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Overview: MDPs and Reinforcement Learning

Known MDP: Offline Solution

Value Iteration / Policy Iteration

Model-Based Model-Free

Estimate MDP T(s,a,s') and R(s,a,s')
from samples of environment

Passive Reinforcement Learning
▪ Direct Evaluation (simple)
▪ TD Learning

Active Reinforcement Learning
▪ Q-Learning

Unknown MDP: Online Learning



Online Learning
Model-free Learning
Passive Reinforcement Learning
Temporal Difference Learning



Temporal Difference Learning

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

Same update:

Big idea: learn from every experience!
▪ Update V(s) each time we experience a transition (s, a, s’, r)

▪ Likely outcomes s’ will contribute updates more often

Temporal difference learning of values
▪ Policy still fixed, still doing evaluation!

▪ Move values toward value of whatever successor occurs: running average

𝑠𝑎𝑚𝑝𝑙𝑒 =  𝑟 +  𝛾 𝑉𝑘
𝜋 𝑠′
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𝑉𝜋 𝑠  ←  𝑉𝜋(𝑠)  + 𝛼 𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑉𝜋 𝑠

Temporal Difference Learning

Big idea: learn from every experience!
▪ Update V(s) each time we experience a transition (s, a, s’, r)

▪ Likely outcomes s’ will contribute updates more often

Temporal difference learning of values
▪ Policy still fixed, still doing evaluation!

▪ Move values toward value of whatever successor occurs: running average

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

Same update:

𝑠𝑎𝑚𝑝𝑙𝑒 =  𝑟 + 𝛾 𝑉𝜋 𝑠′

𝑉𝜋 𝑠  ← 1 − 𝛼  𝑉𝜋 𝑠 + (𝛼) 𝑠𝑎𝑚𝑝𝑙𝑒

𝑉𝜋 𝑠  ←  𝑉𝜋 𝑠 − 𝛼∇𝐸𝑟𝑟𝑜𝑟Same update: 𝐸𝑟𝑟𝑜𝑟 =
1

2
𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑉𝜋 𝑠

2



ML detour: Quick Calculus Quiz

𝑓 𝑥 =
1

2
𝑦 − 𝑥 2 

What is
𝑑𝑓

𝑑𝑥
?



ML detour: Gradient Descent
Goal: find 𝑥 that minimizes 𝑓(𝑥)

1. Start with initial guess, 𝑥0

2. Update 𝑥 by taking a step in the direction that 𝑓(𝑥) is changing 
fastest (in the negative direction) with respect to x:

 𝑥 ← 𝑥 − 𝛼∇𝑥𝑓, where 𝛼 is the step size or learning rate

3. Repeat until convergence

TD goal: find value(s), V, that minimizes difference between sample(s) 
and V

 𝑉 ← 𝑉 − 𝛼∇𝑉𝐸𝑟𝑟𝑜𝑟 

𝑓 𝑥 =
1

2
𝑦 − 𝑥 2

𝑑𝑓

𝑑𝑥
= −(𝑦 − 𝑥)

𝐸𝑟𝑟𝑜𝑟(𝑉) =
1

2
𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑉 2
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▪ Update V(s) each time we experience a transition (s, a, s’, r)

▪ Likely outcomes s’ will contribute updates more often

Temporal difference learning of values
▪ Policy still fixed, still doing evaluation!

▪ Move values toward value of whatever successor occurs: running average
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Poll 1

Which converts TD values into a policy?

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 max
𝑎′

𝑄𝑘(𝑠′, 𝑎′)] ,  ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′ ] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′ ] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

A) Value iteration:

B) Q-iteration:

C) Policy extraction:

E) Policy improvement:

D) Policy evaluation:

TD update: 𝑉𝜋 𝑠  =  𝑉𝜋(𝑠)  + 𝛼 𝑟 + 𝛾 𝑉𝜋 𝑠′ −  𝑉𝜋 𝑠

F) None of the above



Problems with TD Value Learning

TD value leaning is a model-free way to do policy evaluation, mimicking 
Bellman updates with running sample averages

However, if we want to turn values into a (new) policy, we’re sunk:

Idea: learn Q-values, not values

Makes action selection model-free too!

a

s

s, a

s,a,s’

s’



MDP/RL Notation
𝑉 𝑠 = max

𝑎
෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉∗ 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 max
𝑎′

𝑄𝑘(𝑠′, 𝑎′)] ,  ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′ ] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′ ] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

𝑉𝜋 𝑠  =  𝑉𝜋(𝑠)  + 𝛼 𝑟 + 𝛾 𝑉𝜋 𝑠′ −  𝑉𝜋 𝑠

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾 max
𝑎′

 𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ] 

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Standard expectimax:

Q-learning:

Value (TD) learning:



Online Learning
Model-free Learning
Active Reinforcement Learning
Q-Learning



Q-Learning

We’d like to do Q-value updates to each Q-state:

▪ But can’t compute this update without knowing T, R

Instead, compute average as we go
▪ Receive a sample transition (s,a,r,s’)

▪ The sample value is then:

▪ But we want to average over results from (s,a)  (Why?)

▪ So keep a running average

𝑠𝑎𝑚𝑝𝑙𝑒 = 



Q-Learning Properties

Amazing result: Q-learning converges to optimal policy -- even if 
you’re acting suboptimally!

This is called off-policy learning

Caveats:

▪ You have to explore enough

▪ You have to eventually make the learning rate

 small enough

▪ … but not decrease it too quickly

▪ Basically, in the limit, it doesn’t matter how you select actions (!)



Overview: MDPs and Reinforcement Learning

Known MDP: Offline Solution

Value Iteration / Policy Iteration

Model-Based Model-Free

Estimate MDP T(s,a,s') and R(s,a,s')
from samples of environment

Passive Reinforcement Learning
▪ Direct Evaluation (simple)
▪ TD Learning

Active Reinforcement Learning
▪ Q-Learning

Unknown MDP: Online Learning



Demo Q-Learning Auto Cliff Grid

[Demo: Q-learning – auto – cliff grid (L11D1)]



Exploration vs. Exploitation



How to Explore?

Several schemes for forcing exploration
▪ Simplest: random actions (-greedy)
▪ Every time step, flip a coin

▪ With (small) probability , act randomly

▪ With (large) probability 1-, act on current policy

▪ Problems with random actions?

▪ You do eventually explore the space, but keep 
thrashing around once learning is done

▪ One solution: lower  over time
▪ Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)] 
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]



Demo Q-learning – Manual Exploration – Bridge Grid 



Exploration Functions

When to explore?
▪ Random actions: explore a fixed amount

▪ Better idea: explore areas whose badness is not
 (yet) established, eventually stop exploring

Exploration function
▪ Takes a value estimate u and a visit count n, and
 returns an optimistic utility, e.g.

▪ Note: this propagates the “bonus” back to states that lead to unknown states as well!

    

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]



Demo Q-learning – Epsilon-Greedy – Crawler 



Exploration Functions

When to explore?
▪ Random actions: explore a fixed amount

▪ Better idea: explore areas whose badness is not
 (yet) established, eventually stop exploring

Exploration function
▪ Takes a value estimate u and a visit count n, and
 returns an optimistic utility, e.g.

𝑓 𝑢, 𝑛 = 𝑢 + 𝑘/(𝑛 + 1)

▪ Note: this propagates the “bonus” back to states that lead to unknown states as well!

    

Modified Q-Update:  𝑄 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝛼 [𝑟 + 𝛾max
𝑎′

 𝑓(𝑄 𝑠′, 𝑎′ , 𝑁 𝑠′, 𝑎′ )  − 𝑄 𝑠, 𝑎 ]

Regular Q-Update:     𝑄 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝛼 [𝑟 + 𝛾max
𝑎′

 𝑄 𝑠′, 𝑎′  − 𝑄 𝑠, 𝑎 ]

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]



Regret

Even if you learn the optimal policy, you 
still make mistakes along the way!

Regret is a measure of your total mistake 
cost: the difference between your 
(expected) rewards, including youthful 
suboptimality, and optimal (expected) 
rewards

Minimizing regret goes beyond learning to 
be optimal – it requires optimally learning 
to be optimal

Example: random exploration and 
exploration functions both end up optimal, 
but random exploration has higher regret



Approximate Q-Learning



Approximate Q-Learning
What happens when we change Candy Grab to start with 1000 pieces?

Pieces Available Take 1 Take 2

2 0% 100%

3 2% 0%

4 75% 2%

5 4% 68%

6 5% 6%

7 60% 5%



Generalizing Across States

Basic Q-Learning keeps a table of all q-values

In realistic situations, we cannot possibly learn about 
every single state!

▪ Too many states to visit them all in training

▪ Too many states to hold the q-tables in memory

Instead, we want to generalize:

▪ Learn about some small number of training states 
from experience

▪ Generalize that experience to new, similar situations

▪ This is a fundamental idea in machine learning, and 
we’ll see it over and over again

[demo – RL pacman]



Example: Pacman

[Demo: Q-learning – pacman – tiny – watch all (L11D5)]
[Demo: Q-learning – pacman – tiny – silent train (L11D6)] 
[Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Let’s say we discover 
through experience 

that this state is bad:

In naïve q-learning, 
we know nothing 
about this state:

Or even this one!



Feature-Based Representations

Solution: describe a state using a vector of 
features (properties)
▪ Features are functions from states to real numbers 

(often 0/1) that capture important properties of the 
state

▪ Example features:
▪ Distance to closest ghost
▪ Distance to closest dot
▪ Number of ghosts
▪ 1 / (dist to dot)2

▪ Is Pacman in a tunnel? (0/1)
▪ …… etc.
▪ Is it the exact state on this slide?

▪ Can also describe a q-state (s, a) with features (e.g. 
action moves closer to food)



Linear Value Functions

Using a feature representation, we can write a q function (or value 
function) for any state using a few weights:

▪  Vw(s) = w1f1(s) + w2f2(s) + … + wnfn(s) 

▪  Qw(s,a) = w1f1(s,a) + w2f2(s,a) + … + wnfn(s,a) 

Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in 
value!



Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:
▪ Q(s,a)   Q(s,a)  +    [r + γ maxa’ Q

 (s’,a’) - Q(s,a) ]

Instead, we update the weights to try to reduce the error at s, a:

▪  wi   wi +    [r + γ maxa’ Q
 (s’,a’) - Q(s,a) ] Qw(s,a)/wi

         =  wi +    [r + γ maxa’ Q
 (s’,a’) - Q(s,a) ] fi(s,a)



Quick Calculus Quiz

𝐸𝑟𝑟𝑜𝑟(𝑤) =
1

2
𝑦 − 𝑤𝑓 𝑥

2
 

What is 
𝑑𝐸𝑟𝑟𝑜𝑟

𝑑𝑤
?

Last time

𝐸𝑟𝑟𝑜𝑟 𝑥 =
1

2
𝑦 − 𝑥 2

𝑑𝐸𝑟𝑟𝑜𝑟

𝑑𝑥
= −(𝑦 − 𝑥)



Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:
▪ Q(s,a)   Q(s,a)  +    [r + γ maxa’ Q

 (s’,a’) - Q(s,a) ]

Instead, we update the weights to try to reduce the error at s, a:

▪  wi   wi +    [r + γ maxa’ Q
 (s’,a’) - Q(s,a) ] Qw(s,a)/wi

         =  wi +    [r + γ maxa’ Q
 (s’,a’) - Q(s,a) ] fi(s,a)

𝑄𝒘 𝑠, 𝑎 = 𝑤1𝑓1 𝑠, 𝑎 + 𝑤2𝑓2 𝑠, 𝑎  

𝜕𝑄

𝜕𝑤2
= 

𝐸𝑟𝑟𝑜𝑟 𝑤 =
1

2
𝑦 − 𝑤𝑓 𝑥

2

𝑑𝐸𝑟𝑟𝑜𝑟

𝑑𝑤
= − 𝑦 − 𝑤𝑓 𝑥 𝑓(𝑥)



Approximate Q-Learning

Q-learning with linear Q-functions:

Intuitive interpretation:
▪ Adjust weights of active features
▪ E.g., if something unexpectedly bad happens, blame the features that 

were on: disprefer all states with that state’s features

Formal justification: online least squares

Exact Q’s

Approximate Q’s



Example: Q-Pacman

[Demo: approximate Q-
learning pacman (L11D10)]



Reinforcement Learning Milestones



TDGammon

1992 by Gerald Tesauro, IBM

4-ply lookahead using V(s) trained from 1,500,000 games of self-play

3 hidden layers, ~100 units each

Input: contents of each location plus several handcrafted features

Experimental results:
▪ Plays approximately at parity with world champion

▪ Led to radical changes in the way humans play backgammon



Deep Q-Networks

Deep Mind, 2015

Used a deep learning network to represent Q:
▪ Input is last 4 images (84x84 pixel values) plus score

49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro

49
Image: Deep Mind

sample = r + γ maxa’ Qw
 (s’,a’)

Qw(s,a): Neural network 
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OpenAI Gym (now Gymnasium)
2016+

Benchmark problems for learning agents

https://gymnasium.farama.org/

Images: Open AI/Gymnasium

https://gymnasium.farama.org/
https://gymnasium.farama.org/


AlphaGo, AlphaZero
Deep Mind, 2016+



Autonomous Vehicles?
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