
Double Bandits

Slide: ai.berkeley.edu

Double-Bandit MDP

Actions: Blue, Red

States: Win, Lose

W L
$1

1.0

$1

1.0

0.25 $0

0.75
$2

0.75 $2

0.25
$0

Slide: ai.berkeley.edu

Offline Planning

Solving MDPs is offline planning
▪ You determine all quantities through computation

▪ You need to know the details of the MDP

▪ You do not actually play the game!

Play Red

Play Blue

Value

No discount

100 time steps

150

100

W L
$1

1.0

$1

1.0

0.25 $0

0.75
$2

0.75 $2

0.25
$0

Slide: ai.berkeley.edu

Let’s Play!

$2 $2 $0 $2 $2

$2 $2 $0 $0 $0

Slide: ai.berkeley.edu

Online Planning
Rules changed! Red’s win chance is different.

W L

$1

1.0

$1

1.0

?? $0

??
$2

?? $2

??
$0

Slide: ai.berkeley.edu

Let’s Play!

$0 $0 $0 $2 $0

$2 $0 $0 $0 $0

Slide: ai.berkeley.edu

What Just Happened?

That wasn’t planning, it was learning!

▪ Specifically, reinforcement learning

▪ There was an MDP, but you couldn’t solve it with just computation

▪ You needed to actually act to figure it out

Important ideas in reinforcement learning that came up

▪ Exploration: you have to try unknown actions to get information

▪ Exploitation: eventually, you have to use what you know

▪ Regret: even if you learn intelligently, you make mistakes

▪ Sampling: because of chance, you have to try things repeatedly

▪ Difficulty: learning can be much harder than solving a known MDP

Slide: ai.berkeley.edu

Overview: MDPs and Reinforcement Learning

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, * Value / policy iteration

Evaluate a fixed policy  Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, * VI/PI on approx. MDP

Eval fixed policy  PE on approx. MDP

Goal Technique

Compute V*, Q*, * Q-learning

Eval fixed policy  TD/Value Learning

AI: Representation and Problem Solving

Reinforcement Learning

Instructor: Pat Virtue

Slide credits: CMU AI and http://ai.berkeley.edu

MDP Notation

𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉∗ 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 max
𝑎′

𝑄𝑘(𝑠′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Standard expectimax:

Poll 1
Which of the following are used in policy iteration? Select all that apply.

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 max
𝑎′

𝑄𝑘(𝑠′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

A. Value iteration:

B. Q-iteration:

C. Policy extraction:

E. Policy improvement:

D. Policy evaluation:

Poll 1
Which of the following are used in policy iteration? Select all that apply.

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 max
𝑎′

𝑄𝑘(𝑠′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

A. Value iteration:

B. Q-iteration:

C. Policy extraction:

E. Policy improvement:

D. Policy evaluation:

Poll 2
Rewards may depend on any combination of state, action, next state.

Which of the following are valid formulations of the Bellman equations?

Select all that apply.

A. 𝑉∗ 𝑠 = max
𝑎

σ𝑠′ 𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′

B. 𝑉∗ 𝑠 = 𝑅 𝑠 + 𝛾 max
𝑎

σ𝑠′ 𝑃 𝑠′ 𝑠, 𝑎 𝑉∗ 𝑠′

C. 𝑉∗ 𝑠 = max
𝑎

[𝑅 𝑠, 𝑎 + 𝛾 σ𝑠′ 𝑃 𝑠′ 𝑠, 𝑎 𝑉∗ 𝑠′

D. 𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 σ𝑠′ 𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

𝑄∗(𝑠′, 𝑎′)

Poll 2
Rewards may depend on any combination of state, action, next state.

Which of the following are valid formulations of the Bellman equations?

Select all that apply.

A. 𝑉∗ 𝑠 = max
𝑎

σ𝑠′ 𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′

B. 𝑉∗ 𝑠 = 𝑅 𝑠 + 𝛾 max
𝑎

σ𝑠′ 𝑃 𝑠′ 𝑠, 𝑎 𝑉∗ 𝑠′

C. 𝑉∗ 𝑠 = max
𝑎

[𝑅 𝑠, 𝑎 + 𝛾 σ𝑠′ 𝑃 𝑠′ 𝑠, 𝑎 𝑉∗ 𝑠′

D. 𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 σ𝑠′ 𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

𝑄∗(𝑠′, 𝑎′)

Reinforcement learning
What if we didn’t know 𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠, 𝑎, 𝑠’)?

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 max
𝑎′

𝑄𝑘(𝑠′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Reinforcement Learning

Basic idea:

▪ All learning is based on observed samples of rewards and next states!

▪ Receive feedback in the form of rewards

▪ Must (learn to) act so as to maximize expected rewards

Environment

Agent

Actions:
a

State: s
Reward: r

Example: Learning to Walk

Initial
[Video: AIBO WALK – initial][Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Finished
[Video: AIBO WALK – finished][Kohl and Stone, ICRA 2004]

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER – 40s]

The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]

Demo Crawler Bot

Reinforcement Learning

Still assume a Markov decision process (MDP):
▪ A set of states s  S

▪ A set of actions (per state) A

▪ A model T(s,a,s’)

▪ A reward function R(s,a,s’)

Still looking for a policy (s)

New twist: don’t know T or R
▪ I.e. we don’t know which states are good or what the actions do

▪ Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

Offline Solution
(Known MDP)

Online Learning
(Unknown MDP)

Overview: MDPs and Reinforcement Learning

Known MDP: Offline Solution

Value Iteration / Policy Iteration

Model-Based Model-Free

Estimate MDP T(s,a,s') and R(s,a,s')
from samples of environment

Passive Reinforcement Learning
▪ Direct Evaluation (simple)
▪ TD Learning

Active Reinforcement Learning
▪ Q-Learning

Unknown MDP: Online Learning

Online Learning
Model-based Learning

Model-Based Learning
Model-Based Idea:
▪ Learn an approximate model based on experiences
▪ Solve for values as if the learned model were correct

Step 1: Learn empirical MDP model
▪ Count outcomes s’ for each s, a
▪ Normalize to give an estimate of
▪ Discover each when we experience (s, a, s’)

Step 2: Solve the learned MDP
▪ For example, use value iteration, as before

Example: Model-Based Learning

Input Policy 

Assume:  = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode: a sequence of states
actions and rewards sampled
from the environment

Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

Episode 1

Example: Model-Based Learning

Input Policy 

Assume:  = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…

Example: Expected Age

Goal: Compute expected age of 15-281 students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this
work? Because
samples appear
with the right
frequencies.

Overview: MDPs and Reinforcement Learning

Known MDP: Offline Solution

Value Iteration / Policy Iteration

Model-Based Model-Free

Estimate MDP T(s,a,s') and R(s,a,s')
from samples of environment

Passive Reinforcement Learning
▪ Direct Evaluation (simple)
▪ TD Learning

Active Reinforcement Learning
▪ Q-Learning

Unknown MDP: Online Learning

Online Learning
Model-free Learning
Passive Reinforcement Learning

Passive Reinforcement Learning

Simplified task: policy evaluation

▪ Input: a fixed policy (s)
▪ You don’t know the transitions T(s,a,s’)

▪ You don’t know the rewards R(s,a,s’)

▪ Goal: learn the state values

In this case:

▪ Learner is “along for the ride”

▪ No choice about what actions to take

▪ Just execute the policy and learn from experience

▪ This is NOT offline planning! You actually take actions in the world

Simple Passive Learning: Direct Evaluation

Goal: Compute values for each state under 

Idea: Average together observed sample values

▪ Act according to 
▪ Every time you visit a state, write down what

the sum of discounted rewards turned out to be

▪ Average those samples

This is called direct evaluation

Pieces Available Take 1 Take 2

2 0 100

3 2 0

4 75 2

5 4 68

6 5 6

7 60 5

Example: Direct Evaluation

Input Policy 

Assume:  = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

+8 +4 +10

-10

-2

Problems with Direct Evaluation

What’s good about direct evaluation?

▪ It’s easy to understand

▪ It doesn’t require any knowledge of T, R

▪ It eventually computes the correct average
values, using just sample transitions

What bad about it?

▪ It wastes information about state connections

▪ Each state must be learned separately

▪ So, it takes a long time to learn

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C
under this policy, how can
their values be different?

Online Learning
Model-free Learning
Passive Reinforcement Learning
Temporal Difference Learning

Why Not Use Policy Evaluation?

Simplified Bellman updates calculate V for a fixed policy:
▪ Each round, replace V with a one-step-look-ahead layer over V

▪ This approach fully exploited the connections between the states
▪ Unfortunately, we need T and R to do it!

Key question: How can we do this update to V without knowing T and R?
▪ In other words, how to we take a weighted average without knowing the

weights?

(s)

s

s, (s)

s, (s),s’

s’

We want to improve our estimate of V by computing these averages:

Idea: Take samples of outcomes s’ (by doing the action!) and average

𝑠𝑎𝑚𝑝𝑙𝑒1 = 𝑟1 + 𝛾𝑉𝑘
𝜋 𝑠1

′

𝑠𝑎𝑚𝑝𝑙𝑒2 = 𝑟2 + 𝛾𝑉𝑘
𝜋 𝑠2

′

…
𝑠𝑎𝑚𝑝𝑙𝑒𝑛 = 𝑟𝑛 + 𝛾𝑉𝑘

𝜋 𝑠𝑛
′

Sample-Based Policy Evaluation?

(s)

s

s, (s)

s1's2' s3'

s, (s),s’

s'

Almost! But we can’t
rewind time to get sample
after sample from state s.

Temporal Difference Learning
Big idea: learn from every experience!
▪ Update V(s) each time we experience a transition (s, a, s’, r)

▪ Likely outcomes s’ will contribute updates more often

Temporal difference learning of values
▪ Policy still fixed, still doing evaluation!

▪ Move values toward value of whatever successor occurs: running average

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑟 + 𝛾 𝑉𝑘
𝜋 𝑠′

Temporal Difference Learning

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

Big idea: learn from every experience!
▪ Update V(s) each time we experience a transition (s, a, s’, r)

▪ Likely outcomes s’ will contribute updates more often

Temporal difference learning of values
▪ Policy still fixed, still doing evaluation!

▪ Move values toward value of whatever successor occurs: running average

𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑟 + 𝛾 𝑉𝑘
𝜋 𝑠′

Temporal Difference Learning

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

Same update:

Big idea: learn from every experience!
▪ Update V(s) each time we experience a transition (s, a, s’, r)

▪ Likely outcomes s’ will contribute updates more often

Temporal difference learning of values
▪ Policy still fixed, still doing evaluation!

▪ Move values toward value of whatever successor occurs: running average

𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑟 + 𝛾 𝑉𝑘
𝜋 𝑠′

	Slide 1: Double Bandits
	Slide 2: Double-Bandit MDP
	Slide 3: Offline Planning
	Slide 4: Let’s Play!
	Slide 5: Online Planning
	Slide 6: Let’s Play!
	Slide 7: What Just Happened?
	Slide 8: Overview: MDPs and Reinforcement Learning
	Slide 9: AI: Representation and Problem Solving
	Slide 10: MDP Notation
	Slide 11: Poll 1
	Slide 12: Poll 1
	Slide 13: Poll 2
	Slide 14: Poll 2
	Slide 15: Reinforcement learning
	Slide 16: Reinforcement Learning
	Slide 17: Example: Learning to Walk
	Slide 19: Example: Learning to Walk
	Slide 21: Example: Toddler Robot
	Slide 22: The Crawler!
	Slide 23: Demo Crawler Bot
	Slide 24: Reinforcement Learning
	Slide 25: Offline (MDPs) vs. Online (RL)
	Slide 26: Overview: MDPs and Reinforcement Learning
	Slide 27: Online Learning Model-based Learning
	Slide 28: Model-Based Learning
	Slide 29: Example: Model-Based Learning
	Slide 30: Example: Model-Based Learning
	Slide 31: Example: Expected Age
	Slide 32: Overview: MDPs and Reinforcement Learning
	Slide 33: Online Learning Model-free Learning Passive Reinforcement Learning
	Slide 34: Passive Reinforcement Learning
	Slide 35: Simple Passive Learning: Direct Evaluation
	Slide 36: Example: Direct Evaluation
	Slide 37: Problems with Direct Evaluation
	Slide 38: Online Learning Model-free Learning Passive Reinforcement Learning Temporal Difference Learning
	Slide 39: Why Not Use Policy Evaluation?
	Slide 40: Sample-Based Policy Evaluation?
	Slide 41: Temporal Difference Learning
	Slide 42: Temporal Difference Learning
	Slide 43: Temporal Difference Learning

