Plan

Last time
" Tree search vs graph search
Today
= Uniform cost search
= Heuristics
" Greedy search
= A*search
= Optimality
= [More on heuristics]



Uniform Cost Search

Back to Lecture 2 slides



Al: Representation and Problem Solving

Informed Search

Instructor: Pat Virtue

Slide credits: CMU Al, http://ai.berkeley.edu



Donuts ASAP!
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Uninformed vs Informed Search




Today

Informed Search
= Heuristics

" Greedy Search

= A* Search




Informed Search




Search Heuristics

A heuristic is:

= A function that estimates how close a state is to a goal

" Designed for a particular search problem

= Examples: Manhattan distance, Euclidean distance for
pathing




Example: Euclidean distance to Bucharest
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Effect of heuristics

Guide search towards the goal instead of all over the place

StarGoaI Stz@ Goal

Informed Uninformed



Greedy Search




Donuts ASAP
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A* Search




A* Search




A* Search




Combining UCS and Greedy

Uniform-cost orders by path cost, or backward cost g(n)

Example: Teg Grenager



Combining UCS and Greedy

Uniform-cost orders by path cost, or backward cost g(n)
Greedy orders by goal proximity, or forward cost h(n)

Example: Teg Grenager



Combining UCS and Greedy

Uniform-cost orders by path cost, or backward cost g(n)
Greedy orders by goal proximity, or forward cost h(n)

h=2 h=0

A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager



Is A* Optimal?

What went wrong?
Estimated good goal cost > Actual future cost!
We need estimates to be less than actual costs!



The Price is Wrong...

Closest bid without going over...

https://www.youtube.com/watch?v=9B0ZKRurC5Y



https://www.youtube.com/watch?v=9B0ZKRurC5Y

Admissible Heuristics




Admissible Heuristics

A heuristic /1 is admissible (optimistic) if:
0< h(n) £h*(n)

where h*(n) is the true cost to a nearest goal

Example:

Coming up with admissible heuristics is most of
what’s involved in using A* in practice.



Optimality of A* Tree Search




Optimality of A* Tree Search |

Assume:

A is an optimal goal node
B is a suboptimal goal node
h is admissible

Claim:

A will be chosen for exploration (popped off the frontier) before B



Optimality of A* Tree Search: Blocking

Proof:
Imagine B is on the frontier

Some ancestor n of A is on the frontier, too
(Maybe the start state; maybe A itself!)

Claim: n will be explored before B
1.

2.
3.

All ancestors of A are explored before B
A is explored before B
A* search is optimal



. . . — \
Optimality of A* Tree Search: Blocking
N

Proof:

Imagine B is on the frontier

Some ancestor n of A is on the frontier, too
(Maybe the start state; maybe A itself!)

Claim: n will be explored before B

1. fln)<f(A) €< TODO

2. f(A) <f(B) €< TODO

3. f(n) < f(B) then nis explored before B
All ancestors of A are explored before B

A is explored before B
A* search is optimal



. . _ x) = g(x) + h(x)
Optimality of A* Tree Search: Blocking i&% < hg((x))

Proof:
Imagine B is on the frontier

Some ancestor n of A is on the frontier, too
(Maybe the start state; maybe A itself!)

Claim: n will be explored before B

1. fln) < f(A)

f(n) = g(n) + h(n) Definition of f-cost A

f(n) <g(n)+ h*(n)  Admissibility of h
f(n) < g(A) n on optimal path to A
Kf(n) < f(A) h =0 at a goal )




. . _ x) = g(x) + h(x)
Optimality of A* Tree Search: Blocking i&% < hg((x))

Proof:
Imagine B is on the frontier

Some ancestor n of A is on the frontier, too
(Maybe the start state; maybe A itself!)

Claim: n will be explored before B

1. fln) < f(A)

2. JlA)<(B) HA) =g(A)+h(A)  Def. of f(x) N
=g(A) h =0 at a goal

f(B) =g(B) Similarly for B

g(A) < g(B) Suboptimality of B

\f(4) < f(B) Y




. . _ x) = g(x) + h(x)
Optimality of A* Tree Search: Blocking i&% < hg((x))

Proof:
Imagine B is on the frontier

Some ancestor n of A is on the frontier, too
(Maybe the start state; maybe A itself!)
Claim: n will be explored before B

1. f(n)is less than or equal to f(A)

2. f(A)is less than f(B)

3. f(n) < f(B) then nis explored before B

All ancestors of A are explored before B

A is explored before B
A* search is optimal



UCS vs A* Contours

Uniform-Cost

b

A*




UCS vs A* Contours
Uniform-cost expands equally in all
“directions” @
Sta Goal

A* expands mainly toward the goal,

but does hedge its bets to ensure
optlmallty Start Goal



Demo Contours UCS Empty




Demo Contours UCS Pacman Small Maze




Comparison

SCORE: 0 SCORE: 0

SOCOKE: 0




A* Search Algorithms

A* Tree Search

= Same tree search algorithm as before but with a frontier that is a
priority queue using priority f(n) = g(n) + h(n)

A* Graph Search

= Same UCS graph search algorithm but with a frontier that is a
priority queue using priority f(n) = g(n) + h(n)



UNIFORM-COST-SEARCH(problem) a solution, or failure
initialize the explored set to be empty
initialize the frontier as a priority queue using g(n) as the priority
add initial state of problem to frontier with priority g(S) =0

the frontier is empty
failure
choose a node and remove it from the frontier
the node contains a goal state
the corresponding solution
add the node state to the explored set
for each resulting child from node
if the child state is not already in the frontier or explored set
add child to the frontier
else if the child is already in the frontier with higher g(n)
replace that frontier node with child



A-STAR-SEARCH(problem) a solution, or failure
initialize the explored set to be empty
initialize the frontier as a priority queue using f(n) = g(n) + h(n) as the priority
add initial state of problem to frontier with priority f(S) = 0 + h(S)

the frontier is empty
failure
choose a node and remove it from the frontier
the node contains a goal state
the corresponding solution
add the node state to the explored set
for each resulting child from node
if the child state is not already in the frontier or explored set
add child to the frontier
else if the child is already in the frontier with higher f(n)
replace that frontier node with child



Optimality of A* Graph Search




A* Tree Search
State space graph

h=4

h

0

Search tree Frontier
SAO+7])
e
S-E{3+71)
A(1+4)  C(3+1) S-C-G (6+0)
| ' S-A-E2+1)
C(2+1) G (6+0) SA-E=G(5¥0)
!
G (5+0)

Result: S-A-C-G cost 5
Correct!



A* Graph Search

What paths does A* graph search consider during its search?

h=4 Frontier Explored

h

0



Poll 1: A* Graph Search

What paths does A* graph search consider during its search?
(What does your work for the frontier look like?)

h=4 A) .8, SA, S-C, S-C-G

h=1 B) .S, S-A, S-C, S-A-C, S-C-G
C) S, S-A, S-A-C, S-A-C-G

D) .S, S-A,S-C, S-A-C, S-A-C-G

h

0



Poll 1: A* Graph Search

What paths does A* graph search consider during its search?
(What does your work for the frontier look like?)

h=4 A) S S-A, S-C, S-C-G

h

0



A* Graph Search Gone Wrong?

State space graph

h=4

S: 0+2 =2

h=1 S-A: 1+4 =5
S-C:2+1 =3
S-C-G: 6+0 =6

C (specifically S-C) is no longer on the
frontier, so it can't be replaced with the
h=0 better S-A-C option



Admissibility of Heuristics
Main idea: Estimated heuristic values < actual costs
= Admissibility:
heuristic value < actual cost to goal
h(A) < actual cost from A to G




Consistency of Heuristics
Main idea: Estimated heuristic costs < actual costs
= Admissibility:
heuristic cost < actual cost to goal
h(A) < actual cost from Ato G
= Consistency:
“heuristic step cost” < actual cost for each step
h(A) — h(C) < cost(A to C)
s triangle inequality
h(A) < cost(A to C) + h(C)

Consequences of consistency:

" The f value along a path never decreases
= A* graph search is optimal



Optimality of A* Graph Search

Sketch: consider what A* does with a
consistent heuristic:

" Fact 1: In tree search, A* expands nodes
in increasing total f value (f-contours)

" Fact 2: For every state s, nodes that
reach s optimally are explored before
nodes that reach s suboptimally

" Result: A* graph search is optimal



Optimality

Tree search:
" A* is optimal if heuristic is admissible
=" UCS is a special case (h = 0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h = 0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics tend to be
consistent, especially if from relaxed problems



Creating Heuristics

YOuUu GOT

HEURISTIL
UFGRADE!




Creating Admissible Heuristics

Most of the work in solving hard search problems optimally is in
coming up with admissible heuristics

Often, admissible heuristics are solutions to relaxed problems, where
new actions are available




Example: 8 Puzzle

71 2 %

p2
>

Goal State

3
&

Start State Actions

What are the states?
How many states?
What are the actions?
How many actions from the start state?
What should the step costs be?



S Puzzle |

Heuristic: Number of tiles misplaced
Why is it admissible?
h(start) = 8

This is a relaxed-problem heuristic Start State

Goal State

Average nodes expanded when
the optimal path has...

...4 steps |...8 steps |...12 steps
UCS 112 6,300 3.6 x 10°
A*TILES 13 39 227

Statistics from Andrew Moore



S Puzzle |l

What if we had an easier 8-puzzle
where any tile could slide any
direction at any time, ignoring
other tiles?

Start State

Total Manhattan distance

Goal State

Average nodes expanded when
the optimal path has...

...4 steps |...8 steps |...12 steps
- ccihlad
Why is it admissible: cs 1 5300 | 3.6x 108
A*TILES 13 39 227
h(start) = 3+1+2+..=18 |A*MANHATTAN | 12 25 73

Statistics from Andrew Moore




Combining heuristics

Dominance: h, 2 h_if
Vn h,(n)=h(n)
= Roughly speaking, larger is better as long as both are admissible
" The zero heuristic is pretty bad (what does A* do with h=07?)
" The exact heuristic is pretty good, but usually too expensive!

What if we have two heuristics, neither dominates the other?
= Form a new heuristic by taking the max of both:
h(n) =max( h,(n), h,(n))
= Max of admissible heuristics is admissible and dominates both!



A*: Summary




A*: Summary

A* uses both backward costs and (estimates of) forward costs
A* is optimal with admissible / consistent heuristics

Heuristic design is key: often use relaxed problems
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