Double Bandits




Double-Bandit MDP

Actions: Blue, Red
States: Win, Lose 0.25 SO




Offline Planning

Solving MDPs is offline planning

" You determine all quantities through computation
" You need to know the details of the MDP
" You do not actually play the game!

-~

\_

Value

Play Red 150

Play Blue 100

\

-

.

No discount
100 time steps

~

)




Let’s Play!

S2 S2 SO S2 S2
S2 $2 SO SO0 SO



Online Planning

Rules changed! Red’s win chance is different.

?? SO




Let’s Play!

SO SO SO S2 SO
$2 SO SO SO SO



What Just Happened?

That wasn’t planning, it was learning!
= Specifically, reinforcement learning
" There was an MDP, but you couldn’t solve it with just computation
" You needed to actually act to figure it out

Important ideas in reinforcement learning that came up

= Exploration: you have to try unknown actions to get information

= Exploitation: eventually, you have to use what you know

= Regret: even if you learn intelligently, you make mistakes

= Sampling: because of chance, you have to try things repeatedly

= Difficulty: learning can be much harder than solving a known MDP



Overview: MDPs and Reinforcement Learning

Known MDP: Offline Solution

a Goal Technique A
Compute V*, Q*, n* Value / policy iteration
Evaluate a fixed policy & Policy evaluation
N /
Unknown MDP: Model-Based Unknown MDP: Model-Free
/Goal Technique N Goal Technique A
Compute V*, Q*, t* VI/Pl on approx. MDP Compute V*, Q*, t* Q-learning
Eval fixed policy & PE on approx. MDP Eval fixed policy & TD/Value Learning
N NG




Al: Representation and Problem Solving

Reinforcement Learning

Instructor: Pat Virtue
Slide credits: CMU Al and http://ai.berkeley.edu



MDP Notation

Standard expectimax: V(s) = mc?xz P(s'|s,a)V(s")

Bellman equations: V*(s) = mc?xz P(s'|s,a)[R(s,a,s") + yV*(s")]
Value iteration: Vier1(s) = maa;Z P(s'|s,a)[R(s,a,s") + yVi,(s")], Vs
Q-iteration: Qr+1(s,a) = zSP(S’IS, a)[R(s,a,s") + y max Q,(s',a)], Vs,a
S7
Policy extraction: my(s) = argcrlnaxz P(s'|s,a)[R(s,a,s") + yV(s')], Vs
S/
Policy evaluation: Vi (s) = z P(s'|s,m(s))[R(s,m(s),s") + yViF(s')], Vs
S7

Policy improvement: Thew(S) = argmax E P(s'|s,a)[R(s,a,s") + yV™oud(s")], Vs
a
S/



Poll 1

Which of the following are used in policy iteration? Select all that apply.

A. Value iteration: Vier1(s) = mc?xz P(s'|s,@)[R(s,a,s") + yVi(s)], Vs
B. Q-iteration: Qr+1(s,a) = ZS;)(S’|S, a)[R(s,a,s") + y max Q,(s’,a)], Vs,a
C. Policy extraction: Ty (s) = argcrln:xz: P(s'|s,a)[R(s,a,s") + yV(s')], Vs
D. Policy evaluation: VE (s) = z P(SS’IIS,n(s))[R(s,n(s),S’) + yVE(s")], Vs
57

E. Policy improvement: ., (s) = argmaxz P(s'|s,a)[R(s,a,s") + yVTold(s")], Vs
a
S/



Poll 1

Which of the following are used in policy iteration? Select all that apply.

A. Value iteration: Vir1(s) = maxz P(s'ls,a)[R(s,a,s") + yVi(s)], Vs

a

S/
B. Q-iteration: Qr+1(s,a) = z P(s'ls,a)[R(s,a,s") + ymax Qx(s’,a")], Vs,a
a
S/

C. Policy extraction: Ty (s) = argmaxz: P(s'|s,a)[R(s,a,s") + yV(s')], Vs

a

Y/

\/ D. Policy evaluation: Vi (s) = z P(s'|s,m(s))[R(s,m(s),s") +yV,F(s")], Vs

\/ E. Policy improvement: ., (s) = argmaxz P(s'|s,a)[R(s,a,s") + yVTold(s")], Vs
a
S/



Poll 2

Rewards may depend on any combination of state, action, next state.
Which of the following are valid formulations of the Bellman equations?

Select all that apply.

A V*(s) = m(?XZS,P(SllS, a)[R(s,a,s") +yV*(s")]
B V*(s) =R(s) + ]/mC?XZS,P(SllS, a)V*(s")
C V*(s) = m;lX[R(S, a) +ydaP(s'|s,a)V*(s")

D. Q*(s,a) = R(s,a) +y 25 P(s'|s,a) max Q" (s",a’)



Poll 2

Rewards may depend on any combination of state, action, next state.
Which of the following are valid formulations of the Bellman equations?

Select all that apply.

Vv A V(s) = m(?XZS,P(SllS, a)[R(s,a,s") + yV*(s)]
v/ B. V*(s) = R(s) + )/mC?XZs,P(S'lS; a)V*(s’)
Vv C V() = mC?X[R(S, a)+yXsP(s'ls,a)V*(s")

V' D. Q*(s,a) =R(s,a) + ¥ Xs P(s'ls, @) max Q*(s’,a’)



Reinforcement learning
What if we didn’t know P(s’|s,a) and R(s,a,s’)?

Value iteration:
Q-iteration:
Policy extraction:

Policy evaluation:

Policy improvement:

Vies1(s) = max2 RS [RerersT + Vi (5D, Vs
Qrs1(s,@) = Za@s—m [BLors) + ¥ max Qu(s',a)], V5@
y (s) = arg;naxZW[e.@,—m PPV, Vs
VE(s) = ) RletermtSTI (RS +YVEGD], Vs
Tnew(s) = :;gznasz[w +yVToud(s)], Vs



Reinforcement Learning

Agent

State: s Actions:
Reward: r a

Environment

Basic idea:

= All learning is based on observed samples of rewards and next states!
= Receive feedback in the form of rewards

= Must (learn to) act so as to maximize expected rewards



Example: Learning to Walk

Initial
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — initial]



Example: Learning to Walk

Finished

[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — finished]



Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER — 40s]



The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]



Demo Crawler Bot



Reinforcement Learning

Still assume a Markov decision process (MDP):
= Asetof statess e S

= A set of actions (per state) A
= A model T(s,a,s’)

= A reward function R(s,a,s’)

\ i s

Overheated

Still looking for a policy m(s)

New twist: don’t know T or R

= |.e. we don’t know which states are good or what the actions do
= Must actually try actions and states out to learn



Offline (MDPs) vs. Online (RL)

«%

Offline Solution Online Learning
(Known MDP) (Unknown MDP)



Overview: MDPs and Reinforcement Learning
Known MDP: Offline Solution

[ Value Iteration / Policy Iteration }

Unknown MDP: Online Learning

Model-Based

-~

"

Estimate MDP T(s,a,s') and R(s,a,s')
from samples of environment

~

Model-Free

/Passive Reinforcement Learning \
" Direct Evaluation (simple)
= TD Learning

Active Reinforcement Learning

K. Q-Learning /




Model-based Learning



Model-Based Learning
Model-Based Idea:

" Learn an approximate model based on experiences
= Solve for values as if the learned model were correct

Step 1: Learn empirical MDP model

= Count outcomes s’ for each s, a

= Normalize to give an estimate of T'(s,a, s’)

= Discover each R(s,a,s’) when we experience (s, a, s’)

Step 2: Solve the learned MDP
" For example, use value iteration, as before




Example: Model-Based Learning

Input Policy w

Assume: vy =1

Episode: a sequence of states
actions and rewards sampled
from the environment

Observed Episodes (Training)

Episode 1

g B, east, C, -1
C, east, D, -1
D, exit, x, +10

\

~

J

Episode 3

/E, north, C, -1
C,east, D, -1
D, exit,

\

X, +10

~

J

Episode 2

\

g B, east, C, -1

C, east, D, -1
D, exit, x, +10

~

J

Episode 4

\

g E, north, C, -1

C, east, A, -1
A, exit, x,-10

~

J

Learned Model

T(s,a,s")

R(s,a,s")




Example: Model-Based Learning

Input Policy w

Assume:y=1

Observed Episodes (Training)

Episode 1

N

g B, east, C, -1

~
C, east, D, -1

D, exit, X, "'10/

Episode 3

N

/E, north, C, -1

~

C,east, D, -1

D, exit, X, +1O/

Episode 2

g B, east, C, -1
C, east, D, -1
D, exit, x, +10

N

~

J

Episode 4

g E, north, C, -1
C, east, A, -1
A, exit, x,-10

N

~

J

Learned Model

T(s,a,s")

4 T(B, east, C) =1.00
T(C, east, D) =0.75
T(C, east, A) =0.25

.

~

)

R(s,a,s")

" R(B, east, C) = -1
R(C, east, D) =-1

R(D, exit, x) =+10
N

~

)




Example: Expected Age

—3

Goal: Compute expected age of 15-281 students

Known P(A)

E[A]=) P(a)-a =035x20+...

Without P(A), instead collect samples [a,, a,, ... a,]

/ Unknown P(A): “Model Based” \

num(a)

P(a) =

/ Unknown P(A): “Model Free” \

Z Why does this
1 work? Because
ElA] =~ — Z a;

samples appear
with the right

\ frequencies.

-




Overview: MDPs and Reinforcement Learning
Known MDP: Offline Solution

[ Value Iteration / Policy Iteration }

Unknown MDP: Online Learning

Model-Based

-~

"

Estimate MDP T(s,a,s') and R(s,a,s')
from samples of environment

~

Model-Free

/Passive Reinforcement Learning \
* Direct Evaluation (simple)
= TD Learning

Active Reinforcement Learning

K. Q-Learning /




Model-free Learning
Passive Reinforcement Learning




Passive Reinforcement Learning

Simplified task: policy evaluation

" [nput: a fixed policy nt(s)

" You don’t know the transitions T(s,a,s’)
=" You don’t know the rewards R(s,a,s’)

" Goal: learn the state values

In this case:

" Learner is “along for the ride”

" No choice about what actions to take
" Just execute the policy and learn from experience

" This is NOT offline planning! You actually take actions in the world




Simple Passive Learning: Direct Evaluation

Goal: Compute values for each state under «

ldea: Average together observed sample values Pieces Available
2 0 100

" Act accordingto

= Every time you visit a state, write down what 3 2 0
the sum of discounted rewards turned out to be 4 75 )

" Average those samples 5 4 68
6 5 6

This is called direct evaluation . £D c



Example: Direct Evaluation

Input Policy &

Observed Episodes (Training)

Episode 1

: B, east, C, -1

Assume:y=1

N

C, east, D, -1
D, exit, x, +10

~

)

Episode 3

: E, north, C, -1

N

C,east, D, -1
D, exit, x, +10

~

Episode 2

: B, east, C, -1

)

N

C, east, D, -1
D, exit, x, +10

~

)

Episode 4

: E, north, C, -1

N

C, east, A, -1
A, exit, x,-10

~

)

Output Values




Problems with Direct Evaluation

What’s good about direct evaluation? Output Values
" [t's easy to understand
" [t doesn’t require any knowledge of T, R

" [t eventually computes the correct average
values, using just sample transitions

What bad about it?

= [t wastes information about state connections
» Each state must be learned separately If B and E both go to C

. . under this policy, how can
" So, it takes a long time to learn their values be different?




Passive Reinforcement Learning
Temporal Difference Learning



Why Not Use Policy Evaluation?

Simplified Bellman updates calculate V for a fixed policy:

" Each round, replace V with a one-step-look-ahead layer over V ()

Vo (s) =0 [ 7(s)

Vi1 (s) < S T(s,m(s), 8 ) [R(s, m(s),s") + VI ()] simls)s’ \ -
s/ A s

*" This approach fully exploited the connections between the states

* Unfortunately, we need T and R to do it!

Key question: How can we do this update to V without knowing T and R?

" |In other words, how to we take a weighted average without knowing the
weights?



Sample-Based Policy Evaluation?

We want to improve our estimate of V by computing these averages:

Vkﬂ—|—1(3) — ZT(S,W(S), SHR(s,7(s),s’) + ’YV];T(S,)]

S
|dea: Take samples of outcomes s’ (by doing the action!) and average

r + vV (s1)
r, + YV (s3)

sample;

sample,

sample,, =1, + yV,* (s;,)

Almost! But we can’t
rewind time to get sample
after sample from state s.

1
Vi 1(8) - > sample;
()



Temporal Difference Learning

Big idea: learn from every experience!
= Update V(s) each time we experience a transition (s, a, s/, r)
= Likely outcomes s’ will contribute updates more often

Temporal difference learning of values
= Policy still fixed, still doing evaluation!
= Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = r + y V. (s')

Update to V(s):



Temporal Difference Learning

Big idea: learn from every experience!

= Update V(s) each time we experience a transition (s, a, s/, r) (s)
= Likely outcomes s’ will contribute updates more often s, T(s)
Temporal difference learning of values VANES

= Policy still fixed, still doing evaluation!
= Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = r + y V. (s')

Update to V(s): VT(s) « (1 —a)V"(s) + (a)sample



Temporal Difference Learning

Big idea: learn from every experience!

= Update V(s) each time we experience a transition (s, a, s/, r) (s)
= Likely outcomes s’ will contribute updates more often s, T(s)
Temporal difference learning of values VANES

= Policy still fixed, still doing evaluation!
= Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = r + y V. (s')
Update to V(s): VT(s) + (1 —a)V"(s) + (a)sample

Same update: V7T(s) « V™(s) + a(sample — V7 (s))



	Slide 1: Double Bandits
	Slide 2: Double-Bandit MDP
	Slide 3: Offline Planning
	Slide 4: Let’s Play!
	Slide 5: Online Planning
	Slide 6: Let’s Play!
	Slide 7: What Just Happened?
	Slide 8: Overview: MDPs and Reinforcement Learning
	Slide 9: AI: Representation and Problem Solving 
	Slide 10: MDP Notation
	Slide 11: Poll 1
	Slide 12: Poll 1
	Slide 13: Poll 2
	Slide 14: Poll 2
	Slide 15: Reinforcement learning
	Slide 16: Reinforcement Learning
	Slide 17: Example: Learning to Walk
	Slide 19: Example: Learning to Walk
	Slide 21: Example: Toddler Robot
	Slide 22: The Crawler!
	Slide 23: Demo Crawler Bot
	Slide 24: Reinforcement Learning
	Slide 25: Offline (MDPs) vs. Online (RL)
	Slide 26: Overview: MDPs and Reinforcement Learning
	Slide 27: Online Learning Model-based Learning
	Slide 28: Model-Based Learning
	Slide 29: Example: Model-Based Learning
	Slide 30: Example: Model-Based Learning
	Slide 31: Example: Expected Age
	Slide 32: Overview: MDPs and Reinforcement Learning
	Slide 33: Online Learning Model-free Learning Passive Reinforcement Learning 
	Slide 34: Passive Reinforcement Learning
	Slide 35: Simple Passive Learning: Direct Evaluation
	Slide 36: Example: Direct Evaluation
	Slide 37: Problems with Direct Evaluation
	Slide 38: Online Learning Model-free Learning Passive Reinforcement Learning Temporal Difference Learning
	Slide 39: Why Not Use Policy Evaluation?
	Slide 40: Sample-Based Policy Evaluation?
	Slide 41: Temporal Difference Learning
	Slide 42: Temporal Difference Learning
	Slide 43: Temporal Difference Learning

