Warm-up as you walk in

Write the pseudo code for breadth first search and depth first search
" [terative version, not recursive

class TreeNode
TreeNode[] children ()

boolean 1sGoal ()

BFS (TreeNode start)..
DFS (TreeNode start)..

Al;

Representation and Problem Solving

Agents and Search Techniques

Instructor: Pat Virtue

Slide credits: CMU Al, http://ai.berkeley.edu

Outline

Agents and Environments

Search Problems

Uninformed Search Techniques

" Depth-First Search
= Breadth-First Search

= Uniform-Cost Search

Rationality, contd.

What is rational depends on:

" Performance measure

= Agent’s prior knowledge of environment
= Actions available to agent

" Percept sequence to date

Being rational means maximizing your expected utility

Rational Agents

Are rational agents omniscient?
" No —they are limited by the available percepts

Are rational agents clairvoyant?
* No — they may lack knowledge of the environment dynamics

Do rational agents explore and learn?
= Yes — in unknown environments these are essential

So rational agents are not necessarily successful, but
they are autonomous (i.e., transcend initial program)

Task Environment - PEAS

Performance measure

= -] per step; +10 food; +500 win; -500 die;
+200 hit scared ghost

Environment
= Pacman dynamics (incl ghost behavior)

Actuators
= North, South, East, West, (Stop)

Sensors
= Entire state is visible SCORE: 18

PEAS: Automated Taxi

Performance measure

" [Income, happy customer, vehicle costs, fines,
insurance premiums

Environment

= US streets, other drivers, customers

Actuators
= Steering, brake, gas, display/speaker

Sensors

= Camera, radar, accelerometer, engine sensors,
microphone

Image: http://nypost.com/2014/06/21/how-google-might-put-taxi-drivers-out-of-business/

Environment Types

Fully or partially observable 7{0, // Y ?mﬁ“(a ///
Single agent or multi-agent mm“{ /1/]‘/\“,- /
Deterministic or stochastic SYach. So¢A.
Static or dynamic (i QﬁD 5“_}_4;‘1;‘;%4&\6“ bynmfc
Discrete or continuous DISC,(e;fC J Cgfﬁ'.

Reflex Agents

Reflex agents:

" Choose action based on current percept
(and maybe memory)

= May have memory or a model of the
world’s current state

" Do not consider the future consequences of
their actions

= Consider how the world IS

Can a reflex agent be rational?

[Demo: reflex optimal (L2D1)]
[Demo: reflex optimal (L2D2)]

Agents that Plan Ahead

Planning agents:
» Decisions based on predicted consequences of actions

= Must have a transition model: how the world evolves
In response to actions

= Must formulate a goal
= Consider how the world WOULD BE

Spectrum of deliberativeness:
= Generate complete, optimal plan offline, then execute

= Generate a simple, greedy plan, start executing, replan
when something goes wrong

Search Problems

Search Problems

A search problem consists of:

= A state space

= For each state, a set e
Actions(s) of allowable actions ' N, £}

1
N
= A transition model Result(s,a) ' ~ u
- B
= A step cost function c(s,a,s’) 1

= A start state and a goal test

A solution is a sequence of actions (a plan) which transforms
the start state to a goal state

Search Problems Are Models

They are a simplification/approximation of the real world

Example: Travelling in Romania

[1 Oradea

Zerind 151

75
Ara c i
Sibi
ibiu 99
118
&0
. . Rimnicu Vilcea
Timisoara 0

111

] Lugoj
70
[1 Mehadia
75
Drobeta [| 120
[|
Craiova

Neamt
[|
87
L Iasi
92
L Vaslui
11 142
98 .
Hirsova
83 ..
101 Q) Urziceni
".J 86
Bucharest
90
o Giurgiu Eforie

State space:

= Cities

Actions:

= Go to adjacent city

Transition model
= Result(A, Go(B)) =B

Step cost
= Distance along road link

Start state:
= Arad

Goal test:
® |s state == Bucharest?

Solution?

State Space Representation and Size?

World state:

= Agent positions: 120
" Food count: 30

= Ghost positions: 12

= Agent facing: NSEW

State representation State space size
= World states?

@, f1, - f30,91, 92, Q) 120x(23%)x(122)x4
= Eat top left dot?

(p) 120

= States for eat-all-dots?
(p, f1r -+ f30) 120x(23°)

State Space Graphs and Search Trees

State Space Graphs

State space graph: A mathematical representation of a
search problem

= \ertices are (abstracted) world configurations
= Edges represent transitions resulting from actions
* The goal test is a set of goal nodes (maybe only one)

In a state space graph, each state occurs only once! !

We can rarely build this full graph in memory (it’s too
big), but it’s a useful idea

More Examples

R
L | =4
5% | 058 | o8
L
/
RD
L[|=H =gI[v L[|=A
2 |- 58 =8
Sk
S S
S
J7) I e
.«

State Space Graphs vs. Search Trees

We build a search tree by traversing various paths in a state space graph,
beginning from a specific start state.

State space graph Resulting search tree

Important: Lots of repeated structure in the search tree!

State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

Important: With loops in the graph, the search tree can go on forever

Tree Search vs Graph Search

TREE_SEARCH(problem) a solution, or failure

initialize the frontier as a specific work list (stack, queue, priority queue)

add initial state of problem to frontier

the frontier is empty
failure
choose a node and remove it from the frontier
the node contains a goal state
the corresponding solution

for each resulting child from node
add child to the frontier

Depth-First (Tree) Search

Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

(@) (& ®
/ @ h/\r ;
| I /\CD NG

GRAPH_SEARCH(problem) a solution, or failure

initialize the explored set to be empty

initialize the frontier as a specific work list (stack, queue, priority queue)

add initial state of problem to frontier

the frontier is empty
failure
choose a node and remove it from the frontier
the node contains a goal state
the corresponding solution
add the node state to the explored set
for each resulting child from node

Data structure note:

"Nodes" go on
frontier

S~A-B

States go on
explored set

>

if the child state is not already in the frontier or explored set

add child to the frontier

A Note on Implementation

Nodes have PARENT

state, parent, action, path-cost

Node ACTION = Right

PATH-COST =6

STATE
A child of parent_node by action a has:

state = result(parent_node.state,q)
parent = parent_node
action = da

path-cost = parent _node.path cost +
step cost(parent_ node.state, g, self.state)

Extract solution by tracing back parent pointers, collecting actions

Depth-First (Graph) Search

Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

Explored set prevents
loops and repeated work

wn

d e P
T~ N |
b c e h r q

| | N N |
a a h r p qg f
N | | N
p q f q ¢ G
| PN |
q G a

Poll 1

GRAPH-SEARCH(problem) a solution, or failure
initialize the explored set to be empty
initialize the frontier as a specific work list (stack, queue, priority queue)
add initial state of problem to frontier

the frontier is empty
failure
choose a node and remove it from the frontier
the node contains a goal state
the corresponding solution
add the node state to the explored set
for each resulting child from node
if the child state is not already in the frontier or explored set
add child to the frontier

Poll 1

What is the relationship between these sets of states

after each loop iteration in GRAPH_SEARCH?
(Loop invariants!!!)

A

Explored

Frontier

Never Seen

B

Explored

Frontier

Never Seen

C

Explored

Frontier

Never Seen

Graph Search

This graph search algorithm overlays a tree on a graph
The frontier states separate the explored states from never seen states

O O
O—e—0O O—e—O
@—I—Q O——O O—o—9 O
O O—.l
O

Images: AIMA, Figure 3.8, 3.9

&

Search Algorithm Properties

BFS vs DFS

BFS vs DFS

Is the following demo using BFS or DFS

[Demo: dfs/bfs maze water (L2D6)]

Video of Demo Maze Water DFS/BFS (part 1)

OOO ~ Search Strategies Demo

Video of Demo Maze Water DFS/BFS (part 2)

OOO Search Strategies Demo

S Ty TR = s e i i — e —— S — o ——

BFS vs DFS &

When will BFS outperform DES?
Optimal 300\\ 5 shallow

When will DFS outperform BFS?
Opys Mg 500\.\ (5) afe o
M O X @Qp’r\\

L loRwielole.

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?

Optimal: Guaranteed to find the least cost path?

Time complexity?

Space complexity?

Cartoon of search tree:

" b is the branching factor

" mis the maximum depth

= solutions at various depths

Number of nodes in entire tree?
"1+b+b%+...bMm=0(b™M)

m tiers <

-

1 node
b nodes

b2 nodes

b™ nodes

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?

-
Space complexity?

Cartoon of search tree:
= b is the branching factor

1 node
b nodes

b2 nodes

Poll 2

1 node
Are these the properties for BFS or DFS? b nodes
b? nhodes
» Takes O(b™) time m tiers <
= Uses O(bm) space on frontier
b™ nodes

= Complete with graph search

= Not optimal unless all goals are in the same level
(and the same step cost everywhere)

Depth-First Search (DFS) Properties

What nodes does DFS expand?
= Some left prefix of the tree.

= Could process the whole tree! 1 node

= |f m is finite, takes time O(b™) b nodes
b? nodes

How much space does the frontier take? m tiers <

= Only has siblings on path to root, so O(bm)

Is it complete?

= m could be infinite, so only if we prevent cycles b™ nodes

(graph search)

Is it optimal?

= No, it finds the “leftmost” solution, regardless of
depth or cost

Breadth-First Search (BFS) Properties

What nodes does BFS expand?

= Processes all nodes above shallowest solution 1 node
= Let depth of shallowest solution be s b b nod
= Search takes time O(b?) s tiers < noaes
/ b? nhodes

How much space does the frontier take? g / \ b

. O nodes
= Has roughly the last tier, so O(b®)

@)

Is it complete? ° b™ nodes

= s must be finite if a solution exists, so yes!

s it optimal?
= Only if costs are all the same (more on costs later)

Iterative Deepening

ldea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages

" Run a DFS with depth limit 1. If no solution...

" Run a DFS with depth limit 2. If no solution...

= Run a DFS with depth limit 3.

Isn’t that wastefully redundant?

= Generally most work happens in the lowest level
searched, so not so bad!

Uniform Cost Search

Finding a Least-Cost Path

2 G 2 @
2

1 8
) (-)
9 8
START G
1 4 2
4
q

p 15

Depth-First (Tree) Search

Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

Breadth-First (Tree) Search

Strategy: expand a
shallowest node first

Implementation:
Frontier is a FIFO queue

Search

<

Tiers

Uniform Cost (Tree) Search

Strategy: expand a cheapest
node first:

Frontier is a priority queue
(priority: cumulative cost)

Cost <
contours

GRAPH_SEARCH(problem) a solution, or failure
initialize the explored set to be empty
initialize the frontier as a specific work list (stack, queue, priority queue)
add initial state of problem to frontier

the frontier is empty
failure
choose a node and remove it from the frontier
the node contains a goal state
the corresponding solution
add the node state to the explored set
for each resulting child from node
if the child state is not already in the frontier or explored set
add child to the frontier

UNIFORM-COST-SEARCH(problem) a solution, or failure
initialize the explored set to be empty
initialize the frontier as a priority queue using node path_cost as the priority
add initial state of problem to frontier with path_cost =0

the frontier is empty

failure
choose a node and remove it from the frontier
the node contains a goal state
the corresponding solution
add the node state to the explored set
for each resulting child from node
if the child state is not already in the frontier or explored set
add child to the frontier
else if the child is already in the frontier with higher path_cost
replace that frontier node with child

Walk-through UCS

Walk-through UCS

Frontier Explored
S S
S-A-T A
SB7 C
SA€73 B

S-A-C-D: 7

S-B-D: 5 7?7

Walk-through UCS

Frontier Explored
SO S
SAT A
SB7 C

B
D

S A%
~-B-B-G7% Replaced by

better path to D!

Result: S-B-D-G (path cost 8)

UCS: Another Example

UCS: Another Example

Frontier Explored
SO S
S-e73 o

S-e: 9 d
ST

S-p-q: 16

S-d-b: 4

S-d-c: 11

S-d-e: 5?7

Frontier
>0
Sea73
-S-e-9—-
ST

S-p-qg: 16
S-e-b7F

S-d-c: 11
S-a-e5
S-e-b-a 6

S-d-e-h: 13

S-g-e-r—7"

ST 9
S-d-e-r-f-c: 1277
S-d-e-r-f-G: 11

Explored

S

P

d

b

e

5 Add S-d-e-r-f-c: 12 to frontier?

' - No, there is a better path to c on the
: frontier, S-d-c: 11

| see G on the frontier. Are we done?
- No, the goal test doesn't come until
after we pop a node from the frontier

S-db=a—6
S-d-e-h: 13
S-ge-tr—7"

Explored

S

P

d

b

e

5 FYl: Breaking tie at cost 11 alphabetically
; a is already on the explored set, so we

c don't consider adding S-d-c-a

Result: S-d-e-r-f-G with cost 11

Uniform Cost Search (UCS) Properties

What nodes does UCS expand?
" Processes all nodes with cost less than cheapest solution!

= |f that solution costs C* and arcs cost at least &, then the
“effective depth” is roughly C*/¢

» Takes time O(b¢™%) (exponential in effective depth)

How much space does the frontier take?
* Has roughly the last tier, so O(b¢™?) C*/e “tiers” <

Is it complete?

= Assuming best solution has a finite cost and minimum arc
cost is positive, yes!

Is it optimal?
" Yes! (Proof next lecture via A*)

Uniform Cost Issues

Remember:
" UCS explores increasing cost contours

The good:
= UCS is complete and optimal!

The bad:
" Explores options in every “direction”
" No information about goal location

We’ll fix that!

	Slide 1: Warm-up as you walk in
	Slide 2: AI: Representation and Problem Solving
	Slide 3: Outline
	Slide 4: Rationality, contd.
	Slide 5: Rational Agents
	Slide 6: Task Environment - PEAS
	Slide 7: PEAS: Automated Taxi
	Slide 8: Environment Types
	Slide 9: Reflex Agents
	Slide 11: Agents that Plan Ahead
	Slide 12: Search Problems
	Slide 13: Search Problems
	Slide 14: Search Problems Are Models
	Slide 15: Example: Travelling in Romania
	Slide 17: State Space Representation and Size?
	Slide 19: State Space Graphs and Search Trees
	Slide 20: State Space Graphs
	Slide 21: More Examples
	Slide 22: State Space Graphs vs. Search Trees
	Slide 23: State Space Graphs vs. Search Trees
	Slide 24: Tree Search vs Graph Search
	Slide 25
	Slide 26: Depth-First (Tree) Search
	Slide 27
	Slide 28: A Note on Implementation
	Slide 29: Depth-First (Graph) Search
	Slide 30: Poll 1
	Slide 31: Poll 1
	Slide 32: Graph Search
	Slide 33: Search Algorithm Properties
	Slide 34: BFS vs DFS
	Slide 35: BFS vs DFS
	Slide 37: Video of Demo Maze Water DFS/BFS (part 1)
	Slide 38: Video of Demo Maze Water DFS/BFS (part 2)
	Slide 39: BFS vs DFS
	Slide 40: Search Algorithm Properties
	Slide 41: Search Algorithm Properties
	Slide 42: Poll 2
	Slide 43: Depth-First Search (DFS) Properties
	Slide 44: Breadth-First Search (BFS) Properties
	Slide 45: Iterative Deepening
	Slide 46: Uniform Cost Search
	Slide 47: Finding a Least-Cost Path
	Slide 48: Depth-First (Tree) Search
	Slide 49: Breadth-First (Tree) Search
	Slide 50: Uniform Cost (Tree) Search
	Slide 51
	Slide 52
	Slide 53: Walk-through UCS
	Slide 54: Walk-through UCS
	Slide 55: Walk-through UCS
	Slide 56: UCS: Another Example
	Slide 57: UCS: Another Example
	Slide 58: UCS: Another Example
	Slide 59: UCS: Another Example
	Slide 60: Uniform Cost Search (UCS) Properties
	Slide 61: Uniform Cost Issues

