AI, http://ai.berkeley.edu



Donuts ASAP!

Images: Yelp "Soergel's", Google Maps



Uninformed vs Informed Search



Today

Informed Search
▪  Heuristics
▪  Greedy Search
▪  A* Search



Informed Search



Search Heuristics

A heuristic is:
▪ A function that estimates how close a state is to a goal

▪ Designed for a particular search problem

▪ Examples: Manhattan distance, Euclidean distance for 
pathing
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Example: Euclidean distance to Bucharest
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Effect of heuristics

Guide search towards the goal instead of all over the place

Start GoalStart Goal

UninformedInformed



Greedy Search



Donuts ASAP!



A* Search



A* Search

UCS Greedy

A*



A* Search

UCS Greedy

A*



Combining UCS and Greedy

Uniform-cost orders by path cost, or backward cost  g(n)
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Combining UCS and Greedy

Uniform-cost orders by path cost, or backward cost  g(n)

Greedy orders by goal proximity, or forward cost  h(n)
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Combining UCS and Greedy

Uniform-cost orders by path cost, or backward cost  g(n)

Greedy orders by goal proximity, or forward cost  h(n)

A* Search orders by the sum: f(n) = g(n) + h(n)
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Is A* Optimal?

What went wrong?

Estimated good goal cost > Actual future cost!

We need estimates to be less than actual costs!
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The Price is Wrong…

https://www.youtube.com/watch?v=9B0ZKRurC5Y

Closest bid without going over…

https://www.youtube.com/watch?v=9B0ZKRurC5Y


Admissible Heuristics



Admissible Heuristics

A heuristic h is admissible (optimistic) if:

       0  h(n)  h*(n) 
 where h*(n)  is the true cost to a nearest goal

Example:

Coming up with admissible heuristics is most of 
what’s involved in using A* in practice.

15



Optimality of A* Tree Search



Optimality of A* Tree Search

Assume:

A is an optimal goal node

B is a suboptimal goal node

h is admissible

Claim:

A will be chosen for exploration (popped off the frontier) before B

…

A
B



Optimality of A* Tree Search: Blocking

Proof:

Imagine B is on the frontier

Some ancestor n of A is on the frontier, too   
(Maybe the start state; maybe A itself!)

Claim: n will be explored before B

1.  

2.  

3.  

All ancestors of A are explored before B

A is explored before B

A* search is optimal

…

A
B

n



Optimality of A* Tree Search: Blocking

Proof:

Imagine B is on the frontier

Some ancestor n of A is on the frontier, too    
(Maybe the start state; maybe A itself!)

Claim: n will be explored before B

1.  f(n)  f(A)   TODO

2.  f(A) < f(B)   TODO
3.  f(n) <  f(B)  then n is explored before B

All ancestors of A are explored before B

A is explored before B

A* search is optimal

…

A
B

n



Optimality of A* Tree Search: Blocking

Proof:

Imagine B is on the frontier

Some ancestor n of A is on the frontier, too     
(Maybe the start state; maybe A itself!)

Claim: n will be explored before B

1.  f(n)  f(A)
2.  f(A) < f(B)

3.  f(n) <  f(B)  then n is explored before B

All ancestors of A are explored before B

A is explored before B

A* search is optimal

…

A
B

n

𝑓(𝑥)  =  𝑔(𝑥)  +  ℎ 𝑥  
ℎ 𝑥 ≤ ℎ∗(𝑥) 

f(n) = g(n) + h(n)        Definition of f-cost

f(n)  g(n) + h*(n)      Admissibility of h

f(n)  g(A)                    n on optimal path to A

f(n)  f(A)                     h = 0 at a goal



Optimality of A* Tree Search: Blocking

Proof:

Imagine B is on the frontier

Some ancestor n of A is on the frontier, too     
(Maybe the start state; maybe A itself!)

Claim: n will be explored before B

1.  f(n)  f(A)
2.  f(A) < f(B)

3.  f(n) <  f(B)  then n is explored before B

All ancestors of A are explored before B

A is explored before B

A* search is optimal

…

A
B

n

𝑓(𝑥)  =  𝑔(𝑥)  +  ℎ 𝑥  
ℎ 𝑥 ≤ ℎ∗(𝑥) 

g(A) < g(B)                    Suboptimality of B

f(A)  = g(A) + h(A)        Def. of f(x)
        = g(A)                    h = 0 at a goal

f(A) <  f(B)

f(B)  = g(B)                    Similarly for B



Optimality of A* Tree Search: Blocking

Proof:

Imagine B is on the frontier

Some ancestor n of A is on the frontier, too    
(Maybe the start state; maybe A itself!)

Claim: n will be explored before B

1.  f(n) is less than or equal to f(A)

2.  f(A) is less than f(B)

3.  f(n) <  f(B)  then n is explored before B

All ancestors of A are explored before B

A is explored before B

A* search is optimal

…

A
B

n

𝑓(𝑥)  =  𝑔(𝑥)  +  ℎ 𝑥  
ℎ 𝑥 ≤ ℎ∗(𝑥) 



UCS vs A* Contours

…
b

…
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Uniform-Cost A*



UCS vs A* Contours

Uniform-cost expands equally in all 
“directions”

A* expands mainly toward the goal, 
but does hedge its bets to ensure 
optimality

Start Goal

Start Goal



Demo Contours UCS Empty



Demo Contours UCS Pacman Small Maze



GreedyUCS
A*

Comparison



A* Search Algorithms
A* Tree Search

▪ Same tree search algorithm as before but with a frontier that is a 
priority queue using priority f(n) = g(n) + h(n)

A* Graph Search

▪ Same UCS graph search algorithm but with a frontier that is a 
priority queue using priority f(n) = g(n) + h(n)



function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

     initialize the explored set to be empty

     initialize the frontier as a priority queue using g(n) as the priority

     add initial state of problem to frontier with priority g(S) = 0

     loop do 

             if the frontier is empty then 

                     return failure

             choose a node and remove it from the frontier

             if the node contains a goal state then 

                     return the corresponding solution

             add the node state to the explored set

             for each resulting child from node

                     if the child state is not already in the frontier or explored set then

                             add child to the frontier

                     else if the child is already in the frontier with higher g(n) then

                             replace that frontier node with child



function A-STAR-SEARCH(problem) returns a solution, or failure

     initialize the explored set to be empty

     initialize the frontier as a priority queue using f(n) = g(n) + h(n) as the priority

     add initial state of problem to frontier with priority f(S) = 0 + h(S)

     loop do 

             if the frontier is empty then 

                     return failure

             choose a node and remove it from the frontier

             if the node contains a goal state then 

                     return the corresponding solution

             add the node state to the explored set

             for each resulting child from node

                     if the child state is not already in the frontier or explored set then

                             add child to the frontier

                     else if the child is already in the frontier with higher f(n) then

                             replace that frontier node with child



Optimality of A* Graph Search



A* Tree Search
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A* Graph Search
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What paths does A* graph search consider during its search?

Frontier Explored



Poll 1: A* Graph Search

S

A

C

G

1

3

1

3

h=2

h=4

h=1

h=0

What paths does A* graph search consider during its search?
(What does your work for the frontier look like?)

A)    S, S-A, S-C, S-C-G

C)    S, S-A, S-A-C, S-A-C-G

D)    S, S-A, S-C, S-A-C, S-A-C-G

B)    S, S-A, S-C, S-A-C, S-C-G



Poll 1: A* Graph Search
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D)    S, S-A, S-C, S-A-C, S-A-C-G

B)    S, S-A, S-C, S-A-C, S-C-G



A* Graph Search Gone Wrong?
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State space graph

C (specifically S-C) is no longer on the 
frontier, so it can't be replaced with the 
better S-A-C option
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S: 0+2 = 2
S-A: 1+4 = 5
S-C: 2+1 = 3
S-C-G: 6+0 = 6 



Admissibility of Heuristics
Main idea: Estimated heuristic values ≤ actual costs

▪ Admissibility:

 heuristic value ≤ actual cost to goal

   h(A) ≤ actual cost from A to G
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Consistency of Heuristics
Main idea: Estimated heuristic costs ≤ actual costs

▪ Admissibility:

 heuristic cost ≤ actual cost to goal

   h(A) ≤ actual cost from A to G

▪ Consistency:

 “heuristic step cost” ≤ actual cost for each step

   h(A) – h(C) ≤ cost(A to C)

  triangle inequality

   h(A) ≤ cost(A to C) + h(C)

Consequences of consistency:

▪ The f value along a path never decreases

▪ A* graph search is optimal

A

C

G

h=4
h=1

1

h=2



Optimality of A* Graph Search

Sketch: consider what A* does with a 
consistent heuristic:

▪Fact 1: In tree search, A* expands nodes 
in increasing total f value (f-contours)

▪Fact 2: For every state s, nodes that 
reach s optimally are explored before 
nodes that reach s suboptimally

▪Result: A* graph search is optimal

…

f  3
f  2

f  1



Optimality

Tree search:
▪ A* is optimal if heuristic is admissible
▪UCS is a special case (h = 0)

Graph search:
▪ A* optimal if heuristic is consistent
▪UCS optimal (h = 0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics tend to be 
consistent, especially if from relaxed problems



Creating Heuristics



Creating Admissible Heuristics
Most of the work in solving hard search problems optimally is in 
coming up with admissible heuristics

Often, admissible heuristics are solutions to relaxed problems, where 
new actions are available

15366



Example: 8 Puzzle

What are the states?

How many states?

What are the actions?

How many actions from the start state?

What should the step costs be?

Start State Goal StateActions



8 Puzzle I

Heuristic: Number of tiles misplaced

Why is it admissible?

h(start) =

This is a relaxed-problem heuristic

8

Statistics from Andrew Moore

Average nodes expanded when 
the optimal path has…

…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

A*TILES 13 39 227

Start State Goal State



Average nodes expanded when 
the optimal path has…

…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

A*TILES 13 39 227

A*MANHATTAN 12 25 73

8 Puzzle II

What if we had an easier 8-puzzle 
where any tile could slide any 
direction at any time, ignoring 
other tiles?

Total Manhattan distance

Why is it admissible?

h(start) = 3 + 1 + 2 + … = 18

Start State Goal State

Statistics from Andrew Moore



Combining heuristics

Dominance: ha ≥ hc if    

                     n  ha(n)  hc(n)
▪  Roughly speaking, larger is better as long as both are admissible
▪  The zero heuristic is pretty bad (what does A* do with h=0?)
▪  The exact heuristic is pretty good, but usually too expensive!

What if we have two heuristics, neither dominates the other?
▪  Form a new heuristic by taking the max of both:

                  h(n) = max( ha(n), hb(n) )
▪  Max of admissible heuristics is admissible and dominates both!



A*: Summary



A*: Summary
A* uses both backward costs and (estimates of) forward costs

A* is optimal with admissible / consistent heuristics

Heuristic design is key: often use relaxed problems
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