
Plan
Last time

▪ Tree search vs graph search

Today

▪ Uniform cost search

▪ Heuristics

▪ Greedy search

▪ A* search

▪ Optimality

▪ [More on heuristics]

Uniform Cost Search
Back to Lecture 2 slides

AI: Representation and Problem Solving

Informed Search

Instructor: Pat Virtue

Slide credits: CMU AI, http://ai.berkeley.edu

Donuts ASAP!

Images: Yelp "Soergel's", Google Maps

Uninformed vs Informed Search

Today

Informed Search
▪ Heuristics
▪ Greedy Search
▪ A* Search

Informed Search

Search Heuristics

A heuristic is:
▪ A function that estimates how close a state is to a goal

▪ Designed for a particular search problem

▪ Examples: Manhattan distance, Euclidean distance for
pathing

10

5

11.2

Example: Euclidean distance to Bucharest

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

h(state) → value

Effect of heuristics

Guide search towards the goal instead of all over the place

Start GoalStart Goal

UninformedInformed

Greedy Search

Donuts ASAP!

A* Search

A* Search

UCS Greedy

A*

A* Search

UCS Greedy

A*

Combining UCS and Greedy

Uniform-cost orders by path cost, or backward cost g(n)

S a d

b

G

h=5

h=6

h=2

1

8

1

1

2

h=6
h=0

c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

ed

dG

G

g = 0
h=6

g = 1
h=5

g = 2
h=6

g = 3
h=7

g = 4
h=2

g = 6
h=0

g = 9
h=1

g = 10
h=2

g = 12
h=0

Combining UCS and Greedy

Uniform-cost orders by path cost, or backward cost g(n)

Greedy orders by goal proximity, or forward cost h(n)

S a d

b

G

h=5

h=6

h=2

1

8

1

1

2

h=6
h=0

c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

ed

dG

G

g = 0
h=6

g = 1
h=5

g = 2
h=6

g = 3
h=7

g = 4
h=2

g = 6
h=0

g = 9
h=1

g = 10
h=2

g = 12
h=0

Combining UCS and Greedy

Uniform-cost orders by path cost, or backward cost g(n)

Greedy orders by goal proximity, or forward cost h(n)

A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G

h=5

h=6

h=2

1

8

1

1

2

h=6
h=0

c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

ed

dG

G

g = 0
h=6

g = 1
h=5

g = 2
h=6

g = 3
h=7

g = 4
h=2

g = 6
h=0

g = 9
h=1

g = 10
h=2

g = 12
h=0

Is A* Optimal?

What went wrong?

Estimated good goal cost > Actual future cost!

We need estimates to be less than actual costs!

A

GS

1 3

h = 6

h = 0

5

h = 7

The Price is Wrong…

https://www.youtube.com/watch?v=9B0ZKRurC5Y

Closest bid without going over…

https://www.youtube.com/watch?v=9B0ZKRurC5Y

Admissible Heuristics

Admissible Heuristics

A heuristic h is admissible (optimistic) if:

 0  h(n)  h*(n)
 where h*(n) is the true cost to a nearest goal

Example:

Coming up with admissible heuristics is most of
what’s involved in using A* in practice.

15

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

A is an optimal goal node

B is a suboptimal goal node

h is admissible

Claim:

A will be chosen for exploration (popped off the frontier) before B

…

A
B

Optimality of A* Tree Search: Blocking

Proof:

Imagine B is on the frontier

Some ancestor n of A is on the frontier, too
(Maybe the start state; maybe A itself!)

Claim: n will be explored before B

1.

2.

3.

All ancestors of A are explored before B

A is explored before B

A* search is optimal

…

A
B

n

Optimality of A* Tree Search: Blocking

Proof:

Imagine B is on the frontier

Some ancestor n of A is on the frontier, too
(Maybe the start state; maybe A itself!)

Claim: n will be explored before B

1. f(n)  f(A)  TODO

2. f(A) < f(B)  TODO
3. f(n) < f(B) then n is explored before B

All ancestors of A are explored before B

A is explored before B

A* search is optimal

…

A
B

n

Optimality of A* Tree Search: Blocking

Proof:

Imagine B is on the frontier

Some ancestor n of A is on the frontier, too
(Maybe the start state; maybe A itself!)

Claim: n will be explored before B

1. f(n)  f(A)
2. f(A) < f(B)

3. f(n) < f(B) then n is explored before B

All ancestors of A are explored before B

A is explored before B

A* search is optimal

…

A
B

n

𝑓(𝑥) = 𝑔(𝑥) + ℎ 𝑥
ℎ 𝑥 ≤ ℎ∗(𝑥)

f(n) = g(n) + h(n) Definition of f-cost

f(n)  g(n) + h*(n) Admissibility of h

f(n)  g(A) n on optimal path to A

f(n)  f(A) h = 0 at a goal

Optimality of A* Tree Search: Blocking

Proof:

Imagine B is on the frontier

Some ancestor n of A is on the frontier, too
(Maybe the start state; maybe A itself!)

Claim: n will be explored before B

1. f(n)  f(A)
2. f(A) < f(B)

3. f(n) < f(B) then n is explored before B

All ancestors of A are explored before B

A is explored before B

A* search is optimal

…

A
B

n

𝑓(𝑥) = 𝑔(𝑥) + ℎ 𝑥
ℎ 𝑥 ≤ ℎ∗(𝑥)

g(A) < g(B) Suboptimality of B

f(A) = g(A) + h(A) Def. of f(x)
 = g(A) h = 0 at a goal

f(A) < f(B)

f(B) = g(B) Similarly for B

Optimality of A* Tree Search: Blocking

Proof:

Imagine B is on the frontier

Some ancestor n of A is on the frontier, too
(Maybe the start state; maybe A itself!)

Claim: n will be explored before B

1. f(n) is less than or equal to f(A)

2. f(A) is less than f(B)

3. f(n) < f(B) then n is explored before B

All ancestors of A are explored before B

A is explored before B

A* search is optimal

…

A
B

n

𝑓(𝑥) = 𝑔(𝑥) + ℎ 𝑥
ℎ 𝑥 ≤ ℎ∗(𝑥)

UCS vs A* Contours

…
b

…
b

Uniform-Cost A*

UCS vs A* Contours

Uniform-cost expands equally in all
“directions”

A* expands mainly toward the goal,
but does hedge its bets to ensure
optimality

Start Goal

Start Goal

Demo Contours UCS Empty

Demo Contours UCS Pacman Small Maze

GreedyUCS
A*

Comparison

A* Search Algorithms
A* Tree Search

▪ Same tree search algorithm as before but with a frontier that is a
priority queue using priority f(n) = g(n) + h(n)

A* Graph Search

▪ Same UCS graph search algorithm but with a frontier that is a
priority queue using priority f(n) = g(n) + h(n)

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

 initialize the explored set to be empty

 initialize the frontier as a priority queue using g(n) as the priority

 add initial state of problem to frontier with priority g(S) = 0

 loop do

 if the frontier is empty then

 return failure

 choose a node and remove it from the frontier

 if the node contains a goal state then

 return the corresponding solution

 add the node state to the explored set

 for each resulting child from node

 if the child state is not already in the frontier or explored set then

 add child to the frontier

 else if the child is already in the frontier with higher g(n) then

 replace that frontier node with child

function A-STAR-SEARCH(problem) returns a solution, or failure

 initialize the explored set to be empty

 initialize the frontier as a priority queue using f(n) = g(n) + h(n) as the priority

 add initial state of problem to frontier with priority f(S) = 0 + h(S)

 loop do

 if the frontier is empty then

 return failure

 choose a node and remove it from the frontier

 if the node contains a goal state then

 return the corresponding solution

 add the node state to the explored set

 for each resulting child from node

 if the child state is not already in the frontier or explored set then

 add child to the frontier

 else if the child is already in the frontier with higher f(n) then

 replace that frontier node with child

Optimality of A* Graph Search

A* Tree Search

S

A

C

G

1

3

1

3

h=2

h=4

h=1

h=0

S (0+2)

A (1+4)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

State space graph Search tree Frontier

S (0+2)

S-A (1+4)
S-C (3+1)
S-C-G (6+0)
S-A-C (2+1)
S-A-C-G (5+0)

Result: S-A-C-G cost 5
Correct!

A* Graph Search

S

A

C

G

1

3

1

3

h=2

h=4

h=1

h=0

What paths does A* graph search consider during its search?

Frontier Explored

Poll 1: A* Graph Search

S

A

C

G

1

3

1

3

h=2

h=4

h=1

h=0

What paths does A* graph search consider during its search?
(What does your work for the frontier look like?)

A) S, S-A, S-C, S-C-G

C) S, S-A, S-A-C, S-A-C-G

D) S, S-A, S-C, S-A-C, S-A-C-G

B) S, S-A, S-C, S-A-C, S-C-G

Poll 1: A* Graph Search

S

A

C

G

1

3

1

3

h=2

h=4

h=1

h=0

What paths does A* graph search consider during its search?
(What does your work for the frontier look like?)

A) S, S-A, S-C, S-C-G

C) S, S-A, S-A-C, S-A-C-G

D) S, S-A, S-C, S-A-C, S-A-C-G

B) S, S-A, S-C, S-A-C, S-C-G

A* Graph Search Gone Wrong?

S

A

C

G

1

3

1

3

h=2

h=4

h=1

h=0

State space graph

C (specifically S-C) is no longer on the
frontier, so it can't be replaced with the
better S-A-C option

…

n

S: 0+2 = 2
S-A: 1+4 = 5
S-C: 2+1 = 3
S-C-G: 6+0 = 6

Admissibility of Heuristics
Main idea: Estimated heuristic values ≤ actual costs

▪ Admissibility:

 heuristic value ≤ actual cost to goal

 h(A) ≤ actual cost from A to G

3

A

C

G

h=4

1

Consistency of Heuristics
Main idea: Estimated heuristic costs ≤ actual costs

▪ Admissibility:

 heuristic cost ≤ actual cost to goal

 h(A) ≤ actual cost from A to G

▪ Consistency:

 “heuristic step cost” ≤ actual cost for each step

 h(A) – h(C) ≤ cost(A to C)

 triangle inequality

 h(A) ≤ cost(A to C) + h(C)

Consequences of consistency:

▪ The f value along a path never decreases

▪ A* graph search is optimal

A

C

G

h=4
h=1

1

h=2

Optimality of A* Graph Search

Sketch: consider what A* does with a
consistent heuristic:

▪Fact 1: In tree search, A* expands nodes
in increasing total f value (f-contours)

▪Fact 2: For every state s, nodes that
reach s optimally are explored before
nodes that reach s suboptimally

▪Result: A* graph search is optimal

…

f  3
f  2

f  1

Optimality

Tree search:
▪ A* is optimal if heuristic is admissible
▪UCS is a special case (h = 0)

Graph search:
▪ A* optimal if heuristic is consistent
▪UCS optimal (h = 0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics tend to be
consistent, especially if from relaxed problems

Creating Heuristics

Creating Admissible Heuristics
Most of the work in solving hard search problems optimally is in
coming up with admissible heuristics

Often, admissible heuristics are solutions to relaxed problems, where
new actions are available

15366

Example: 8 Puzzle

What are the states?

How many states?

What are the actions?

How many actions from the start state?

What should the step costs be?

Start State Goal StateActions

8 Puzzle I

Heuristic: Number of tiles misplaced

Why is it admissible?

h(start) =

This is a relaxed-problem heuristic

8

Statistics from Andrew Moore

Average nodes expanded when
the optimal path has…

…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

A*TILES 13 39 227

Start State Goal State

Average nodes expanded when
the optimal path has…

…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

A*TILES 13 39 227

A*MANHATTAN 12 25 73

8 Puzzle II

What if we had an easier 8-puzzle
where any tile could slide any
direction at any time, ignoring
other tiles?

Total Manhattan distance

Why is it admissible?

h(start) = 3 + 1 + 2 + … = 18

Start State Goal State

Statistics from Andrew Moore

Combining heuristics

Dominance: ha ≥ hc if

 n ha(n)  hc(n)
▪ Roughly speaking, larger is better as long as both are admissible
▪ The zero heuristic is pretty bad (what does A* do with h=0?)
▪ The exact heuristic is pretty good, but usually too expensive!

What if we have two heuristics, neither dominates the other?
▪ Form a new heuristic by taking the max of both:

 h(n) = max(ha(n), hb(n))
▪ Max of admissible heuristics is admissible and dominates both!

A*: Summary

A*: Summary
A* uses both backward costs and (estimates of) forward costs

A* is optimal with admissible / consistent heuristics

Heuristic design is key: often use relaxed problems

	Slide 1: Plan
	Slide 2: Uniform Cost Search
	Slide 3: AI: Representation and Problem Solving
	Slide 13: Donuts ASAP!
	Slide 14: Uninformed vs Informed Search
	Slide 15: Today
	Slide 16: Informed Search
	Slide 17: Search Heuristics
	Slide 18: Example: Euclidean distance to Bucharest
	Slide 19: Effect of heuristics
	Slide 20: Greedy Search
	Slide 21: Donuts ASAP!
	Slide 26: A* Search
	Slide 27: A* Search
	Slide 28: A* Search
	Slide 29: Combining UCS and Greedy
	Slide 30: Combining UCS and Greedy
	Slide 31: Combining UCS and Greedy
	Slide 32: Is A* Optimal?
	Slide 33: The Price is Wrong…
	Slide 34: Admissible Heuristics
	Slide 35: Admissible Heuristics
	Slide 36: Optimality of A* Tree Search
	Slide 37: Optimality of A* Tree Search
	Slide 38: Optimality of A* Tree Search: Blocking
	Slide 39: Optimality of A* Tree Search: Blocking
	Slide 40: Optimality of A* Tree Search: Blocking
	Slide 41: Optimality of A* Tree Search: Blocking
	Slide 42: Optimality of A* Tree Search: Blocking
	Slide 43: UCS vs A* Contours
	Slide 44: UCS vs A* Contours
	Slide 45: Demo Contours UCS Empty
	Slide 46: Demo Contours UCS Pacman Small Maze
	Slide 47: Comparison
	Slide 49: A* Search Algorithms
	Slide 50
	Slide 51
	Slide 52: Optimality of A* Graph Search
	Slide 53: A* Tree Search
	Slide 54: A* Graph Search
	Slide 55: Poll 1: A* Graph Search
	Slide 56: Poll 1: A* Graph Search
	Slide 58: A* Graph Search Gone Wrong?
	Slide 59: Admissibility of Heuristics
	Slide 60: Consistency of Heuristics
	Slide 61: Optimality of A* Graph Search
	Slide 62: Optimality
	Slide 63: Creating Heuristics
	Slide 64: Creating Admissible Heuristics
	Slide 65: Example: 8 Puzzle
	Slide 66: 8 Puzzle I
	Slide 67: 8 Puzzle II
	Slide 68: Combining heuristics
	Slide 69: A*: Summary
	Slide 70: A*: Summary

