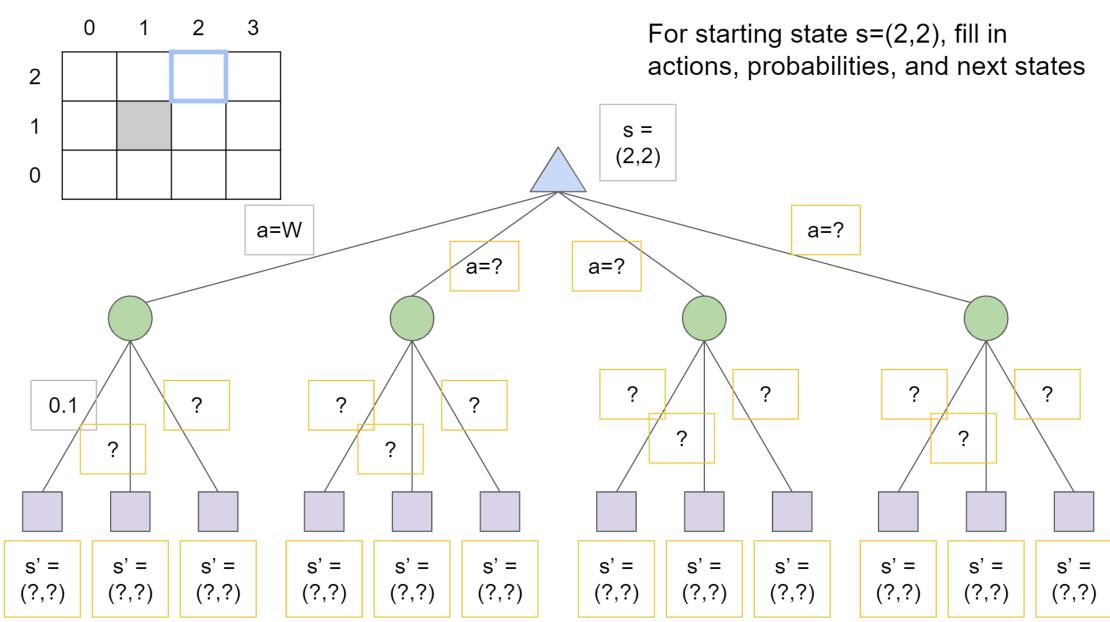
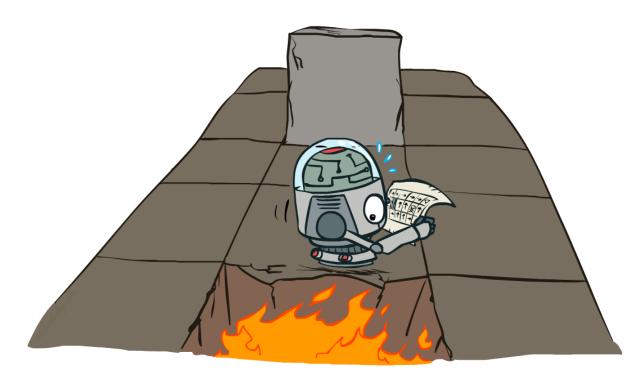
## Warm-up as you walk in: Grid World



## AI: Representation and Problem Solving

#### Markov Decision Processes II



Instructor: Pat Virtue

Slide credits: CMU AI and http://ai.berkeley.edu

#### Outline

#### MDP Setup

- Expectimax: State, actions, non-deterministic transition functions
- Rewards
  - Walk-through of super-simple value iteration
  - Discounting,  $\gamma$ В Ε Α

#### Solving MDPs

- Method 1) Value iteration
  - Value iteration convergence
- Bellman equations
- Policy Extraction
- Method 2) Policy Iteration

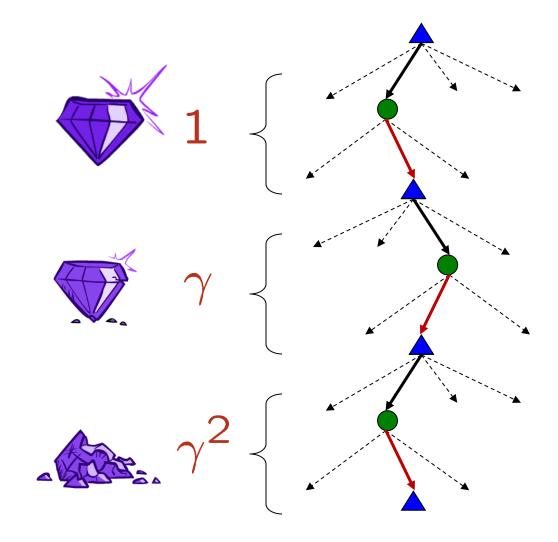
## Discounting

#### How to discount?

 Each time we descend a level, we multiply in the discount once

#### Why discount?

- Sooner rewards probably do have higher utility than later rewards
- Also helps our algorithms converge
- Important: use  $0 < \gamma < 1$



#### Recursive Expectimax

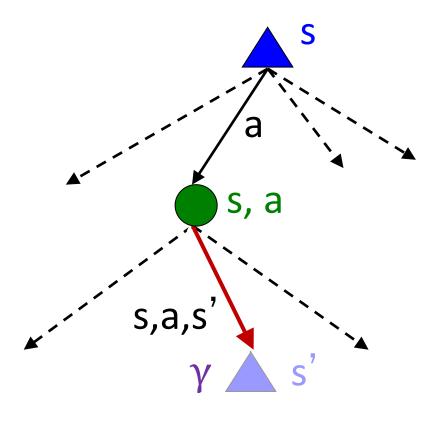
$$V(s) = \max_{a} \sum_{s} P(s'|s,a) V(s')$$

With rewards: S'

$$V(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + V(s')]$$

With discount factor:

$$V(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')]$$



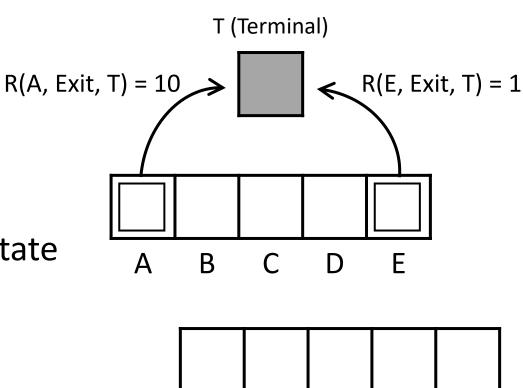
## Discounting

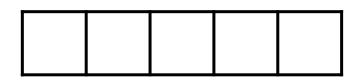
- Actions: B, C, D: East, West
- Actions: A, E: Exit
- Transitions: deterministic
- Rewards only for transitioning to terminal state

$$V_{k+1}(s) = \max_{a} [R(s, a, s') + \gamma V_k(s')]$$

For  $\gamma = 1$ , what is the optimal policy?

For  $\gamma$  = 0.1, what is the optimal policy?





For which  $\gamma$  are West and East equally good when in state D?

#### Outline

#### MDP Setup

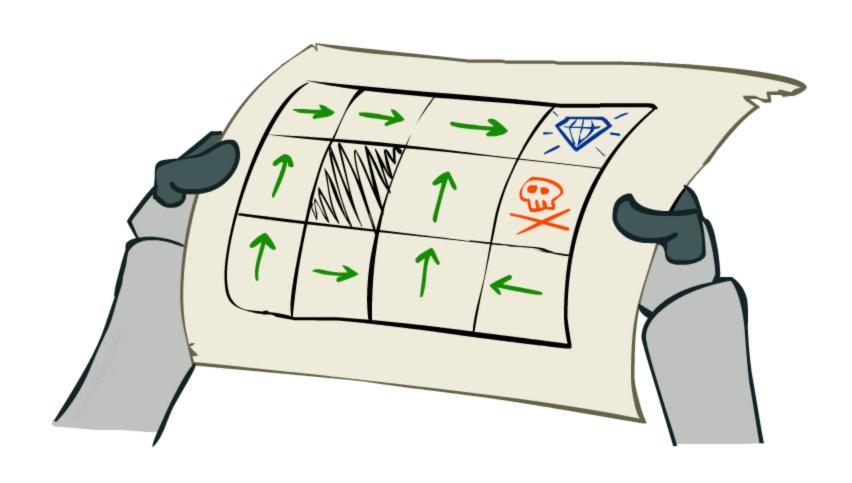
- Expectimax: State, actions, non-deterministic transition functions
- Rewards
  - Walk-through of super-simple value iteration
- A B C D F

• Discounting,  $\gamma$ 

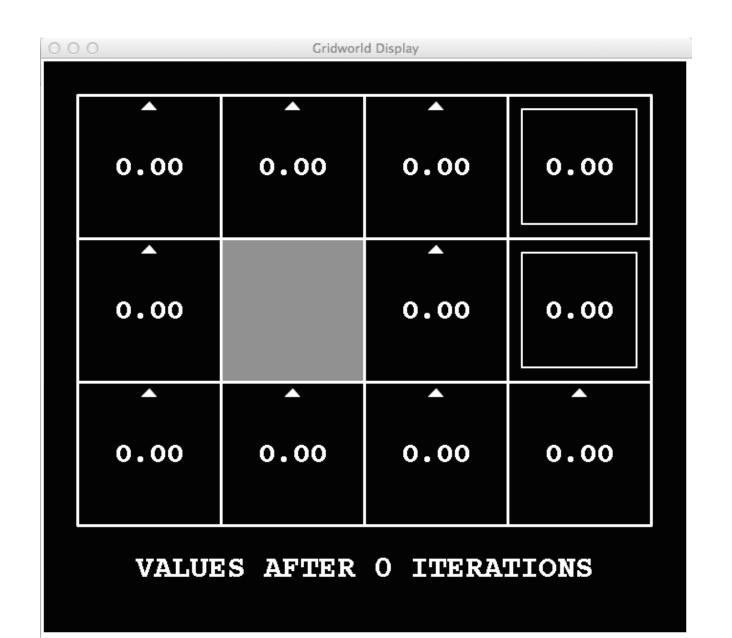
#### Solving MDPs

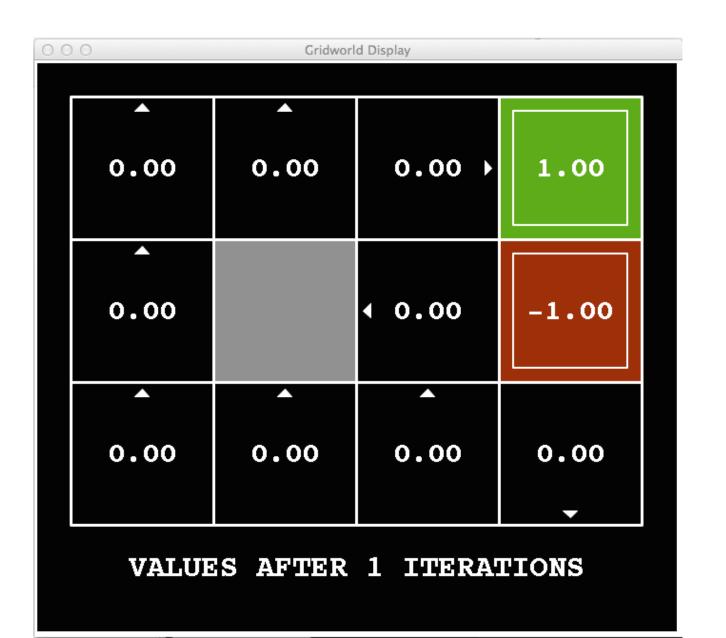
- Method 1) Value iteration
  - Value iteration convergence
- Bellman equations
- Policy Extraction
- Method 2) Policy Iteration

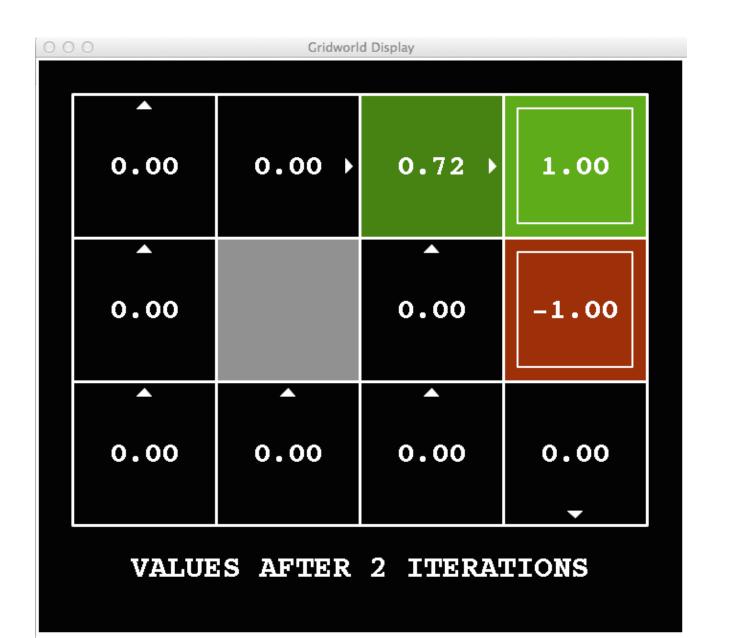
# Solving MDPs

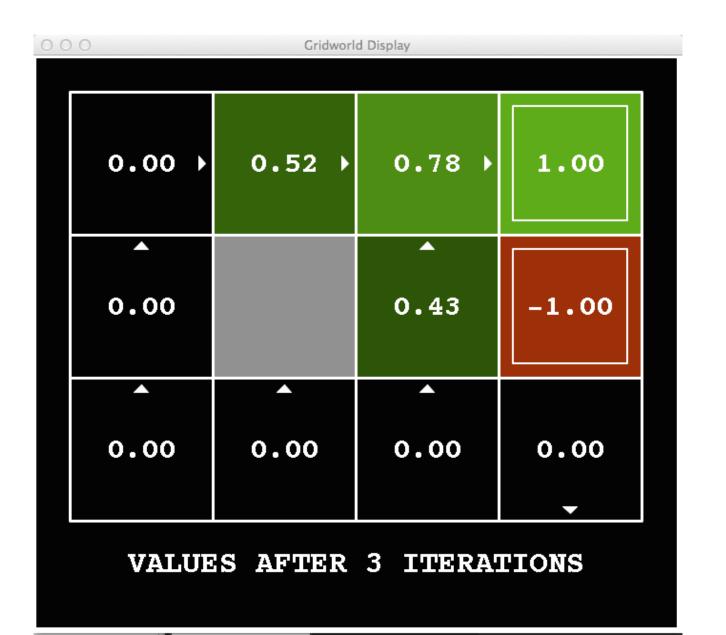


# Value Iteration

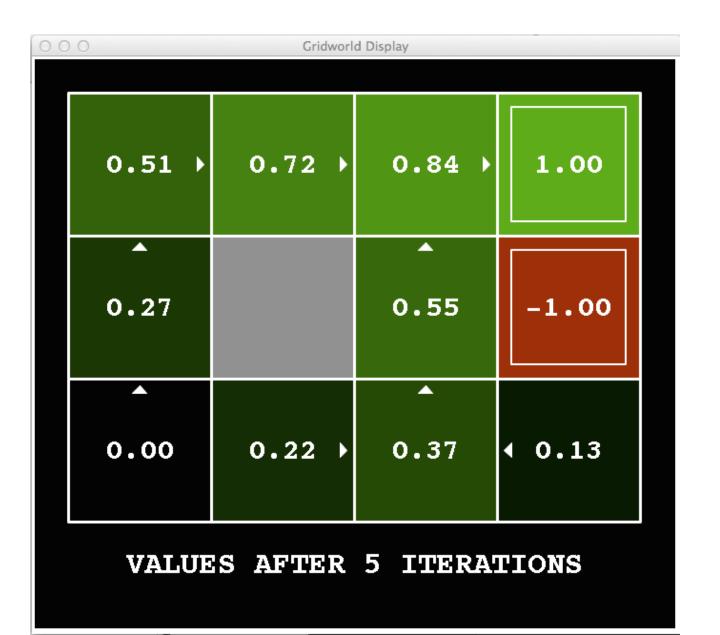


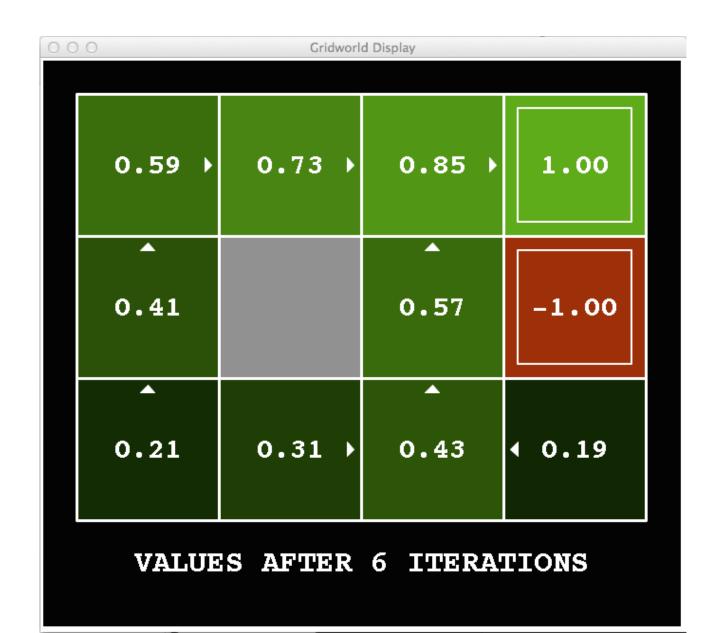


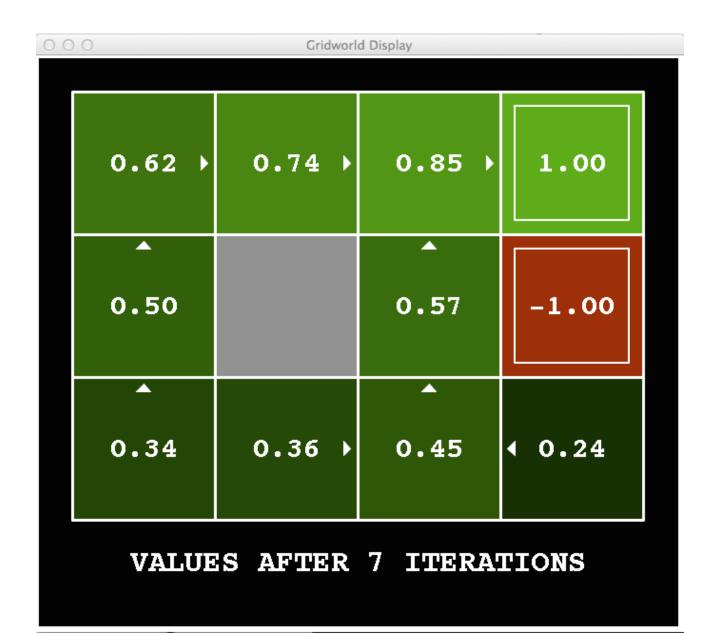


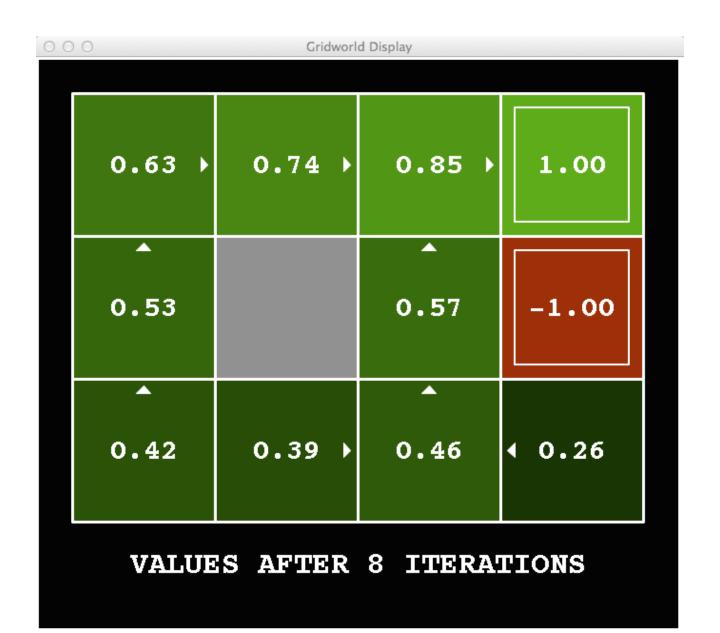


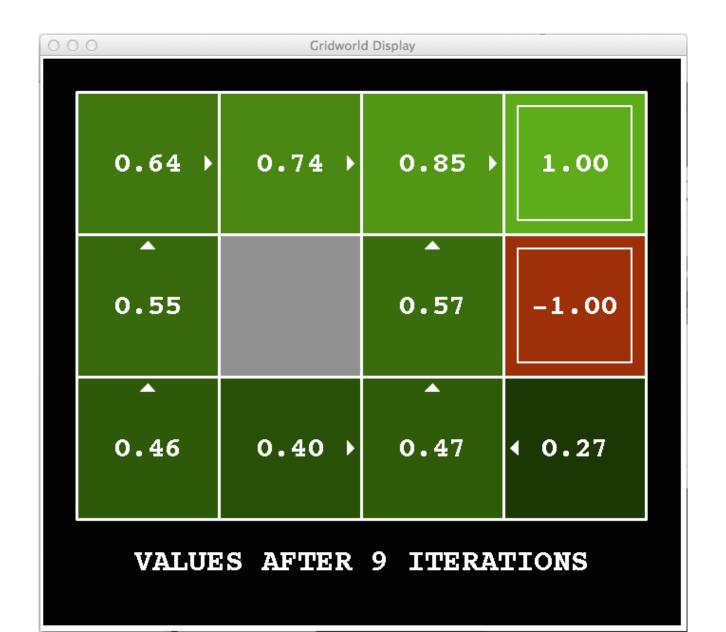




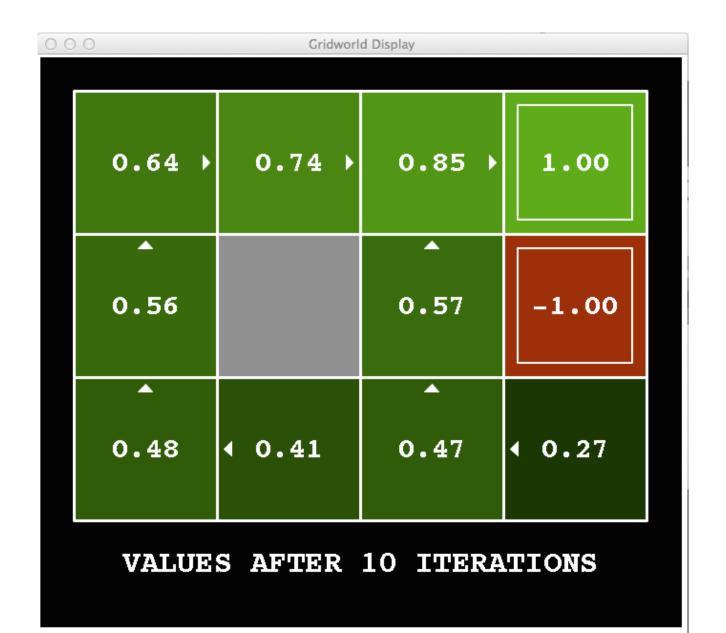


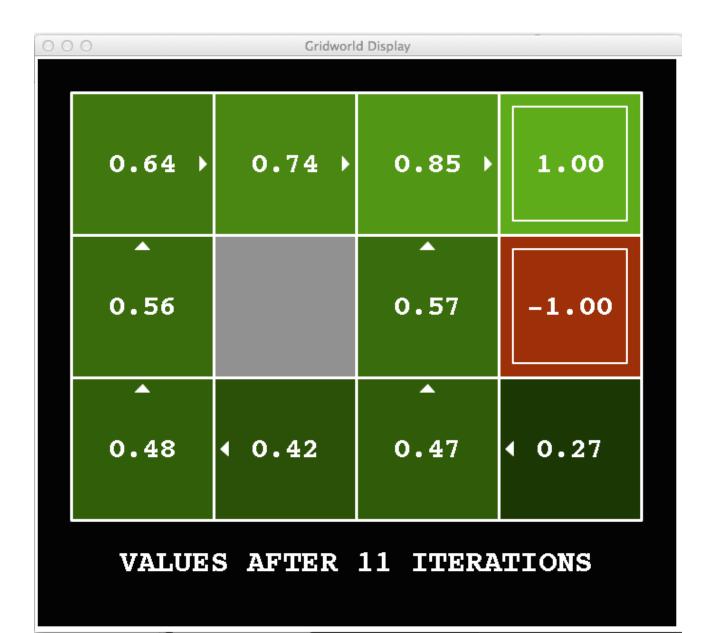


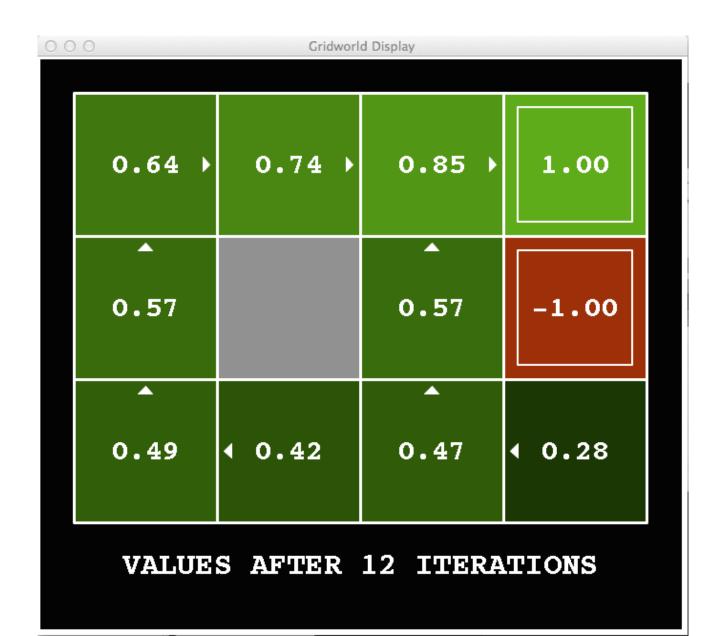




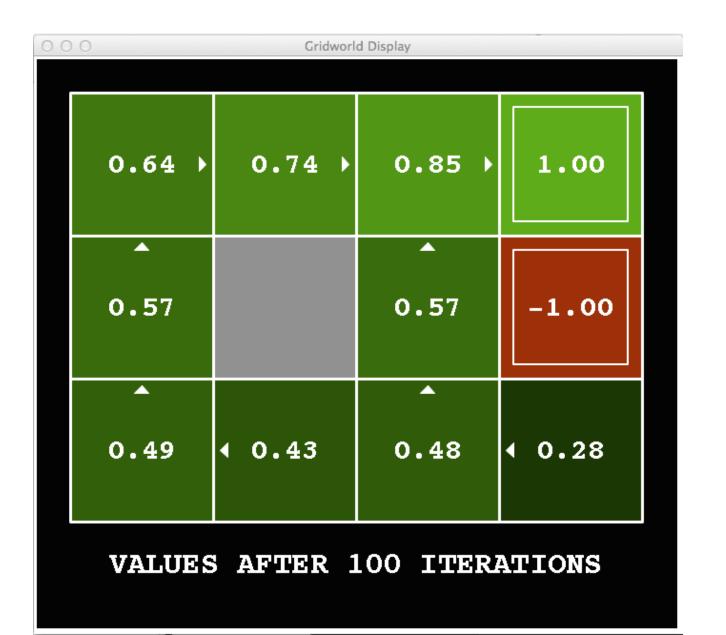
#### k = 10

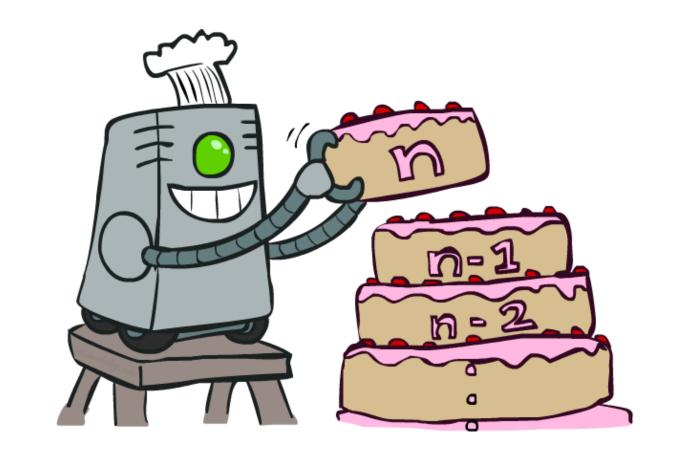






#### k = 100





Value Iteration

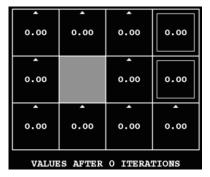
#### Value Iteration

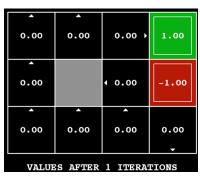
Start with  $V_0(s) = 0$ : no time steps left means an expected reward sum of zero

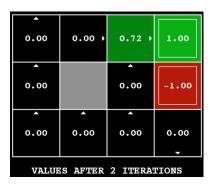
Given vector of  $V_k(s)$  values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$

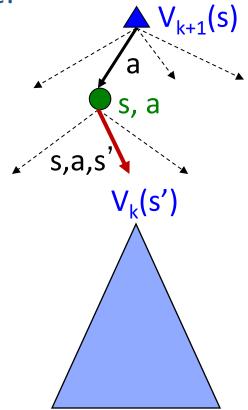
#### Repeat until convergence











#### Poll 1

What is the complexity of each iteration in Value Iteration?

S -- set of states; A -- set of actions

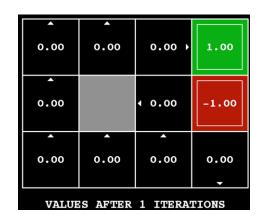
I: O(|S||A|)

II:  $O(|S|^2|A|)$ 

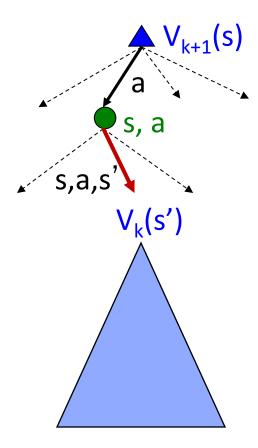
III:  $O(|S||A|^2)$ 

IV:  $O(|S|^2|A|^2)$ 

 $V: O(|S|^2)$ 





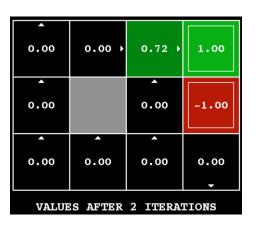


$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$

#### Poll 1

What is the complexity of each iteration in Value Iteration?

S -- set of states; A -- set of actions



I: O(|S||A|)

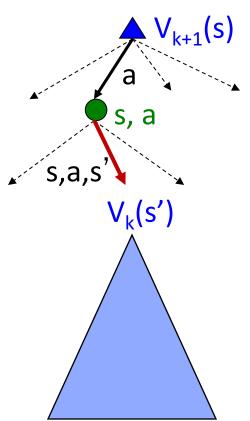
II:  $O(|S|^2|A|)$ 

III:  $O(|S||A|^2)$ 

IV:  $O(|S|^2|A|^2)$ 

 $V: O(|S|^2)$ 

 $V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$ 



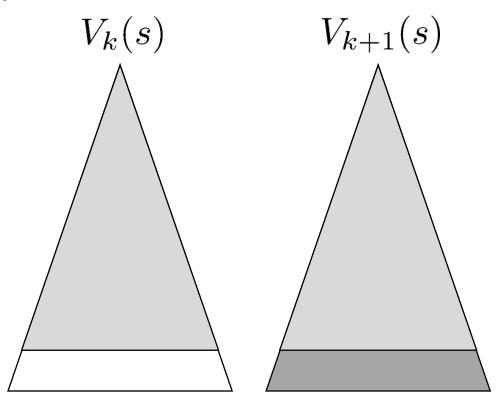
## Value Iteration Convergence

How do we know the  $V_k$  vectors are going to converge?

Case 1: If the tree has maximum depth M, then  $V_M$  holds the actual untruncated values

#### Case 2: If the discount is less than 1

- Sketch: For any state  $V_k$  and  $V_{k+1}$  can be viewed as depth k+1 expectimax results in nearly identical search trees
- The difference is that on the bottom layer,  $V_{k+1}$  has actual rewards while  $V_k$  has zeros
- That last layer is at best all R<sub>MAX</sub>
- It is at worst R<sub>MIN</sub>
- But everything is discounted by γ<sup>k</sup> that far out
- So  $V_k$  and  $V_{k+1}$  are at most  $\gamma^k$  max |R| different
- So as k increases, the values converge



## Summary: Value Iteration

Start with  $V_0(s) = 0$ : no time steps left means an expected reward sum of zero

Given vector of  $V_k(s)$  values, do one ply of expectimax from each state:

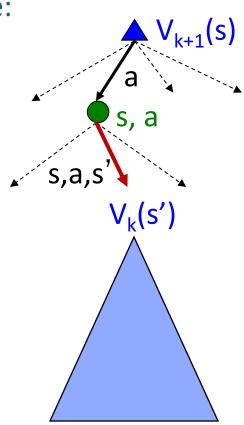
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$

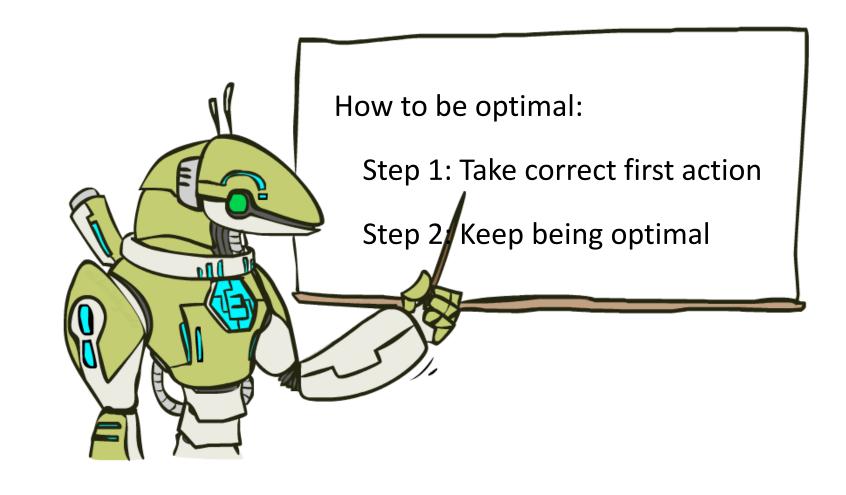
Repeat until convergence

Complexity of each iteration: O(S<sup>2</sup>A)

Theorem: will converge to unique optimal values

- Basic idea: approximations get refined towards optimal values
- Policy may converge long before values do



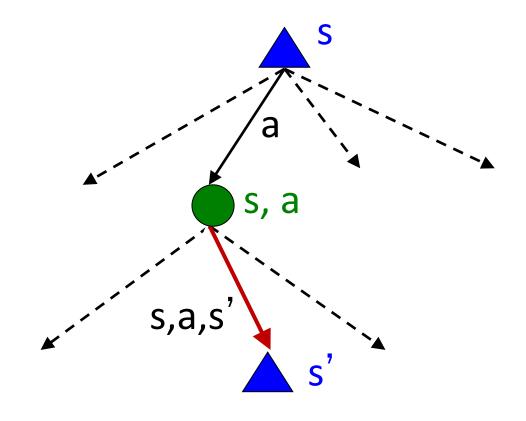


# Optimal Values & Bellman Equations

## Optimal Quantities

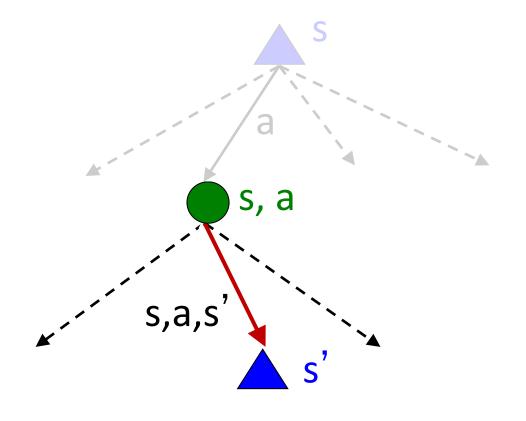
The value (utility) of a state s:

V\*(s) = expected utility starting in s and acting optimally



## Optimal Quantities

- The value (utility) of a state s:
  - V\*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
  - Q\*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally



## Optimal Quantities

The value (utility) of a state s:

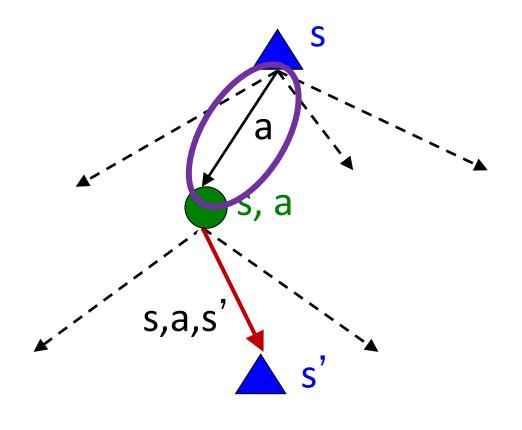
V\*(s) = expected utility starting in s and acting optimally

■ The value (utility) of a q-state (s,a):

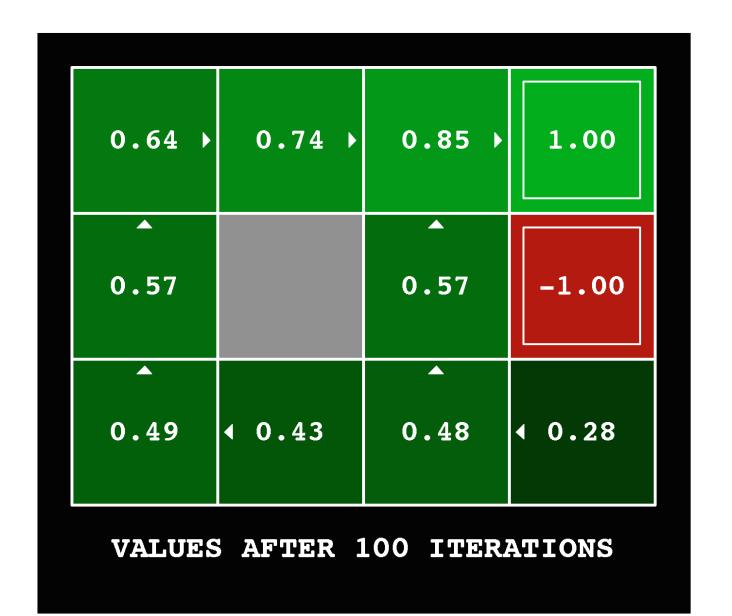
Q\*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

The optimal policy:

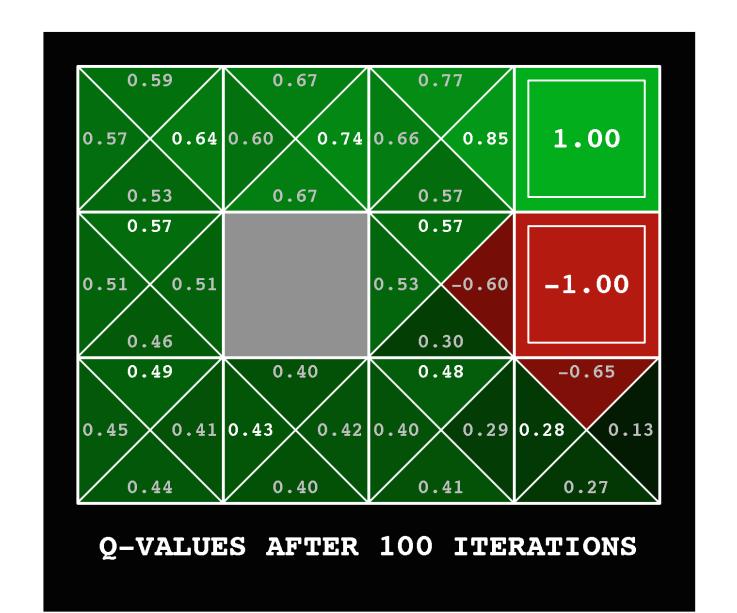
 $\pi^*(s)$  = optimal action from state s



#### Gridworld Values V\*

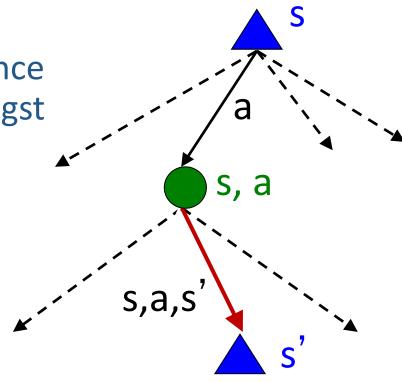


#### Gridworld: Q\*



## The Bellman Equations

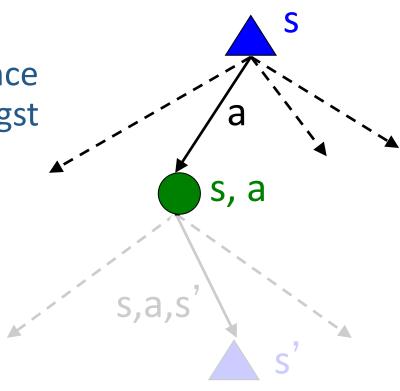
Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values



# The Bellman Equations

Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^*(s) = \max_a Q^*(s, a)$$

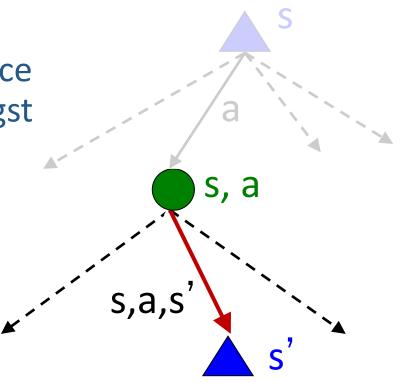


# The Bellman Equations

Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{*}(s') \right]$$



# The Bellman Equations

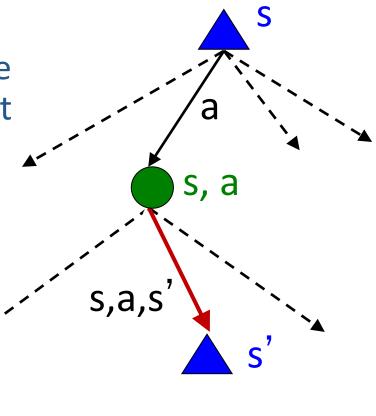
Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{*}(s') \right]$$

These are the Bellman equations, and they characterize optimal values in a way we'll use over and over



Standard expectimax: 
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a)V(s')$$

Bellman equations: 
$$V^*(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^*(s')]$$

Value iteration: 
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s$$

Summary: Bellman Equations vs Value Iteration

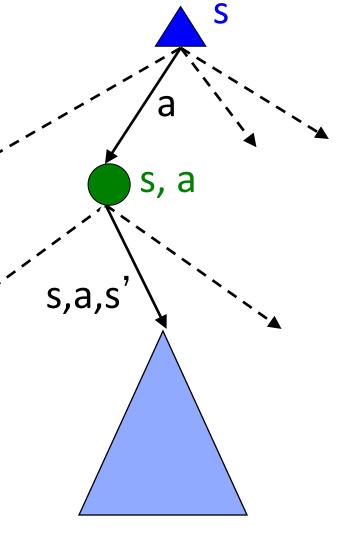
### Bellman equations characterize the optimal values:

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^*(s') \right]$$

### Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$

Value iteration is just a fixed point solution method



### Outline

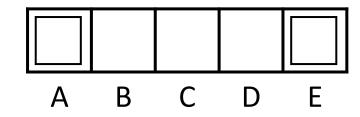
### MDP Setup

- Expectimax: State, actions, non-deterministic transition functions
- Rewards
  - Walk-through of super-simple value iteration
- Discounting,  $\gamma$









### Solving MDPs

- Method 1) Value iteration
  - Value iteration convergence
- Optimal values & Bellman equations
- **Policy Extraction**
- Method 2) Policy Iteration

### Solved MDP! Now what?

What are we going to do with these values??

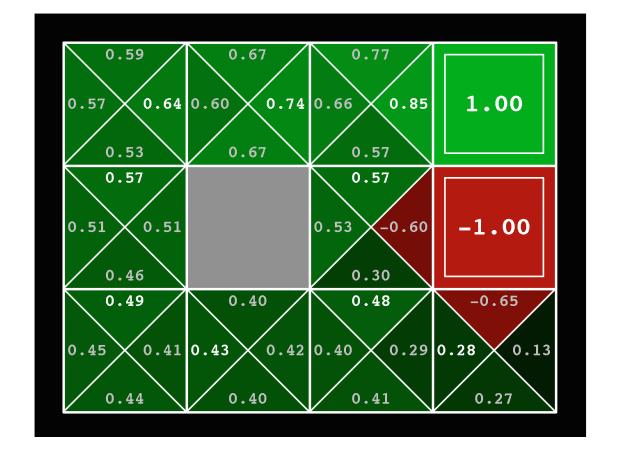
$$V^*(s)$$

0.64 →

0.57

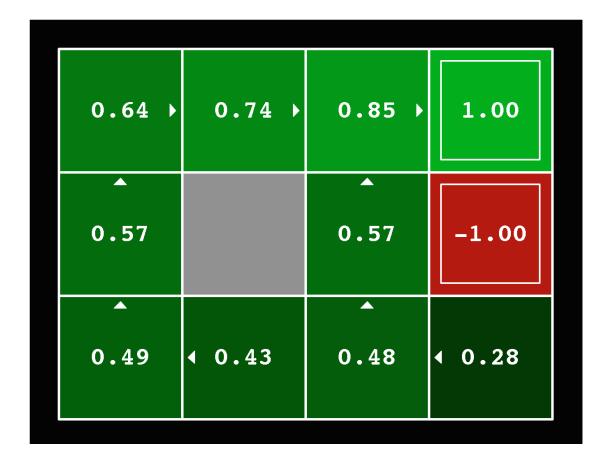
0.49

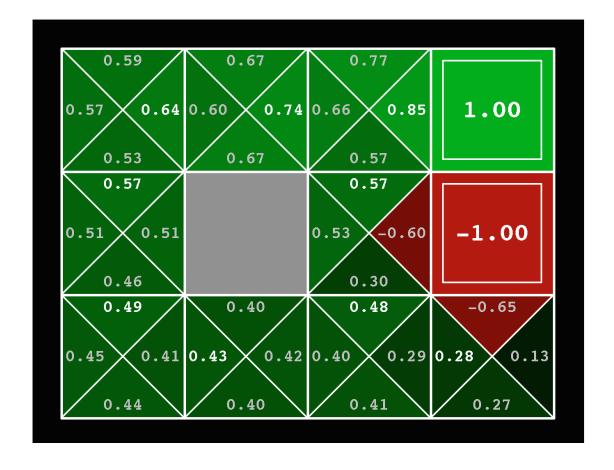
 $Q^*(s,a)$ 



### Poll 2

If you need to extract a policy, would you rather have A) Values, B) Q-values?



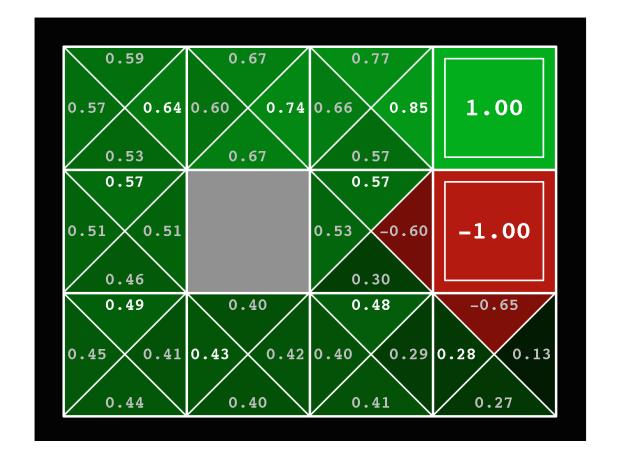


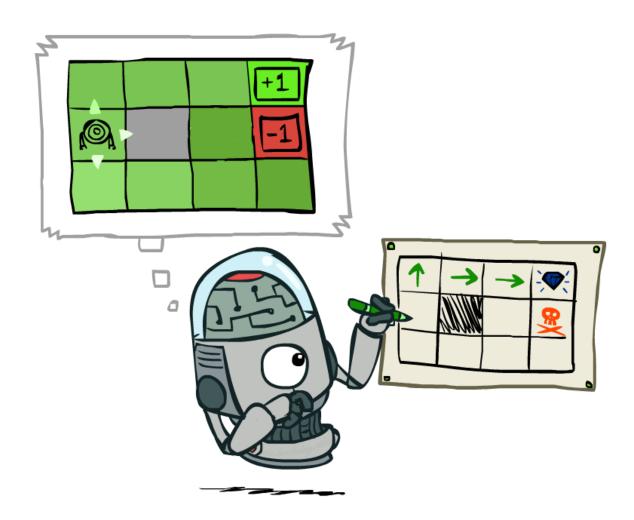
### Poll 2

If you need to extract a policy, would you rather have

A) Values, B) Q-values ?

| 0.64 → | 0.74 →        | 0.85 → | 1.00          |
|--------|---------------|--------|---------------|
| •      |               | •      |               |
| 0.57   |               | 0.57   | -1.00         |
| •      |               | •      |               |
| 0.49   | <b>◆ 0.43</b> | 0.48   | <b>4</b> 0.28 |





Policy Extraction

# Computing Actions from Values

Let's imagine we have the optimal values V\*(s)

How should we act?

It's not obvious!

We need to do a mini-expectimax (one step)



$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

This is called policy extraction, since it gets the policy implied by the values

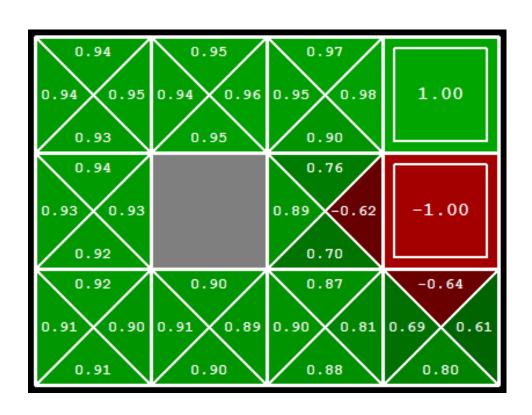
# Computing Actions from Q-Values

Let's imagine we have the optimal q-values:

#### How should we act?

Completely trivial to decide!

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$



Important lesson: actions are easier to select from q-values than values!

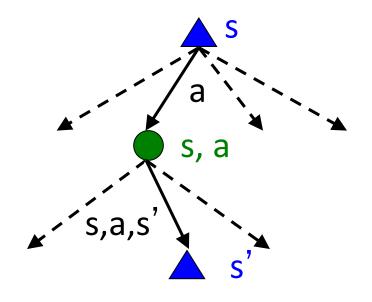
### Value Iteration Notes

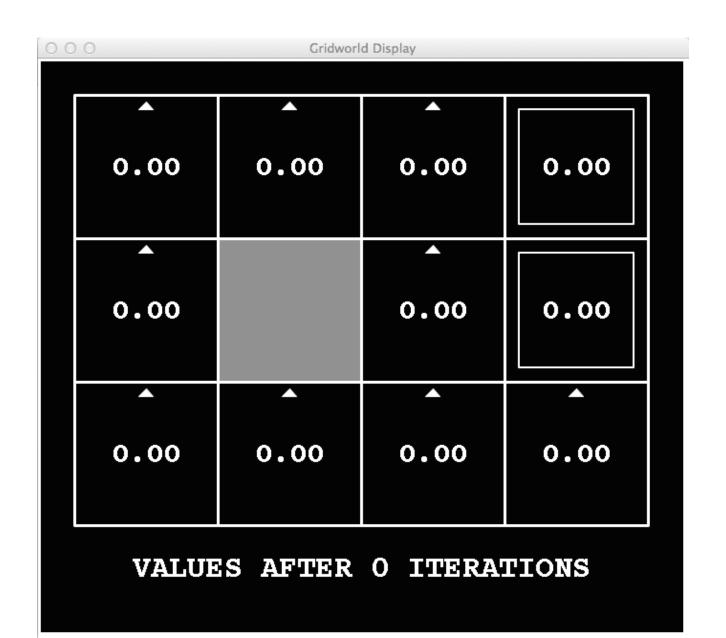
Value iteration repeats the Bellman updates:

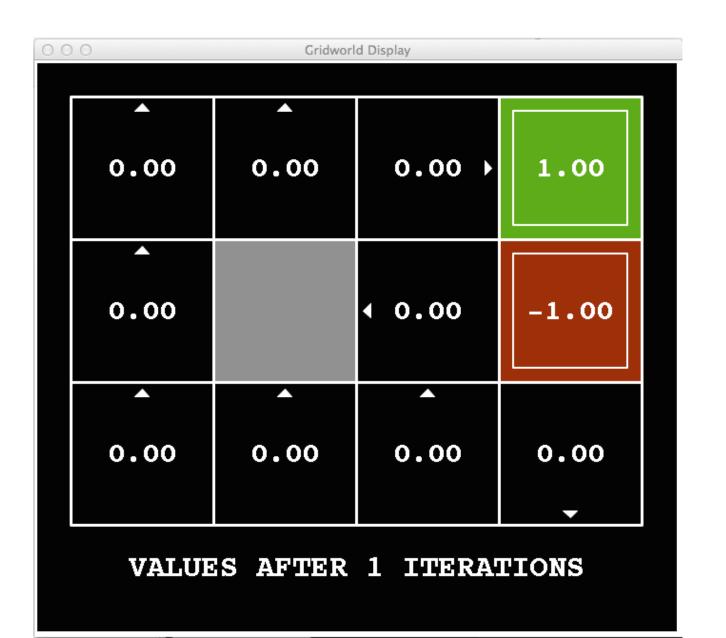
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$

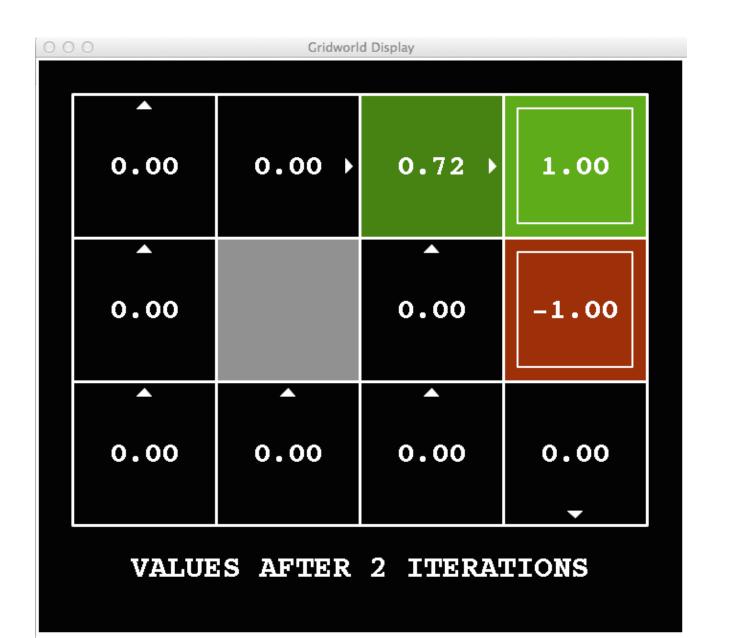
Things to notice when running value iteration:

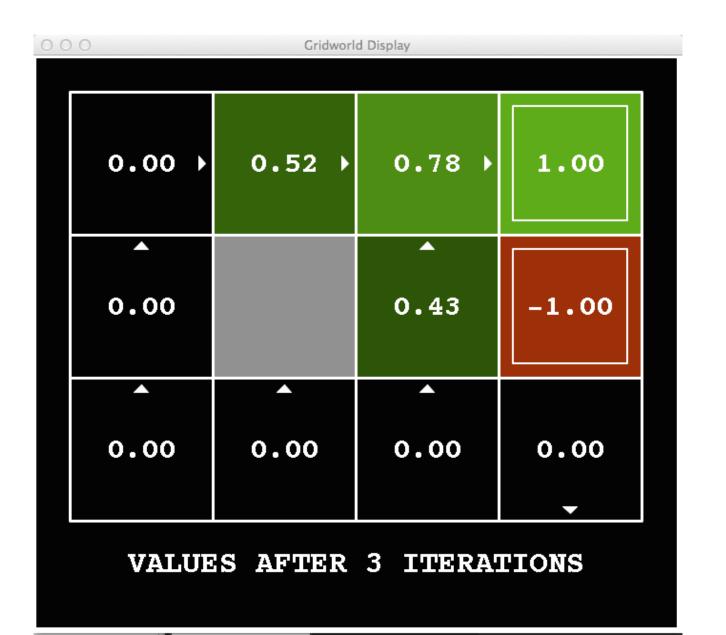
- It's slow O(S<sup>2</sup>A) per iteration
- The "max" at each state rarely changes
- The optimal policy appears before the values converge (but we don't know that the policy is optimal until the values converge)



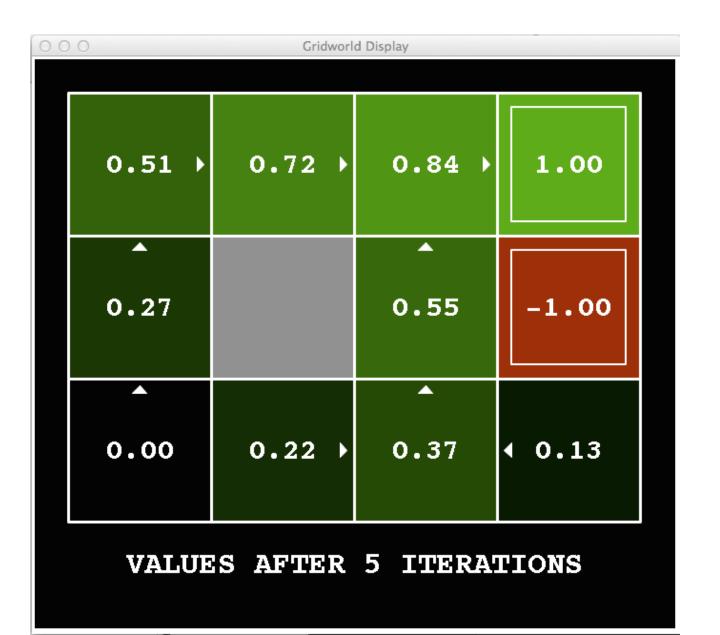


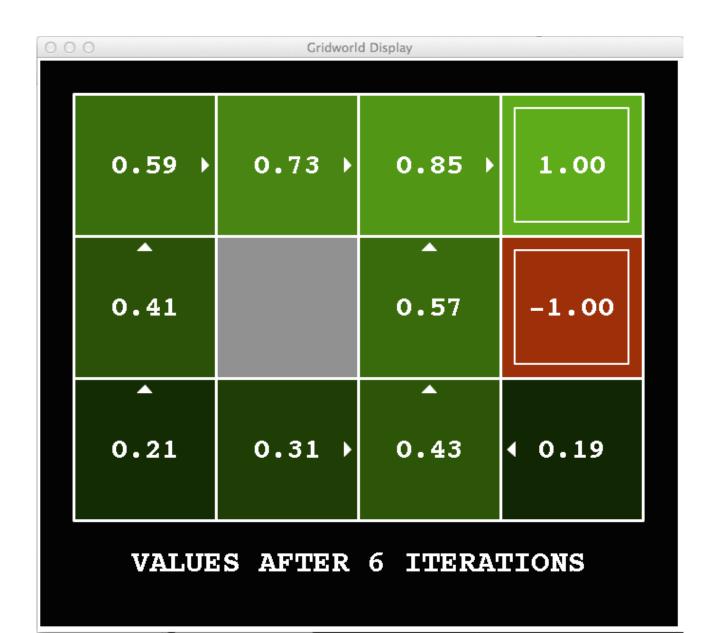


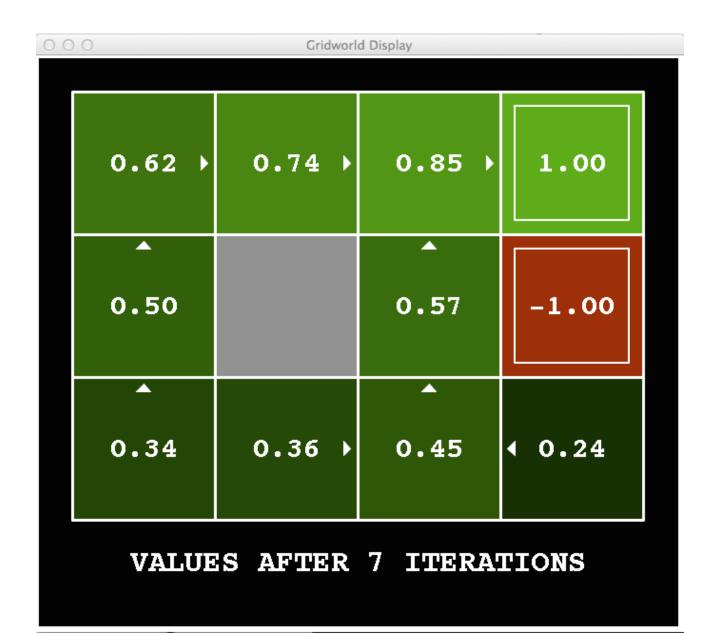


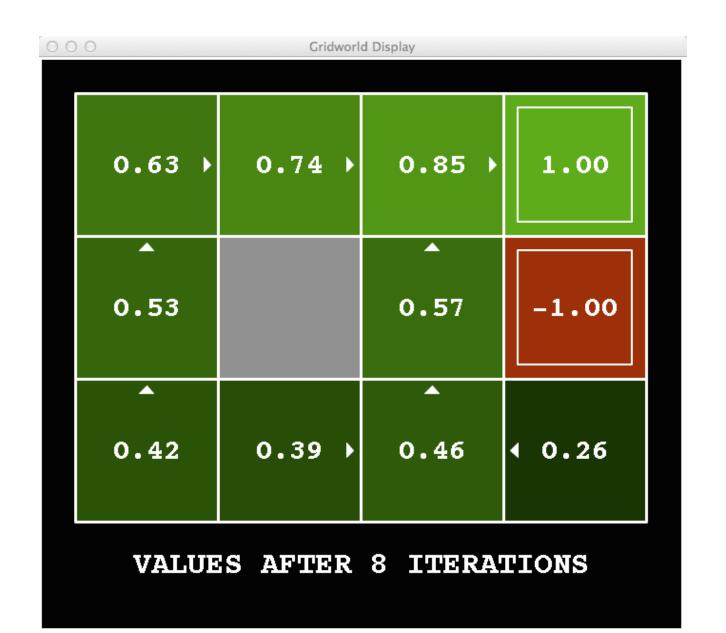


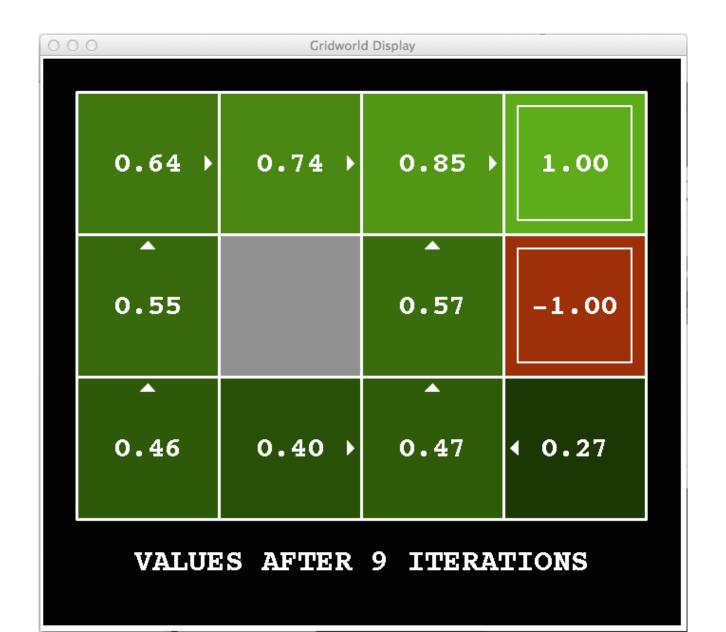




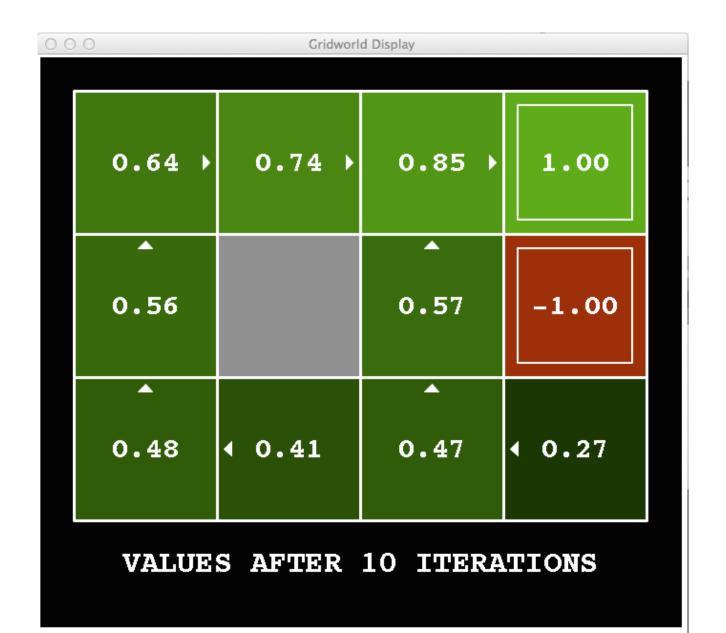


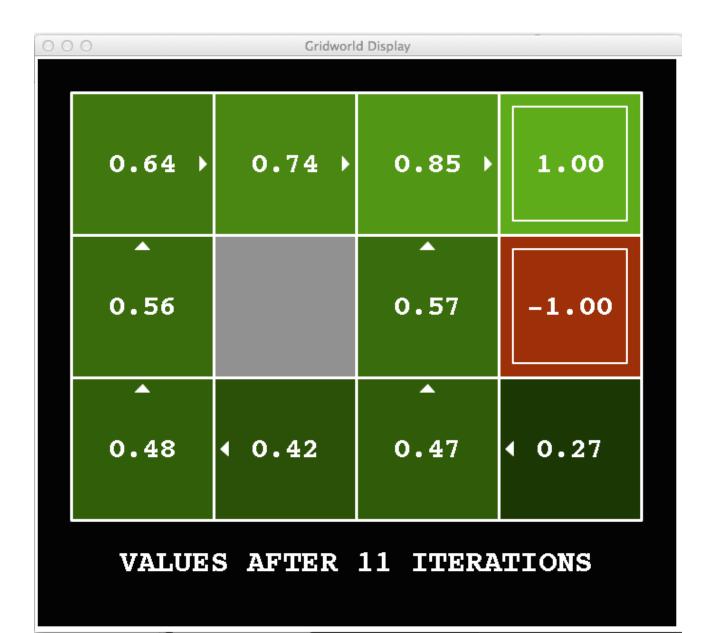


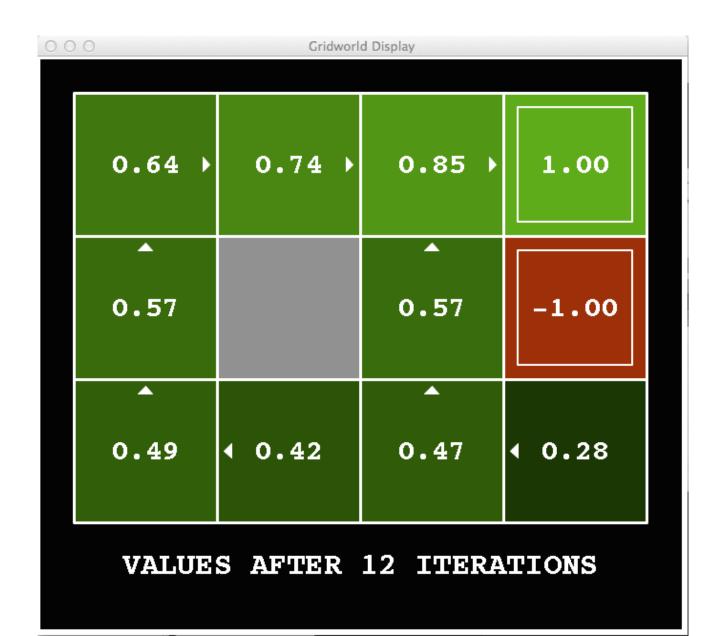




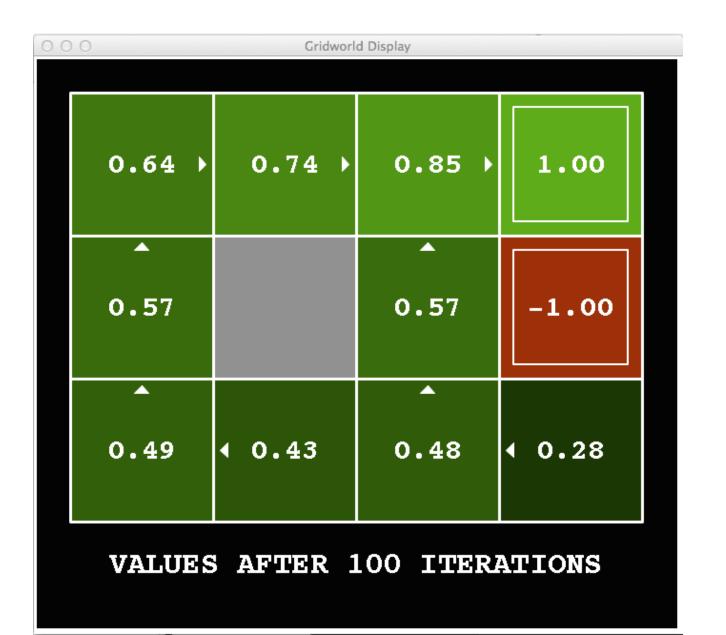
## k = 10







### k = 100



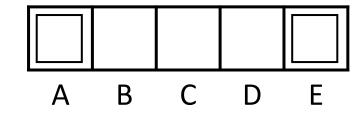
### Outline

### MDP Setup

- Expectimax: State, actions, non-deterministic transition functions
- Rewards
  - Walk-through of super-simple value iteration
- Discounting,  $\gamma$

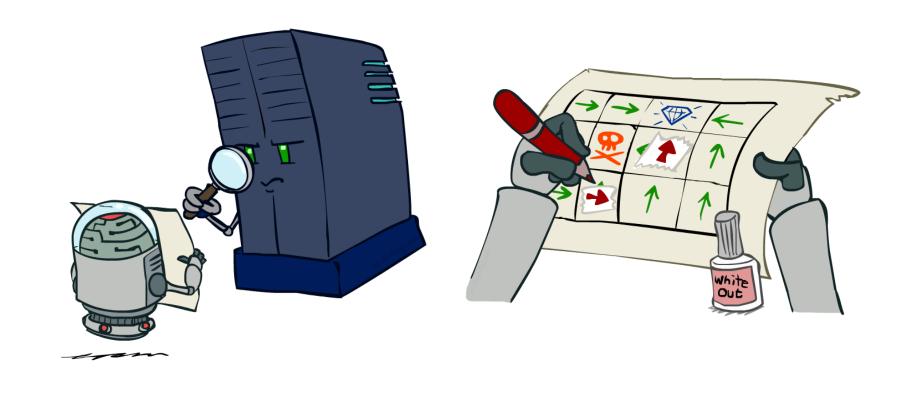






### Solving MDPs

- Method 1) Value iteration
  - Value iteration convergence
- Bellman equations
- **Policy Extraction**
- Method 2) Policy Iteration



# Policy Iteration

# Two Methods for Solving MDPs

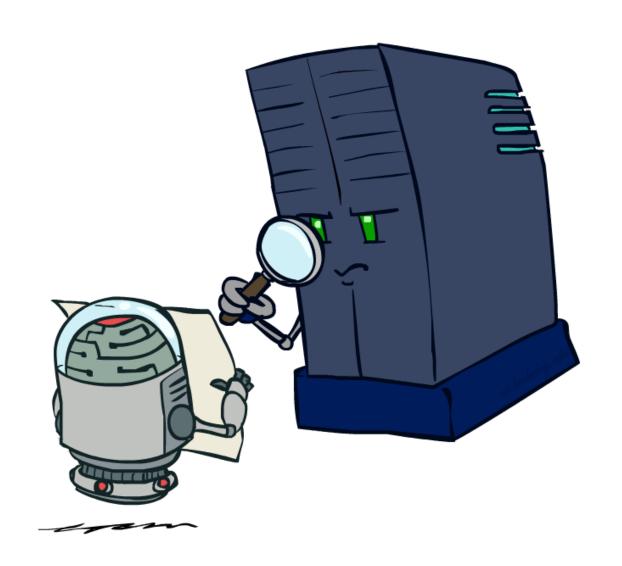
### Value iteration + policy extraction

- Step 1: Value iteration: calculate values for all states by running one ply of the Bellman equations using values from previous iteration until convergence
- Step 2: Policy extraction: compute policy by running one ply of the Bellman equations using values from value iteration

### Policy iteration

- Step 1: Policy evaluation: calculate values for some fixed policy (not optimal values!) until convergence
- Step 2: Policy improvement: update policy by running one ply of the Bellman equations using values from policy evaluation
- Repeat steps until policy converges

# Policy Evaluation

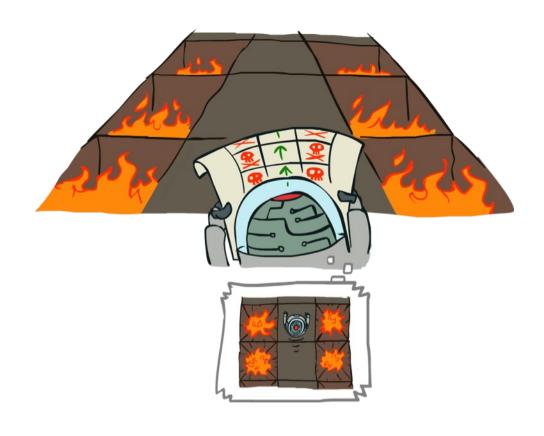


# Example: Policy Evaluation

Always Go Right



Always Go Forward

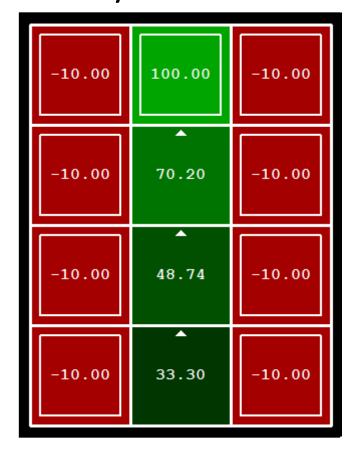


# Example: Policy Evaluation

Always Go Right



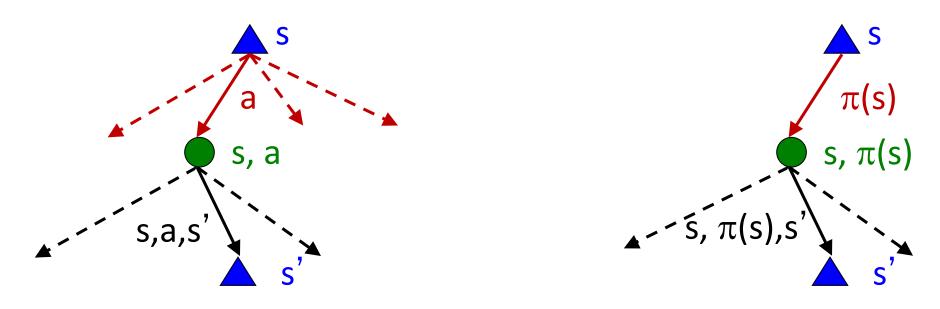
### Always Go Forward



# Policy Evaluation: Fixed Policies

Normally: Do the optimal action F

Fixed policy: Do what  $\pi$  says to do



Expectimax trees max over all actions to compute the optimal values

If we fixed some policy  $\pi(s)$ , then the tree would be simpler

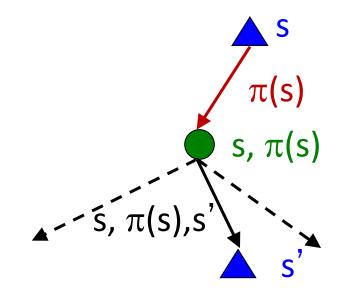
- only one action per state
- ... though the tree's value would depend on which policy we fixed

# Policy Evaluation: Utilities for a Fixed Policy

Another basic operation: compute the utility value of a state s under a fixed (generally non-optimal) policy

### Define the utility of a state s, under a fixed policy $\pi$ :

 $V^{\pi}(s)$  = expected sum of discounted rewards starting in s and following  $\pi$ 



Recursive relation (one-step look-ahead / Bellman equation):

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

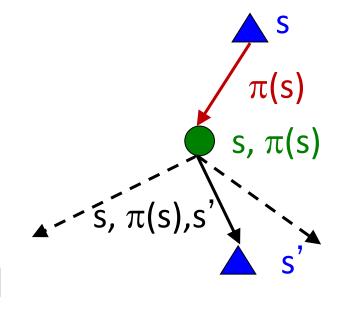
# Policy Evaluation

How do we calculate the V's for a fixed policy  $\pi$ ?

# Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

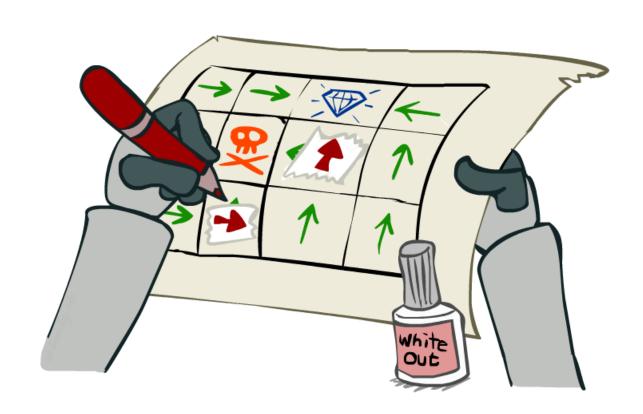


Efficiency: O(S<sup>2</sup>) per iteration

### Idea 2: Without the maxes, the Bellman equations are just a linear system

Solve with your favorite linear system solver

# Policy Improvement



# Policy Iteration:

Evaluation: For fixed current policy  $\pi$ , find values with policy evaluation:

Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[ R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

Improvement: For fixed values, get a better policy using policy extraction

One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

### Policy iteration

- It's still optimal!
- Can converge faster under some conditions

# Two Methods for Solving MDPs

### Value iteration + policy extraction

Step 1: Value iteration:

$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \forall s \text{ until convergence}$$

Step 2: Policy extraction:

$$\pi_V(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V(s')], \ \forall \ s$$

### Policy iteration

Step 1: Policy evaluation:

$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \ \forall \ s \ \text{until convergence}$$

Step 2: Policy improvement:

$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \ \forall \ s$$

Repeat steps until policy converges

# Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

#### In value iteration:

- Every iteration updates both the values and (implicitly) the policy
- We don't track the policy, but taking the max over actions implicitly recomputes it

### In policy iteration:

- We do several passes that update values with fixed policy (each pass is fast because we consider only one action, not all of them; however we do many passes)
- After the policy is evaluated, a new policy is chosen (with (arg)max like value iteration)
- The new policy will be better (or we're done)

(Both are dynamic programs for solving MDPs)

# Summary: MDP Algorithms

### So you want to....

- Compute optimal values: use value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)

#### These all look the same!

- They basically are they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions

Standard expectimax: 
$$V(s) = \max_{a} \sum_{s} P(s'|s,a)V(s')$$

Bellman equations: 
$$V^*(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^*(s')]$$

Value iteration: 
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s$$

Q-iteration: 
$$Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall s, a$$

Policy extraction: 
$$\pi_V(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')], \quad \forall s$$

Policy evaluation: 
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$$

Policy improvement: 
$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s'$$

Standard expectimax: 
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a)V(s')$$

Bellman equations: 
$$V^*(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^*(s')]$$

Value iteration: 
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s$$

Q-iteration: 
$$Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s,a$$

Policy extraction: 
$$\pi_V(s) = \underset{a}{\operatorname{argmax}} \sum_{S'} P(s'|s,a) [R(s,a,s') + \gamma V(s')], \quad \forall s$$

Policy evaluation: 
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s \in \mathbb{R}$$

Policy improvement: 
$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s'$$

Standard expectimax: 
$$V(s) = \max_{a} \sum_{s} P(s'|s,a)V(s')$$

Bellman equations: 
$$V^*(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^*(s')]$$

Value iteration: 
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s$$

Q-iteration: 
$$Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall s, a$$

Policy extraction: 
$$\pi_V(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')], \quad \forall s$$

Policy evaluation: 
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$$

Policy improvement: 
$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s'$$

$$V(s) = \max_{a} \sum_{s'} P(s'|s, a)V(s')$$

$$V^*(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^*(s')]$$

$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_{k}(s')], \quad \forall$$

$$Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall \ s,a$$

$$\pi_{V}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V(s')], \quad \forall s$$

$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s, \pi(s)) [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')], \quad \forall$$

$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V^{\pi_{old}}(s')], \quad \forall s$$