Al: Representation and Problem Solving

Reinforcement Learning Il

Instructor: Pat Virtue

Slide credits: CMU Al and http://ai.berkeley.edu

Overview: MDPs and Reinforcement Learning /\/)00)5(

Known MDP: Offline Solution

[Value Iteration / Policy Iteration J /\—— \
& d%}‘

Unknown MDP: Online Learning

['Model-Based)

/Estimate MDP T(s,a,s') and R(s,a,s') A

from samples of environment

"

J

Model-Free

Passive Reinforcement Learning
J/- Direct Evaluation (simple)
= TD Learning

Active Reinforcement Learning

\- Q-Learning

~

/

|

> Passive Reinforcement Learning
Temporal Difference Learning

)

Temporal Difference Learning

Big idea: learn from every experience!

= Update V(s) each time we experience a transition (s, a, s/, r) (s)
= Likely outcomes s’ will contribute updates more often f‘ s, T(s)
Temporal difference learning of values VANES

= Policy still fixed, still doing evaluation!
= Move values toward value of whatever successor occurs: running average &

T/,
Sample of V(s): sample = r + y V. (s') (+ X V (5)
Update to V(s): VTi(s) + (1 —a)V"(s) + (o)sample

Same update: VT(s) «+ V™(s) + a@mple — V7 (s)

Example: Temporal Ditference Learning gb
e

AC

States Observed Transitions

\/\< B east, C, 2 \/ﬁ’f\

5 lclo

Assume: y =1,
a=1/2

V7T(s) < V™ (s) + a(sample — V" (s))

‘___.-—-——--."'--——/ —_——,

Example: Temporal Difference Learning

States Observed Transitions
AN,

[B, east, C, -2 J \)}/l: [C, east, D, -2 J \/K’r\

\L sample = R(s,m(s),s") +~1V7(s)

~ Y N (D

Assume: y =1,

a=1/2 \(@54:/0 *é(b,_o

V7T(s) < V™ (s) + a(sample — V" (s))

‘___-—-—--."'--——/ —_—e

Temporal Difference Learning

Big idea: learn from every experience!

= Update V(s) each time we experience a transition (s, a, s/, r) ;
= Likely outcomes s’ will contribute updates more often n(s)
s, T(s)
Temporal difference learning of values
= Policy still fixed, still doing evaluation! ,
/\ S

"= Move values toward value of whatever successor occurs: running average
Sample of V(s): sample = r+y V™(s")
Update to V(s): Vi(s) « (1 —a)V™(s) + (a) sample
Same update: VT(s) « V(s) + a[sample — VT(s)] & N\L />\/

1
Same update: V7(s) « V™(s) — aVError Error = 5 (sample — V’T(S))2

ML detour: Quick Calculus Quiz
f)=-(@—x

whatis > = | (y - Q) (- 1)

1
ML detour: Gradient Descent f(x) =5 —x)?

Goal: find x that minimizes f (x) df

——=—(y —x)

1. Start with initial guess, x, dx
2. Update x by taking a step in the direction that f (x) is changing

fastest (in the negative direction) with respect to x:
X <—@— @vhere a is the step size or learning rate

3. Repeat until convergence

TD goal: find value(s), V, that minimizes difference between sample(s)
and V élEffOr 4.

- o\ Error(V) = 1 (sample — V)*
V «V —aVy,Error 2

Temporal Difference Learning

Big idea: learn from every experience! <
= Update V(s) each time we experience a transition (s, a, s/, r)

= Likely outcomes s’ will contribute updates more often n(s)

s, 1(s)
Temporal difference learning of values
= Policy still fixed, still doing evaluation! A s

= Move values toward value of whatever successor occurs: running average
Sample of V(s): sample = r+y V™(s")
Update to V(s): Vi(s) « (1 —a)V™(s) + (a) sample
Same update: VT(s) « V*(s) + a[sample — V™(s)]

1
Same update: V7(s) « V™(s) — aVError Error = 5 (sample — V’T(S))2

Poll 1

TD update: Vi(s) = V() +ar+yV™(s") — V7(s)] 6

Which converts TD values into a policy?

A) Value iteration: /45) = max W M) + vV (s)], Vs
B) Q-iteration: Ms a) = z P(s’ /ﬂ/§3/+ y max Q.(s',a)], Vs,a

C) Policy extraction: Ty (s) = argmaxz: P(s'|sra) R(s/) +yV(s)], Vs

D) Policy evaluation: Vii(s) = ZP(S (S)) M s +yViE(s")], Vs

E) Policy improvement: m,, (s) = argmaxz W)M’) + yV™old(s")], Vs
a
S/
@ne of the above

Problems with TD Value Learning

TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

However, if we want to turn values into a (new) policy, we’re sunk:
w(s) = argmax Q(s,a)
a

Q(s,a) = ZT(S, a,s) {R(s,a, s + ’)/V(S,)]

ldea: learn Q-values, not values

Makes action selection model-free too! g

MDP/RL Notation r

Standard expectimax:

Bellman equations:

Value iteration:

<

// ~
Q-iteration:

Policy extraction:

Policy evaluation:

Policy improvement:

“alue (TD) learning:

Q-learning:

V(s) = max » P(s'ls,)V (s") TANS

v (s) = mc?xz P(s'|s,)[R(s,a,s") +yV*(s))]

Veri(s) = m;l:z P(s'|s, @) [R(s,a,s") + yVi(s)], Vs
Qrss(s,a) = ZS;J(S'|S, @IR(s,a,5) +y max Qu(s',a)], Vs,a
7, (s) = arg;nzs;llxz P(s'ls,)[R(s,a,s") +yV(sD], Vs
VEa(s) = D P(s'ls es)IR(, (), s) +YVEGD], Vs
Tnow (5) = ;gcrlnaxz P(s'ls,)[R(s, a,s") + yVTola(s)], Vs

Vi(s) = V() +ar+yV™(s') — V(s)]

0(s,0) = Q@) +afr +y m3 Q' a')k 0(s,0)

— A%U\-\(3@%5 10 C»\DDSQ

~ey T action

-
r

— —

— Active Reinforcement Learning

Q-Learning
/N
~

Q-Learning

We'd like to do Q-value updates to each Q-state:
Qr1(s,a) = ST (s,a,8) |R(s,a,8) +9 maxQu(s',a')

" But can’t compute this update without knowing T, R

SN
Instead, compute average as we go

. " C
= Receive a sample transition (s,a,r,s’) 5
" The sample value is then: A
" But we want to average over results from (s,a) (Why?)

l
/
SEB s
14)\
1= O U553,
" So keep a running average

Qs,0) (1=)Q(s,0) + (@) |+ Y MaxQ(s',a)

_

sample = 7 +/maxQ(s’,a’)

a A —_

Q-Learning Properties

Amazing result: Q-learning converges to optimal policy -- even if
you’re acting suboptimally!

This is called off-policy learning

Caveats:
" You have to explore enough

" You have to eventually make the learning rate
small enough

= ... but not decrease it too quickly
= Basically, in the limit, it doesn’t matter how you select actions (!)

Overview: MDPs and Reinforcement Learning
Known MDP: Offline Solution

[Value Iteration / Policy Iteration J

Unknown MDP: Online Learning

Model-Based

KEstimate MDP T(s,a,s') and R(s,a,s') A

from samples of environment

\

J !

- pp/ \/odel -Free

Passive Remforcement Learning \
* Direct Evaluation (simple)
= TD Learning

otf - é)*f‘Y

Active Remforcement Learning

\- Q-Learning /

Demo Q-Learning Auto Cliff Grid

[Demo: Q-learning — auto — cliff grid (L11D1)]

Exploration vs. Exploitation

b7

GRAND

T
0
=5

How to Explore?

Several schemes for forcing exploration

» Simplest: random actions (e-greedy)
= Every time step, flip a coin 5{7((
= With (small) probability g, act randoml {X\p
= With (large) probability 1-¢, act on current policy ((

(ﬁfbﬁ’ 7S

= Problems with random actions?

" You do eventually explore the space, but keep
thrashing around once learning is done

" One solution: lower € over time e
= Another solution: exploration functions

[Demo: Q-learning — manual exploration — bridge grid (L11D2)]
[Demo: Q-learning — epsilon-greedy -- crawler (L11D3)]

Demo Q-learning — Manual Exploration — Bridge Grid

. . &N X N
Exploration Functions o 100 10O

When to explore? ‘lp[V\>‘ I ‘FC’O 2 '05)3

* Random actions: explore a fixed amount = //0 — /0 O*\

= Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

Exploration function K=T0-
= Takes a value estimate u and a E.SE count n, and ‘[\L
returns an optimistic utility, e.g. ? B
f(u,n) =u-+k/n
SRR

Regular Q-Update: Q(s,a) <« R(s,a,5") + 7 max Q(s',d")
a

Modified Q-Update: Q(s,a) +—a R(s,a,s") +~max f(Q(s,a"), N(s',)

= Note: this propagates the “bonus” back to states that lead to unknown states as well!

[Demo: exploration — Q-learning — crawler — exploration function (L11D4)]

Demo Q-learning — Epsilon-Greedy — Crawler

Exploration Functions

When to explore?

= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

Exploration function

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g.

fun)=u+k/(n+1)
Regular Q-Update: Q(s,a) = Q(s,a) + a [r+ymax Q(s’,a’) — Q(s,a)]

Modified Q-Update: Q(s,a) = Q(s,a) + a[r +ymax f(Q(s’,a’),N(s',a")) — Q(s,a)]

= Note: this propagates the “bonus” back to states that lead to unknown states as well!

[Demo: exploration — Q-learning — crawler — exploration function (L11D4)]

Regret

Even if you learn the optimal policy, you
still make mistakes along the way!

Regret is a measure of your total mistake
cost: the difference between your
(expected) rewards, including youthful
suboptimality, and optimal (expected)
rewards

Minimizing regret goes beyond learning to
be optimal — it requires optimally learning
to be optimal

Example: random exploration and
exploration functions both end up optimal,
but random exploration has higher regret

Approximate Q-Learning

Approximate Q-Learning

What happens when we change Candy Grab to start with 1000 pieces?

Pieces Available

2 0% 100%
3 2% 0%
4 75% 2%
5 4% 68%
6 5% 6%
7 60% 5%

Generalizing Across States

Basic Q-Learning keeps a table of all g-values

In realistic situations, we cannot possibly learn about
every single state!

" Too many states to visit them all in training
" Too many states to hold the g-tables in memory

Instead, we want to generalize:

" Learn about some small number of training states
from experience

= Generalize that experience to new, similar situations

" This is a fundamental idea in machine learning, and
we’ll see it over and over again

[demo — RL pacman]

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

[Demo: Q-learning — pacman — tiny — watch all (L11D5)]
[Demo: Q-learning — pacman — tiny — silent train (L11D6)]
[Demo: Q-learning — pacman — tricky — watch all (L11D7)]

Feature-Based Representations

Solution: describe a state using a vector of
features (properties)

" Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state

M?nple features:

= Distance to closest ghost

= Distance to closest dot

* Number of ghosts

= 1/ (dist to dot)?

» [s Pacman in a tunnel? (0/1)

= |s it the exact state on this slide?

__" Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

Using a feature representation, we can write a q function (or value
function) for any state using a few weights:

\

=V, (S)=w fl(s) - wzf (s)+...+w fn(s)

{E(/sa\}wf(sahwzz(sah .+ w f (s,a)
. P

Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in
value!

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:

" Q(s,a) « Qlsa) + a-[r+ymax, Q(s,a’)-Qs,a)] &

Instead, we update the weights to try to reduce the error at s, a:

"W Wit o [r+y max, Q(s’,a’) - Q(s,a)] 0Q,(s,a)/ow,

= w, + o [r+ymax, Q(s,a’)-Q(s,a) 1f(s,a) &

' Last ti
Quick Calculus Quiz ’F C@ asttime
Sawf L_,)‘\’Jf(Error(x)_—(y x)2

Error(w) = —(y Wf(x))

What is dE;:;OT? - (\}——— \,JF(X) _’C(X\

dError

=—(y—x)

J

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:
= Q(s,a) « Qfs,a) + a-[r+ymax, Q(s,a’)-Qfs,a)]

Instead, we update the weights to try to reduce the error at s, a:

" W, « W+ o-[r+ymax, Q(s,a’)-Qfs,a)]M@\WJ_

= w,+ a-[r+ymax, Q(s,a’)-Qfs,a)]f(s,a)

LU

Qw(s,a) = wyfi(s,a) +‘W£f2(5; a) Error(w) = %(y — Wf(x))2

— £Q (5)06 dError

= —(y —wf () f (x)

Approximate Q-Learning

Q@) = wihi(s) Fuafa(s,)t Aunfulsa)

Q-learning with linear Q-functions:

transition = (s,a,r,s’)
o Q(Sa (1,)
Q(s,a) «— Q(s,a) + «[difference] Exact Q’s

w; «— w; + a [difference] f;(s,a) Approximate Q’s

difference = ['r + v max Q(s',a")

a

Intuitive interpretation:
= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that
were on: disprefer all states with that state’s features

Formal justification: online least squares

Example' Q-Pacman t/

.......

7

fasr(s, NORTH) = 1.0

—

l

—1.0fgsT(s,a)

a = NORTH
r = —500

/

O(s NORTH) =

r + v max Q(s',a") = —500 -
a

- 0

Q(Slv) =0

[difference — —501

=)

wpor — 4.0 + a[-501]0.5
wasT — —1.0 + a [-501] 1.0

Q(S,CL) — 3'OfDOT(Saa’) — 3'OfG'ST(Saa’)

[Demo: approximate Q-
learning pacman (L11D10)]

Reinforcement Learning Milestones

TDGammon

1992 by Gerald Tesauro, IBM

4-ply lookahead using V(s) trained from 1,500,000 games of self-play
3 hidden layers, ~100 units each

Input: contents of each location plus several handcrafted features

Experimental results:

" Plays approximately at parity with world champion
" Led to radical changes in the way humans play backgammon

sample = r +y max_ Q,, (s’,a’)

Deep Q—Networks Q,(s,a): Neural network

Deep Mind, 2015

Used a deep learning network to represent Q:
" [nput is last 4 images (84x84 pixel values) plus score

49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro

Convolution Convolution Fully connected Fully connected
hd v hd w
Noinput:\
. B
L B
L N
. A

TRy]2
+Q+0+0+0+-0+-0+0+
] (@] (@] (@] (¢] (@] (@)

2
O

" =T-T " =
e o e o
= r= B r B r O v
b L L
b =
iy iy B
For g
I\ i il
L 1]
b
[e am—— e
samll=n

— (el F=]=.
e Soget

ACTI-TSinm 1

e pule
iy
iy
e
e
: . L

OpenAl Gym (now Gymnasium)

2016+
Benchmark problems for learning agents
https://gymnasium.farama.org/

Breakout-ram-v0
Maximize score in the game

Breakout, with RAM as input

L

Acrobot y FetchPush-v0
Ant Push a block to a goal
position.

\?, ,
-
<))

Episode 2

-

Carnival-vD

i 1) Maximize score in the game
Mountain Car Humanoid HandManipulateBlock-v0 g

Orient a block using a robot images as input

hand.

https://gymnasium.farama.org/
https://gymnasium.farama.org/

AlphaGo, AlphaZero
Deep Mind, 2016+

* O+ Google DeepMind

Challenge Match

8 - 15 March 2016

Autonomous Vehicles?

	Slide 1: AI: Representation and Problem Solving
	Slide 2: Overview: MDPs and Reinforcement Learning
	Slide 3: Online Learning Model-free Learning Passive Reinforcement Learning Temporal Difference Learning
	Slide 4: Temporal Difference Learning
	Slide 5: Example: Temporal Difference Learning
	Slide 6: Example: Temporal Difference Learning
	Slide 8: Temporal Difference Learning
	Slide 9: ML detour: Quick Calculus Quiz
	Slide 10: ML detour: Gradient Descent
	Slide 11: Temporal Difference Learning
	Slide 12: Poll 1
	Slide 13: Problems with TD Value Learning
	Slide 14: MDP/RL Notation
	Slide 15: Online Learning Model-free Learning Active Reinforcement Learning Q-Learning
	Slide 16: Q-Learning
	Slide 17: Q-Learning Properties
	Slide 18: Overview: MDPs and Reinforcement Learning
	Slide 19: Demo Q-Learning Auto Cliff Grid
	Slide 20: Exploration vs. Exploitation
	Slide 21: How to Explore?
	Slide 22: Demo Q-learning – Manual Exploration – Bridge Grid
	Slide 23: Exploration Functions
	Slide 24: Demo Q-learning – Epsilon-Greedy – Crawler
	Slide 25: Exploration Functions
	Slide 26: Regret
	Slide 27: Approximate Q-Learning
	Slide 28: Approximate Q-Learning
	Slide 29: Generalizing Across States
	Slide 30: Example: Pacman
	Slide 34: Feature-Based Representations
	Slide 35: Linear Value Functions
	Slide 36: Updating a linear value function
	Slide 37: Quick Calculus Quiz
	Slide 38: Updating a linear value function
	Slide 40: Approximate Q-Learning
	Slide 41: Example: Q-Pacman
	Slide 47: Reinforcement Learning Milestones
	Slide 48: TDGammon
	Slide 49: Deep Q-Networks
	Slide 50:
	Slide 51: OpenAI Gym (now Gymnasium)
	Slide 52: AlphaGo, AlphaZero
	Slide 53: Autonomous Vehicles?

