Plan

Last time

Tree search vs graph search

Today

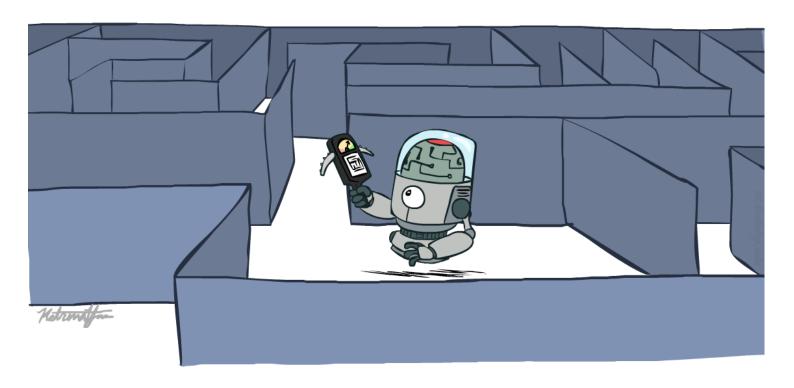
- Uniform cost search
- Heuristics
- Greedy search
- A* search
 - Optimality
- [More on heuristics]

Uniform Cost Search

Back to Lecture 2 slides

AI: Representation and Problem Solving

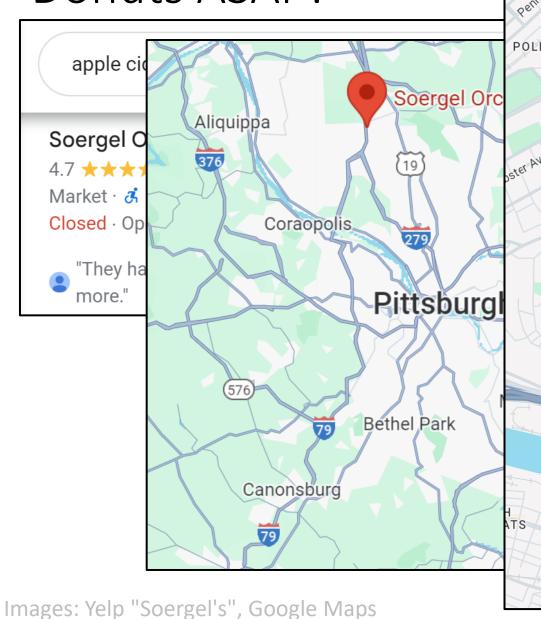
Informed Search

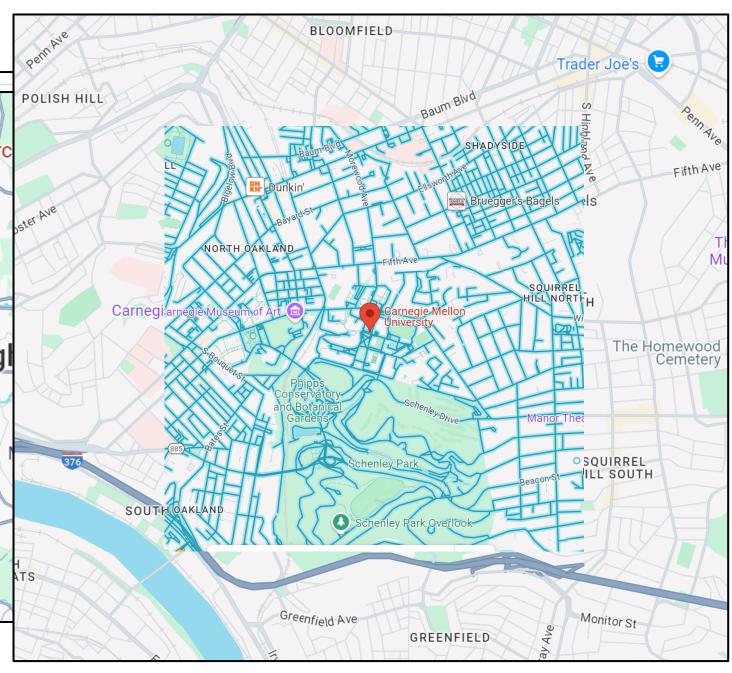


Instructor: Pat Virtue

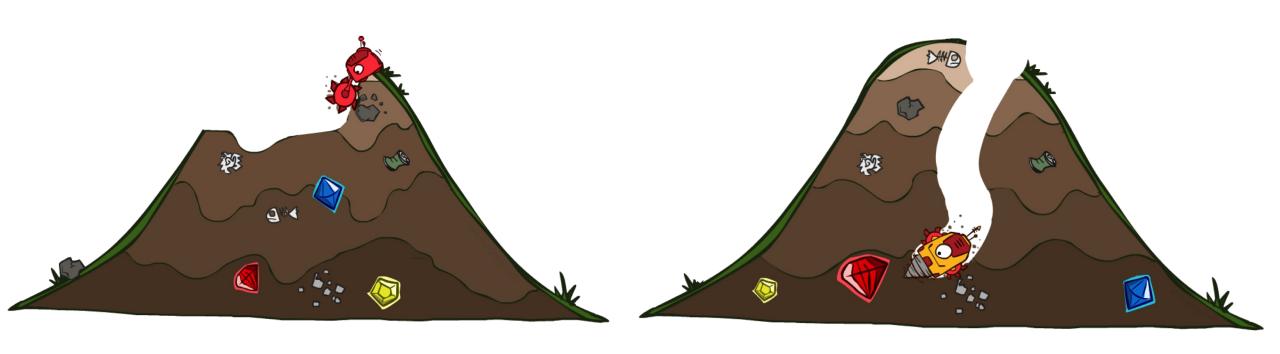
Slide credits: CMU AI, http://ai.berkeley.edu

Donuts ASAP!





Uninformed vs Informed Search



Today

Informed Search

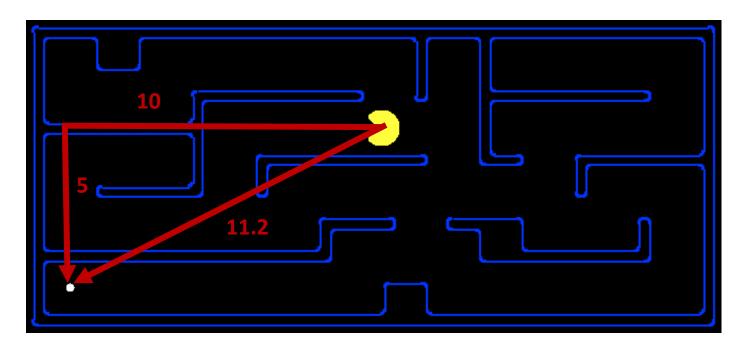
- Heuristics
- Greedy Search
- A* Search

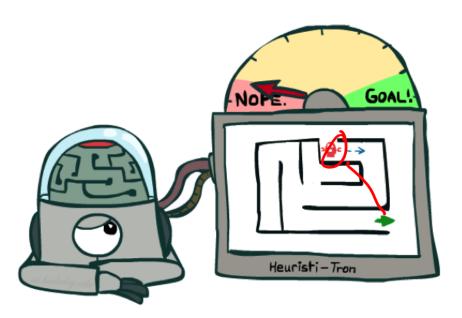
Informed Search

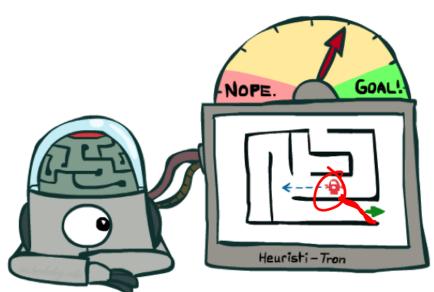
Search Heuristics

A heuristic is:

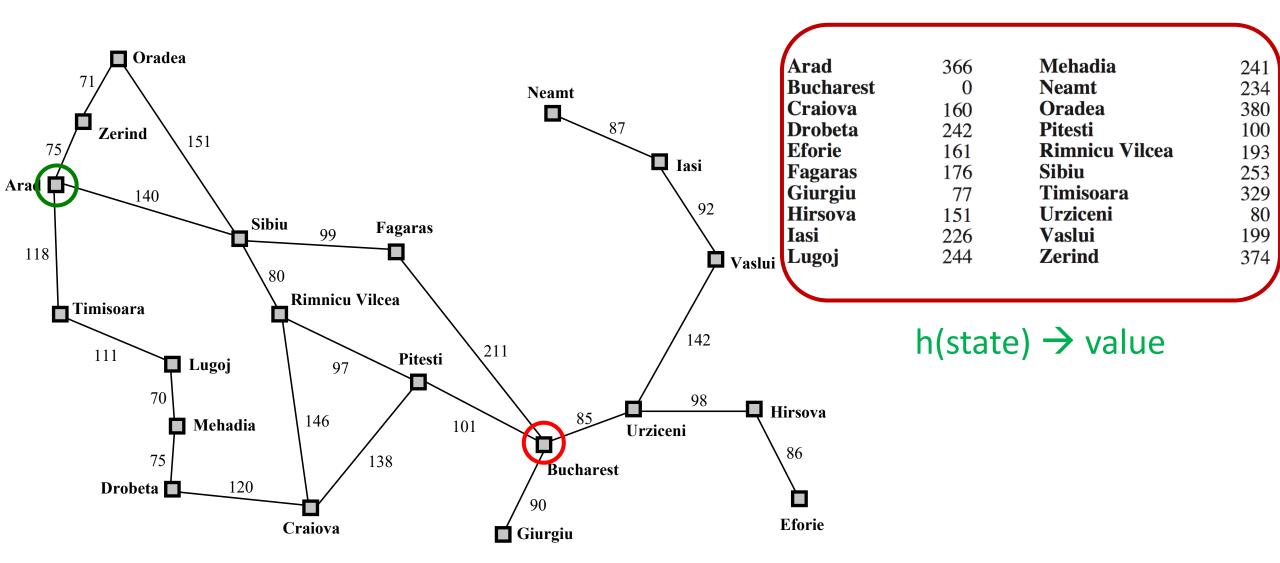
- A function that estimates how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance for pathing





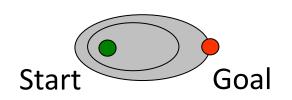


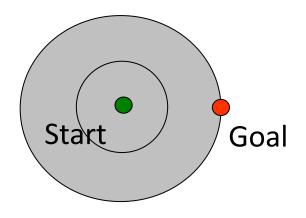
Example: Euclidean distance to Bucharest



Effect of heuristics

Guide search towards the goal instead of all over the place



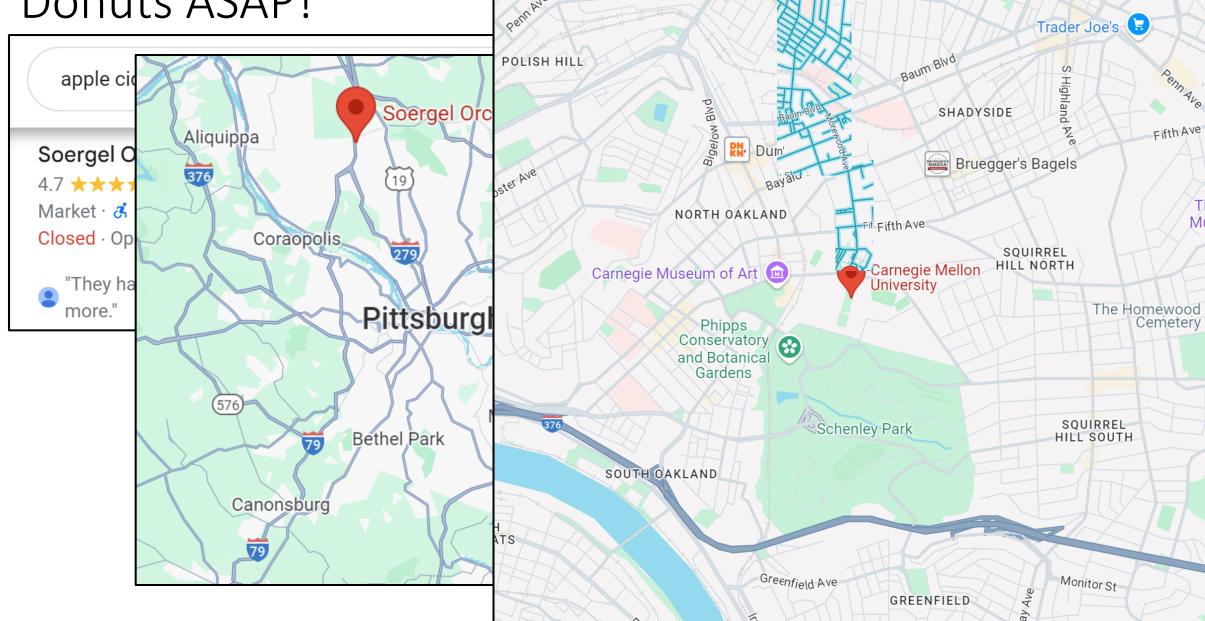


Informed

Uninformed

Greedy Search

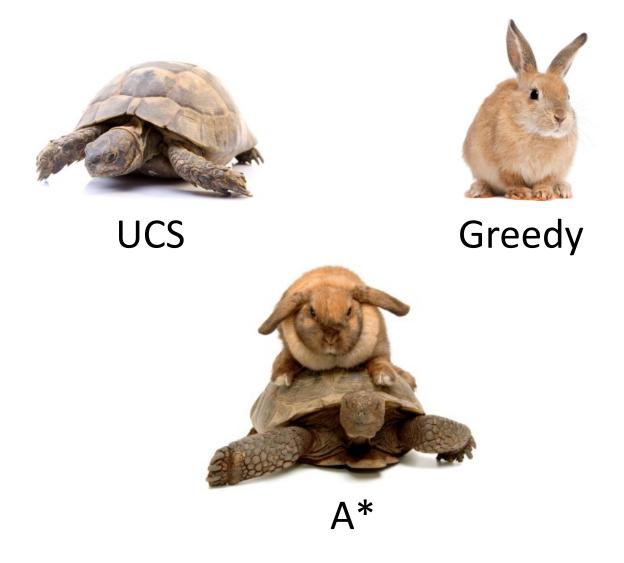
Donuts ASAP!



BLOOMFIELD

A* Search

A* Search



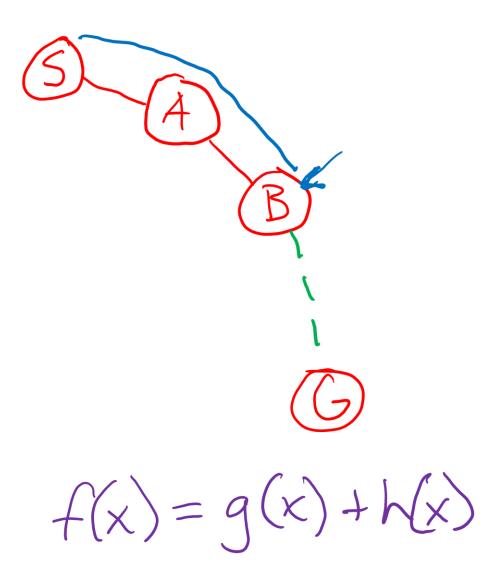
A* Search

$$f(S-A-B) = g(S-A-B) + h(B)$$

UCS

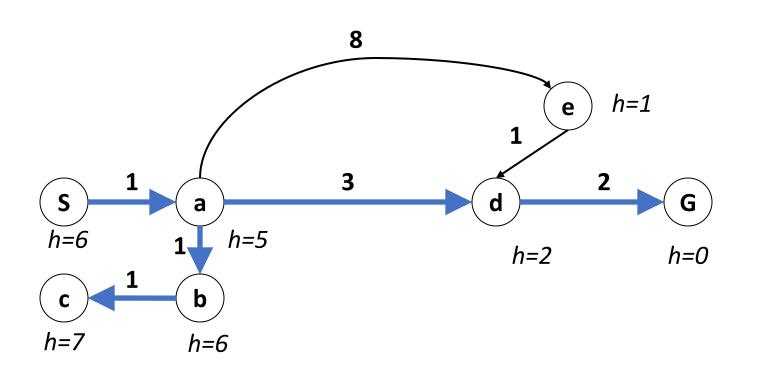
Greedy

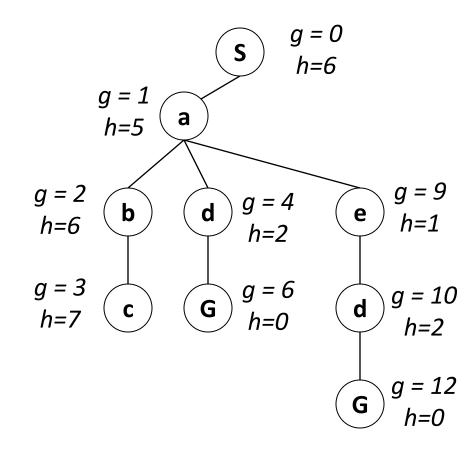
A*



Combining UCS and Greedy

Uniform-cost orders by path cost, or backward cost g(n)



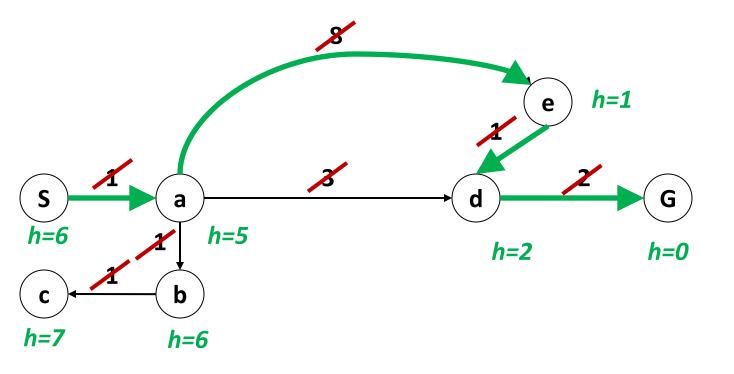


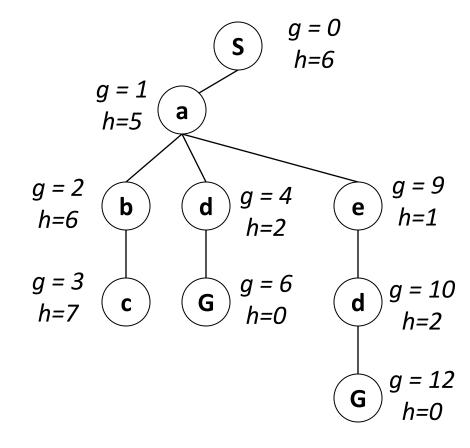
Example: Teg Grenager

Combining UCS and Greedy

Uniform-cost orders by path cost, or backward cost g(n)

Greedy orders by goal proximity, or forward cost h(n)



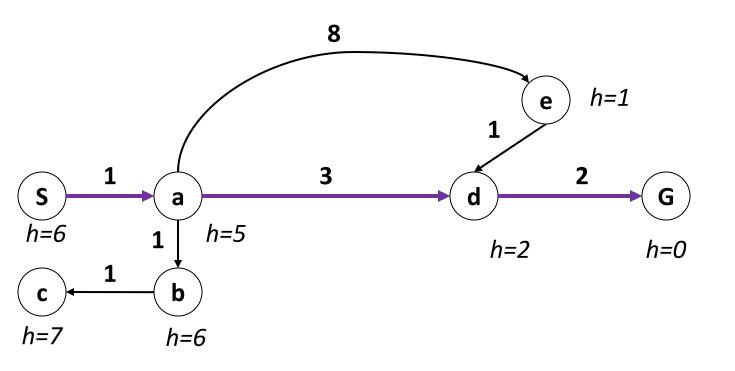


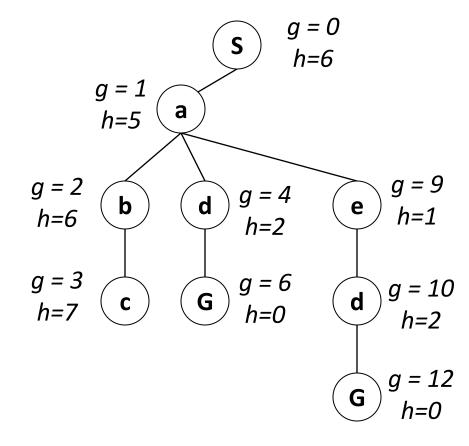
Example: Teg Grenager

Combining UCS and Greedy

Uniform-cost orders by path cost, or backward cost g(n)

Greedy orders by goal proximity, or forward cost h(n)

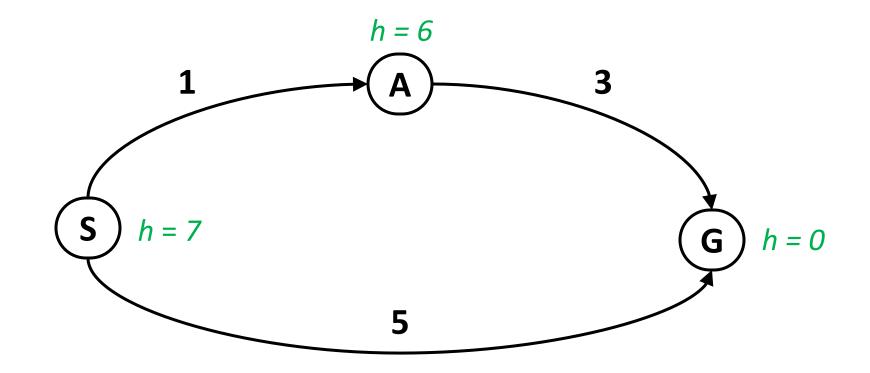




A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

Is A* Optimal?



What went wrong?

Estimated good goal cost > **Actual** future cost!

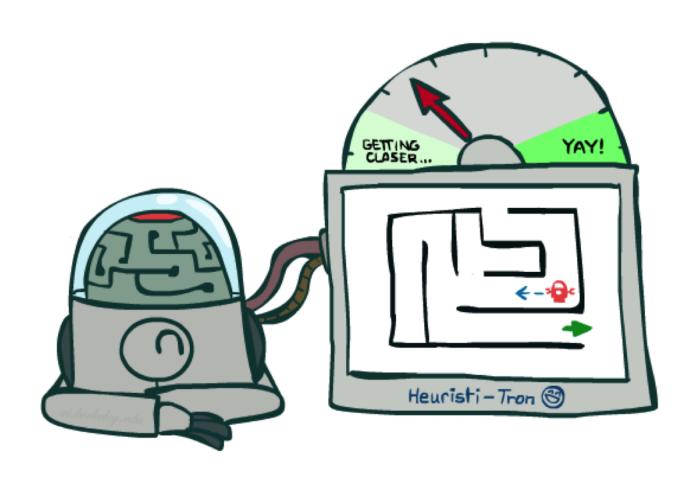
We need estimates to be less than actual costs!

The Price is Wrong...

Closest bid without going over...

https://www.youtube.com/watch?v=9B0ZKRurC5Y

Admissible Heuristics



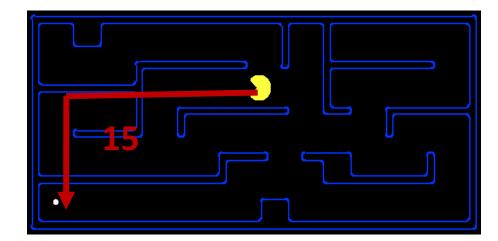
Admissible Heuristics

A heuristic *h* is *admissible* (optimistic) if:

$$0 \le h(n) \le h^*(n)$$

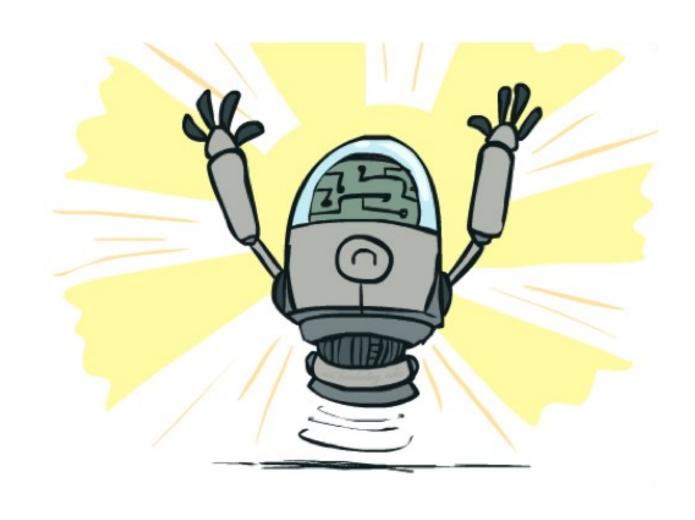
where $h^*(n)$ is the true cost to a nearest goal

Example:



Coming up with admissible heuristics is most of what's involved in using A* in practice.

Optimality of A* Tree Search



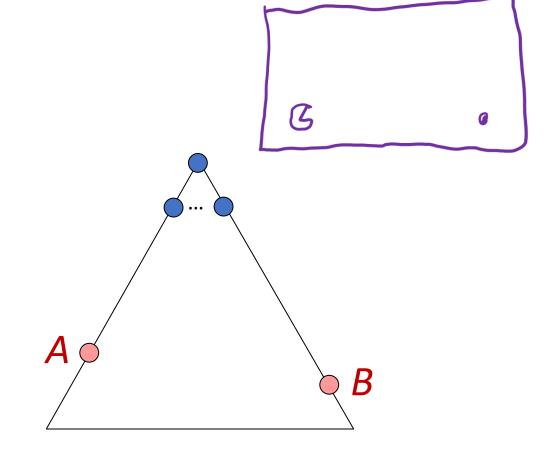
Optimality of A* Tree Search

Assume:

A is an optimal goal node

B is a suboptimal goal node

h is admissible



Claim:

A will be chosen for exploration (popped off the frontier) before B

Proof:

Imagine B is on the frontier

Some ancestor *n* of *A* is on the frontier, too (Maybe the start state; maybe *A* itself!)

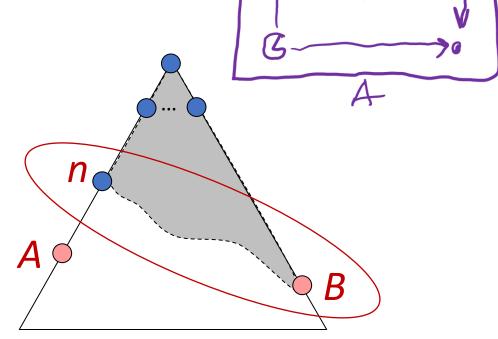
Claim: *n* will be explored before *B*

- 1.
- 2.
- 3.

All ancestors of A are explored before B

A is explored before B

A* search is optimal



Proof:

Imagine B is on the frontier

Some ancestor *n* of *A* is on the frontier, too (Maybe the start state; maybe *A* itself!)

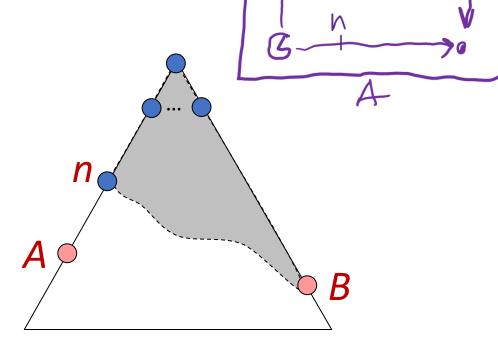
Claim: *n* will be explored before *B*

- 1. $f(n) \leq f(A) \leftarrow \text{TODO}$
- 2. $f(A) < f(B) \leftarrow TODO$
- 3. f(n) < f(B) then n is explored before B

All ancestors of A are explored before B

A is explored before B

A* search is optimal



$$f(x) = g(x) + h(x)$$

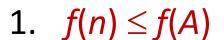
$$h(x) \le h^*(x)$$

Proof:

Imagine B is on the frontier

Some ancestor *n* of *A* is on the frontier, too (Maybe the start state; maybe *A* itself!)

Claim: *n* will be explored before *B*



2.
$$f(A) < f(B)$$

3. f(n) < f(B) then n is \in

All ancestors of A are explored be

A is explored before B

A* search is optimal

$$\frac{h}{A}$$
 $h(n)$ Def

$$f(n) = g(n) + h(n)$$

$$f(n) \le g(n) + h^*(n)$$

$$f(n) \le g(A)$$

$$f(n) \le f(A)$$

Definition of f-cost

Admissibility of hn on optimal path to A h = 0 at a goal

$$f(x) = g(x) + h(x)$$

$$h(x) \le h^*(x)$$

Proof:

Imagine B is on the frontier

Some ancestor *n* of *A* is on the frontier, too (Maybe the start state; maybe *A* itself!)

Claim: *n* will be explored before *B*

1.
$$f(n) \leq f(A)$$

2.
$$f(A) < f(B)$$

3. f(n) < f(B) then n

All ancestors of A are explored before

A is explored before B

A* search is optimal

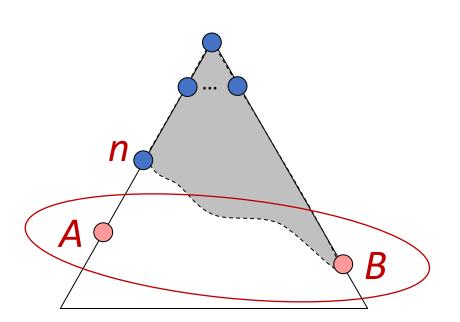
$$f(A) = g(A) + h(A)$$
$$= g(A)$$
$$f(B) = g(B)$$
$$g(A) < g(B)$$

Def. of f(x)

h = 0 at a goal

Similarly for **B**

Suboptimality of **B**



$$f(x) = g(x) + h(x)$$

$$h(x) \le h^*(x)$$

Proof:

Imagine B is on the frontier

Some ancestor *n* of *A* is on the frontier, too (Maybe the start state; maybe *A* itself!)

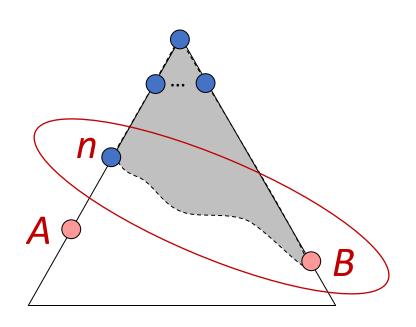
Claim: *n* will be explored before *B*

- 1. f(n) is less than or equal to f(A)
- 2. f(A) is less than f(B)
- 3. f(n) < f(B) then n is explored before B

All ancestors of A are explored before B

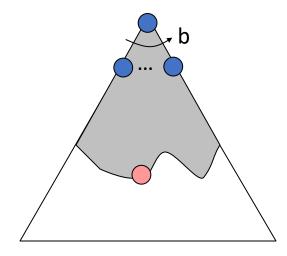
A is explored before B

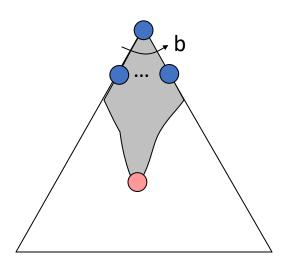
A* search is optimal



UCS vs A* Contours

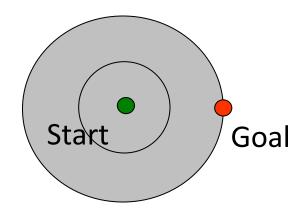
Uniform-Cost



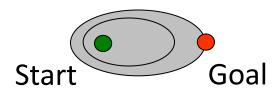


UCS vs A* Contours

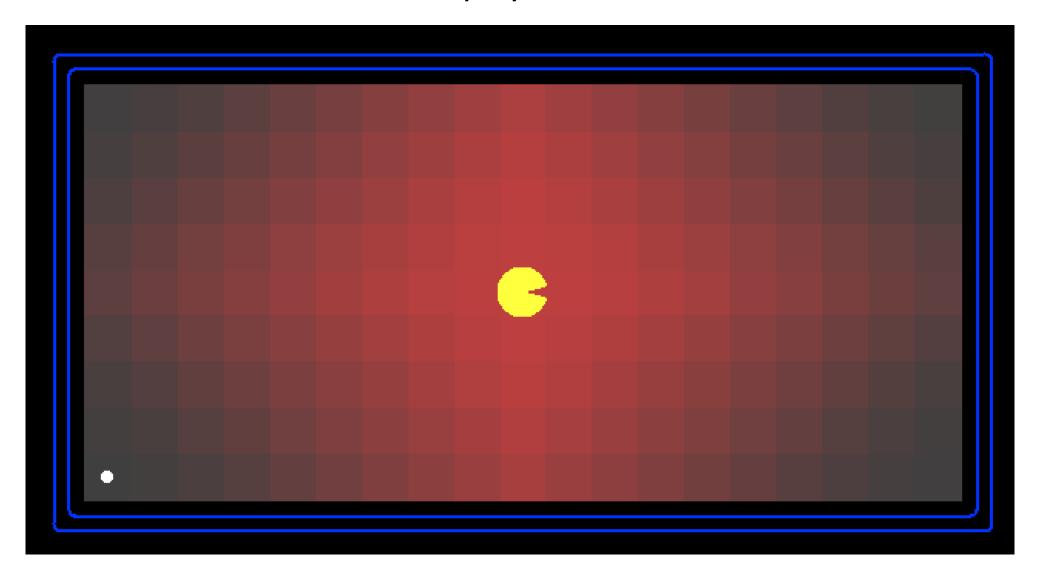
Uniform-cost expands equally in all "directions"



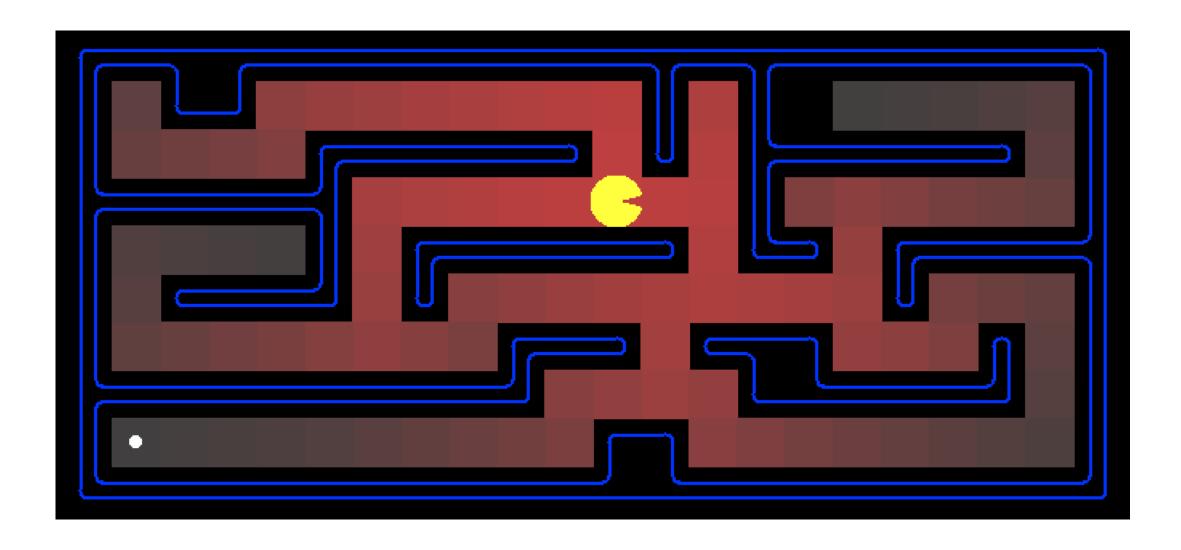
A* expands mainly toward the goal, but does hedge its bets to ensure optimality



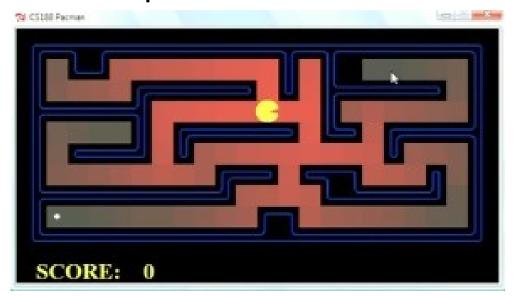
Demo Contours UCS Empty

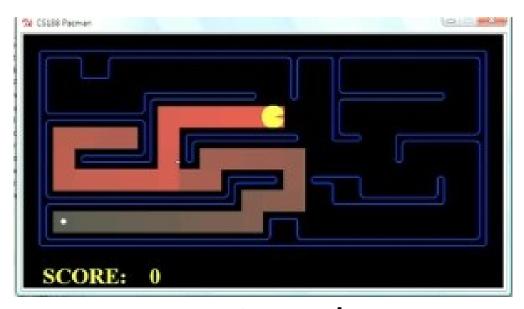


Demo Contours UCS Pacman Small Maze

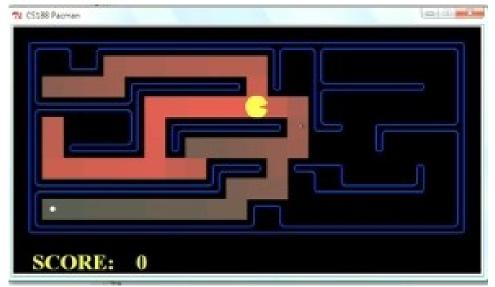


Comparison





UCS



Greedy

A* Search Algorithms

A* Tree Search

Same tree search algorithm as before but with a frontier that is a priority queue using priority f(n) = g(n) + h(n)

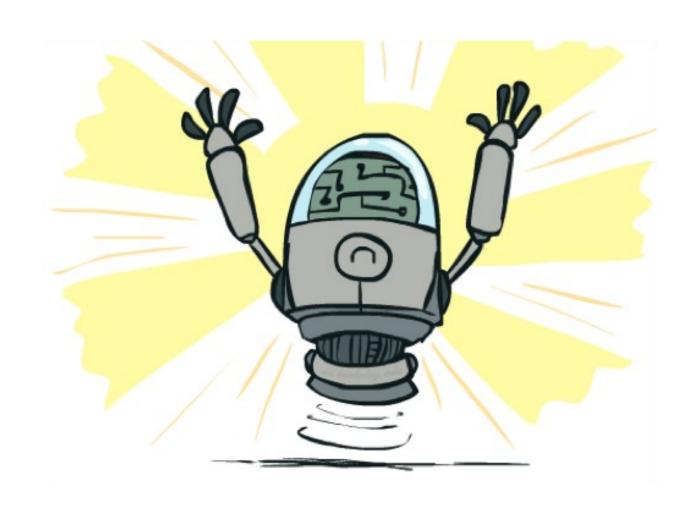
A* Graph Search

Same UCS graph search algorithm but with a frontier that is a priority queue using priority f(n) = g(n) + h(n)

```
function UNIFORM-COST-SEARCH(problem) returns a solution, or failure
   initialize the explored set to be empty
   initialize the frontier as a priority queue using g(n) as the priority
   add initial state of problem to frontier with priority g(S) = 0
   loop do
       if the frontier is empty then
            return failure
       choose a node and remove it from the frontier
       if the node contains a goal state then
            return the corresponding solution
       add the node state to the explored set
       for each resulting child from node
            if the child state is not already in the frontier or explored set then
                add child to the frontier
            else if the child is already in the frontier with higher g(n) then
                replace that frontier node with child
```

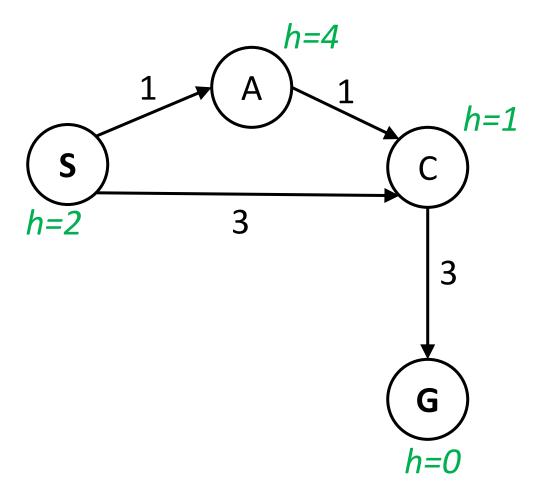
```
function A-STAR-SEARCH(problem) returns a solution, or failure
   initialize the explored set to be empty
   initialize the frontier as a priority queue using f(n) = g(n) + h(n) as the priority
   add initial state of problem to frontier with priority f(S) = 0 + h(S)
   loop do
       if the frontier is empty then
            return failure
       choose a node and remove it from the frontier
       if the node contains a goal state then
            return the corresponding solution
       add the node state to the explored set
       for each resulting child from node
            if the child state is not already in the frontier or explored set then
                 add child to the frontier
            else if the child is already in the frontier with higher f(n) then
                 replace that frontier node with child
```

Optimality of A* Graph Search

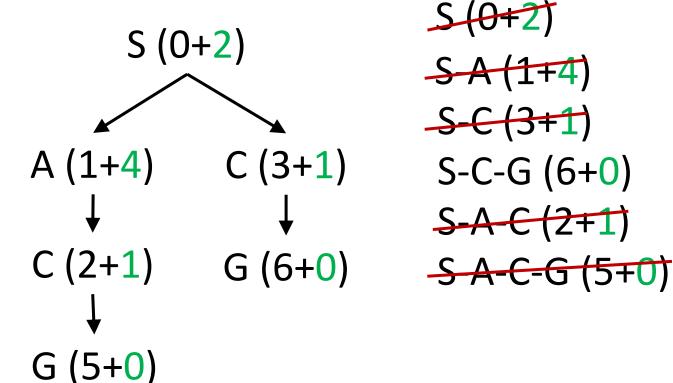


A* Tree Search

State space graph



Search tree

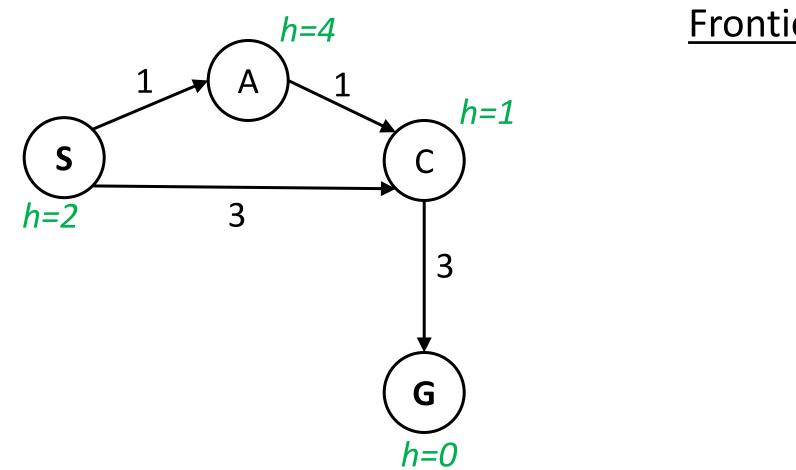


Result: S-A-C-G cost 5
Correct!

Frontier

A* Graph Search

What paths does A* graph search consider during its search?

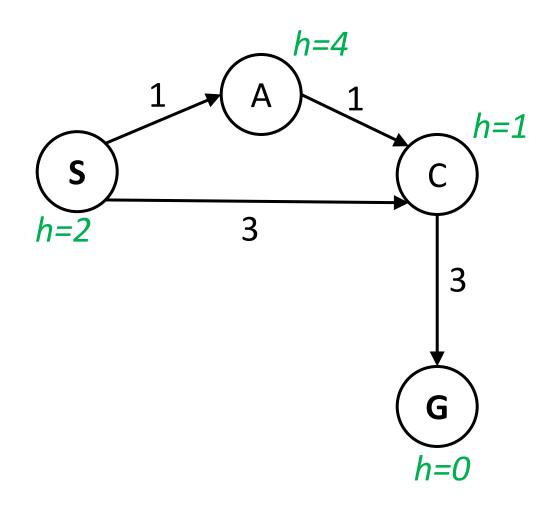


Frontier

Explored

Poll 1: A* Graph Search

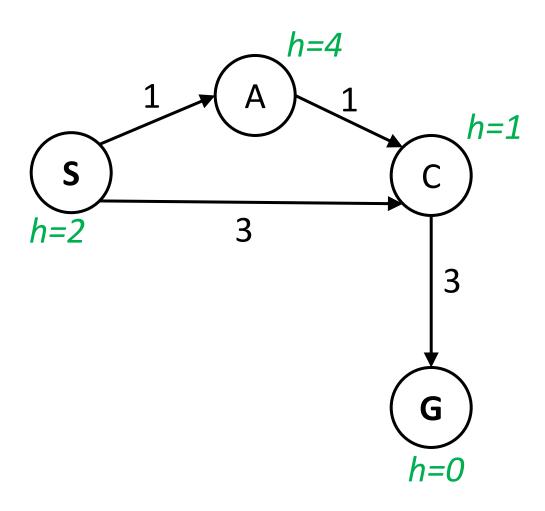
What paths does A* graph search consider during its search? (What does your work for the frontier look like?)



- A) S, S-A, S-C, S-C-G
- B) S, S-A, S-C, S-A-C, <u>S-C-G</u>
- C) S, S-A, S-A-C, <u>S-A-C-G</u>
- D) S, S-A, S-C, S-A-C, S-A-C-G

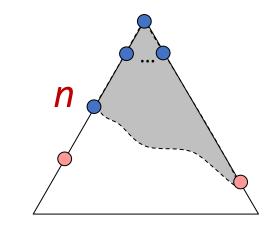
Poll 1: A* Graph Search

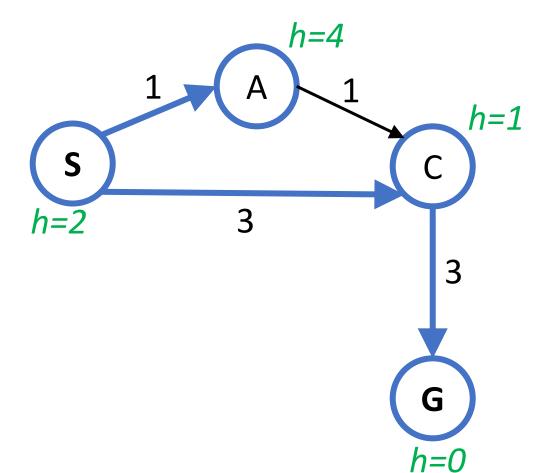
What paths does A* graph search consider during its search? (What does your work for the frontier look like?)



A* Graph Search Gone Wrong?

State space graph





$$S: 0+2=2$$

$$S-A: 1+4=5$$

$$S-C: 2+1=3$$

$$S-C-G: 6+0=6$$

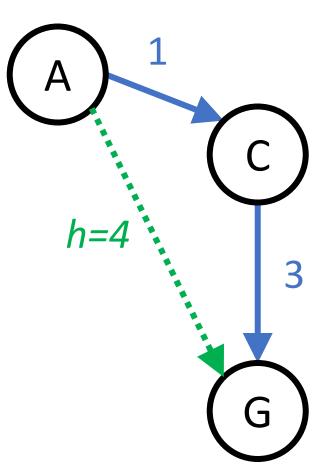
C (specifically S-C) is no longer on the frontier, so it can't be replaced with the better S-A-C option

Admissibility of Heuristics

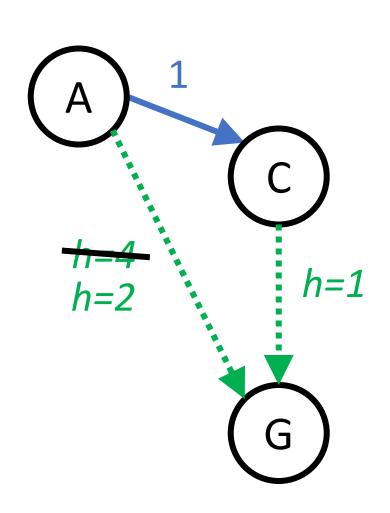
Main idea: Estimated heuristic values ≤ actual costs

■ Admissibility:

heuristic value \leq actual cost to goal h(A) \leq actual cost from A to G



Consistency of Heuristics



Main idea: Estimated heuristic costs ≤ actual costs

Admissibility:

heuristic cost ≤ actual cost to goal

 $h(A) \leq actual cost from A to G$

Consistency:

"heuristic step cost" ≤ actual cost for each step

$$h(A) - h(C) \le cost(A to C)$$

triangle inequality

$$h(A) \leq cost(A to C) + h(C)$$

Consequences of consistency:

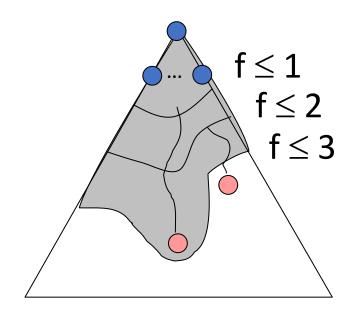
- The f value along a path never decreases
- A* graph search is optimal

Optimality of A* Graph Search

Sketch: consider what A* does with a consistent heuristic:

- Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
- Fact 2: For every state s, nodes that reach s optimally are explored before nodes that reach s suboptimally

■ Result: A* graph search is optimal



Optimality

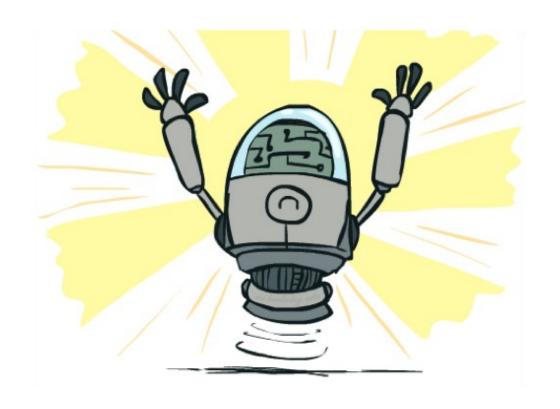
Tree search:

- A* is optimal if heuristic is admissible
- UCS is a special case (h = 0)

Graph search:

- A* optimal if heuristic is consistent
- UCS optimal (h = 0 is consistent)

Consistency implies admissibility



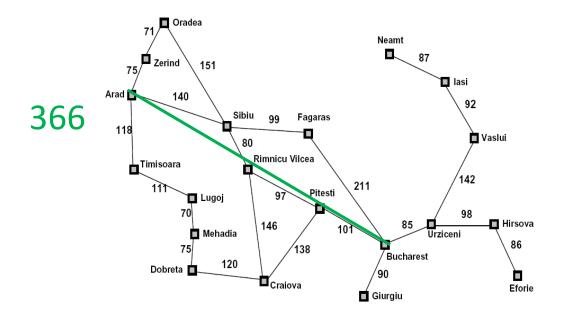
In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems

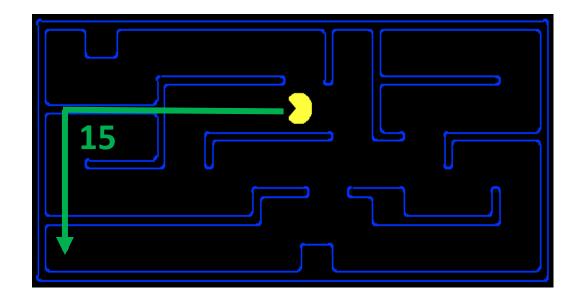
Creating Heuristics

Creating Admissible Heuristics

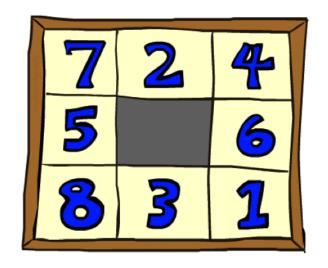
Most of the work in solving hard search problems optimally is in coming up with admissible heuristics

Often, admissible heuristics are solutions to *relaxed problems*, where new actions are available

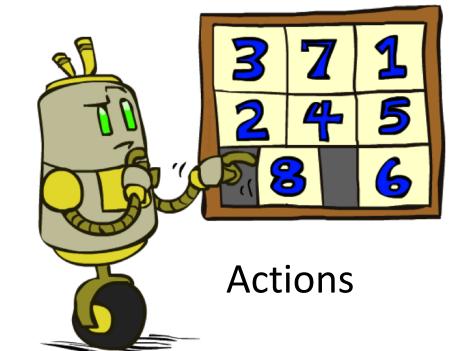


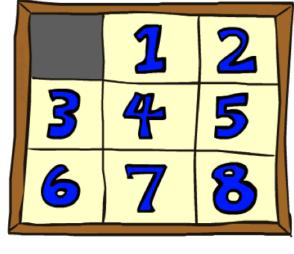


Example: 8 Puzzle



Start State





Goal State

What are the states?

How many states?

What are the actions?

How many actions from the start state?

What should the step costs be?

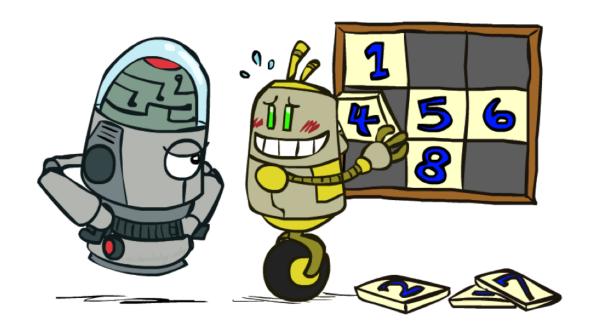
8 Puzzle I

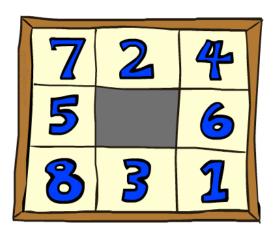
Heuristic: Number of tiles misplaced

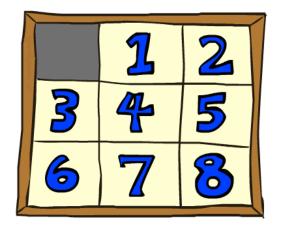
Why is it admissible?

h(start) = 8

This is a *relaxed-problem* heuristic







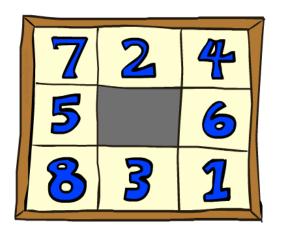
Start State

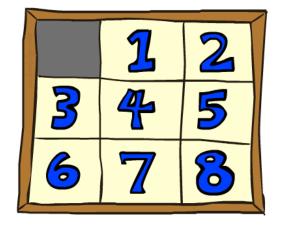
Goal State

	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
UCS	112	6,300	3.6 x 10 ⁶	
A*TILES	13	39	227	

8 Puzzle II

What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?





Start State

Goal State

Total Manhattan distance

Why is it admissible?

h(start) = 3 + 1 + 2 + ... = 18

	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
UCS	112	6,300	3.6×10^6	
A*TILES	13	39	227	
A*MANHATTAN	12	25	73	

Statistics from Andrew Moore

Combining heuristics

Dominance:
$$h_a \ge h_c$$
 if $\forall n \ h_a(n) \ge h_c(n)$

- Roughly speaking, larger is better as long as both are admissible
- The zero heuristic is pretty bad (what does A* do with h=0?)
- The exact heuristic is pretty good, but usually too expensive!

What if we have two heuristics, neither dominates the other?

Form a new heuristic by taking the max of both:

$$h(n) = \max(h_a(n), h_b(n))$$

• Max of admissible heuristics is admissible and dominates both!

A*: Summary

A*: Summary

A* uses both backward costs and (estimates of) forward costs

A* is optimal with admissible / consistent heuristics

Heuristic design is key: often use relaxed problems

