Warm-up as you walk in: Grid World

o 1 2 3 For starting state s=(2,2), fill in

5 actions, probabilities, and next states

Al: Representation and Problem Solving

Markov Decision Processes |

Instructor: Pat Virtue

Slide credits: CMU Al and http://ai.berkeley.edu

Outline
MDP Setup

" Expectimax: State, actions, non-deterministic transition functions
= Rewards

= Walk-through of super-simple value iteration

= Discounting, vy A B C D

Discounting

How to discount?

= Each time we descend a level, we
multiply in the discount once

Why discount?

= Sooner rewards probably do have
higher utility than later rewards

= Also helps our algorithms converge
= Important: use0<y<1

Recursive Expectimax

V(s) = mc?xz P(s'|s,a) V(s")

With rewards:S’
V(s) = maXZ P(s'ls,a) |R(s,a,s") + V(s")]
a
S/
With discount factor:

V(s) = mc?xz P(s'ls,a) |R(s,a,s") +y V(s")]

T (Terminal)

Discounting

. R(A, Exit, T) = 10 R(E, Exit, T) = 1
= Actions: B, C, D: East, West
= Actions: A, E: Exit _

" Transitions: deterministic
= Rewards only for transitioning to terminal state A B C D E

Viera () = max[R(s, @,5") + Vie(s")]

Fory =1, what is the optimal policy?

Fory =0.1, what is the optimal policy?

For which y are West and East equally good when in state D?

Outline

Solving MDPs

Method 1) Value iteration
= Value iteration convergence

Bellman equations
Policy Extraction
Method 2) Policy Iteration

Solving MDPs

Value lteration

K

0

VALUES AFTER O ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

1

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

2

0.72 » 1.00

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

3

1.00

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

A

Cridworld Display

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

5

Cridworld Display

0.51 »| 0.72 »| 0.84) 1.00

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

o6

Cridworld Display

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

7

Cridworld Display

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

3

Cridworld Display

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

9

Cridworld Display

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Cridworld Display

VALUES AFTER

10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Cridworld Display

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Cridworld Display

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Value lteration

Value lteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(s) < mC?XZT(S, a,s) {R(s,a, s + ’)/Vk(S,)}

S

Repeat until convergence o

VALUES AFTER 0 ITERATIONS VALUES AFTER 1 ITERATIONS VALUES AFTER 2 ITERATIONS VALUES AFTER 100 ITERATIONS

Poll 1

What is the complexity of each iteration in Value Iteration?
S -- set of states; A -- set of actions

1:0(|S|[A])

: O(ISI%|A[)

I: 0(]S]141%)

IV: 0(]S1%]41%)
V: 0(IS1%)

Viet1(s) < maaxZT(s, a,s) {R(s,a, s+ ’ka(sl)}

S

Poll 1

What is the complexity of each iteration in Value lteration?
S -- set of states; A -- set of actions

1 O(]S||4])

| n:o(Is1?14) | 2
1 0(|S|1A4]%)
IV: 0(|S|]Al?)
V: 0(|S]%)

Viet1(s) < mGQXZT(s, a,s) {R(s,a, s+ 'ka(s')}

S

Value Iteration Convergence

How do we know the V, vectors are going to converge?

Vi(s) Vi+1(s)
Case 1: If the tree has maximum depth M, then V,,
holds the actual untruncated values

Case 2: If the discount is less than 1

= Sketch: For any state V, and V,,, can be viewed as depth k+1
expectimax results in nearly identical search trees

* The difference is that on the bottom layer, V,,, has actual
rewards while V, has zeros

" That last layer is at best all Ry, / \ /

= |tis at worst Ry,

= But everything is discounted by y* that far out
= SoV, and V,,, are at most y* max|R| different
= So as k increases, the values converge

Summary: Value Iteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(s) < mC?XZT(S, a,s) {R(s,a, s + q/Vk(s')}

S

Repeat until convergence o

Complexity of each iteration: O(S%A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

—

Optimal Values & Bellman Equations

Optimal Quantities

" The value (utility) of a state s:

V*(s) = expected utility starting in s and
acting optimally

[Demo: gridworld values (L9D1)]

Optimal Quantities

" The value (utility) of a state s:

V*(s) = expected utility starting in s and
acting optimally

= The value (utility) of a g-state (s,a):

Q’(s,a) = expected utility starting out
having taken action a from state s and
(thereafter) acting optimally

[Demo: gridworld values (L9D1)]

Optimal Quantities

" The value (utility) of a state s:

V*(s) = expected utility starting in s and
acting optimally

= The value (utility) of a g-state (s,a):

Q’(s,a) = expected utility starting out
having taken action a from state s and
(thereafter) acting optimally

" The optimal policy:
n"(s) = optimal action from state s

[Demo: gridworld values (L9D1)]

Gridworld Values V*

VALUES AFTER 100 ITERATIONS

[saaam

s

The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

V*(s) = max Q*(s, a)

The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

Q*(s,a) =) T(s,a, s [R(S, a,s’) + *ﬂ/*(s’)]

The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

V*(s) = max Q*(s,a)
Q*(s,a) =) T(s,a, s [R(S, a,s’) + *ﬂ/*(s’)])

V*i(s) = mC?XZT(S, a,s) [R(s,a, ") + ’)/V*(S,)}

These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

MDP Notation

Standard expectimax: V(s) = mc?XZ: P(s'|s,a)V(s")
Bellman equations: V*(s) = mc?xz P(s'ls,a)[R(s,a,s") + yV*(s")]

Value iteration: Vi+1(s) = max g P(s'ls,a)[R(s,a,s") +yVi(s))], Vs
a
S/

Summary: Bellman Equations vs Value [teration

Bellman equations characterize the optimal values:

V() = max 3 T(s.a,) [Rls,a) + VD] ¥

Value iteration computes them: o

Viet1(s) mngT(s, a,s’) {R(s,a, s + nyk(sl)}

S

Value iteration is just a fixed point solution method

Outline

MDP Setup
" Expectimax: State, actions, non-deterministic transition functions
= Rewards

= Walk-through of super-simple value iteration

= Discounting, ¥ é< v¥ . A B C D
Solving MDPs

= Method 1) Value iteration
= Value iteration convergence

= Optimal values & Bellman equations
=" Policy Extraction
= Method 2) Policy Iteration

Solved MDP! Now what?

What are we going to do with these values??

Ye
e

<

1.00

ST

Policy Extraction

Computing Actions from Values

Let’s imagine we have the optimal values V*(s) .n..
0.95 » 0.98 » 1.00
How should we act?
, . 4« 0.89 -1.00
= |t's not obvious!
.. . 0.92 4 0.91 0.80
We need to do a mini-expectimax (one step))

7*(s) = arg gnaXZT(s, a,s)[R(s,a,s) +~yV*(s)]

S

This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

Let’s imagine we have the optimal g-values:

How should we act?
=" Completely trivial to decide!

m*(s) = argmaxQ*(s,a)

Important lesson: actions are easier to select from g-values than values!

Value Iteration Notes

Value iteration repeats the Bellman updates:

Viet1(8) < mC?XZT(s,a,, s [R(s,a, ") + 'ka(s’)}

S

Things to notice when running value iteration:
= |t’s slow — O(S?A) per iteration

" The “max” at each state rarely changes

* The optimal policy appears before the values converge (but we
don’t know that the policy is optimal until the values converge)

[Demo: value iteration (L9D2)]

K

0

VALUES AFTER O ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

1

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

2

0.72 » 1.00

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

3

1.00

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

A

Cridworld Display

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

5

Cridworld Display

0.51 »| 0.72 »| 0.84) 1.00

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

o6

Cridworld Display

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

7

Cridworld Display

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

3

Cridworld Display

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

9

Cridworld Display

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Cridworld Display

VALUES AFTER

10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Cridworld Display

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Cridworld Display

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Outline

MDP Setup
" Expectimax: State, actions, non-deterministic transition functions
= Rewards

= Walk-through of super-simple value iteration

L/

VU 6 A B C D

= Discounting, vy é<

Solving MDPs

= Method 1) Value iteration
= Value iteration convergence

= Bellman equations
=" Policy Extraction
= Method 2) Policy Iteration

Policy Iteration

Two Methods for Solving MDPs

Value iteration + policy extraction

= Step 1: Value iteration: calculate values for all states by running one
ply of the Bellman equations using values from previous iteration
until convergence

= Step 2: Policy extraction: compute policy by running one ply of the
Bellman equations using values from value iteration

Policy iteration

= Step 1: Policy evaluation: calculate values for some fixed policy (not
optimal values!) until convergence

= Step 2: Policy improvement: update policy by running one ply of the
Bellman equations using values from policy evaluation
" Repeat steps until policy converges

Policy Evaluation

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Evaluation: Fixed Policies

Normally: Do the optimal action Fixed policy: Do what 7t says to do

Expectimax trees max over all actions to compute the optimal values

If we fixed some policy 1t(s), then the tree would be simpler
— only one action per state

= ... though the tree’s value would depend on which policy we fixed

Policy Evaluation: Utilities for a Fixed Policy

Another basic operation: compute the utility value of
a state s under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy &:

V™(s) = expected sum of discounted rewards starting
in s and following m

Recursive relation (one-step look-ahead / Bellman
equation):

VT(s) =) T(s,m(s),s)[R(s,7(s),8) + V7" (s)]

Policy Evaluation

How do we calculate the V’s for a fixed policy ©?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Vo'(s) =0

Vi 1(s8) < ZT(S, 7(s),s)[R(s,m(s),s") + V(5]

S

Efficiency: O(S?) per iteration

ldea 2: Without the maxes, the Bellman equations are just a linear system
= Solve with your favorite linear system solver

Policy Improvement

Policy Iteration:

Evaluation: For fixed current policy &, find values with policy evaluation:
" [terate until values converge:

ka—f—l(s) — Y T(s,m;(s), s") {R(S, mi(s),s) + V;:i(sl)}

Improvement: For fixed values, get a better policy using policy extraction
" One-step look-ahead:

mi4+1(s) = arg CILﬂaXZT(s, a,s) [R(s, a,s) + ’yVﬂi(s')}

S

Policy iteration
" |t’s still optimal!
" Can converge faster under some conditions

Two Methods for Solving MDPs

Value iteration + policy extraction
= Step 1: Value iteration:
Vier1(s) = max Yo P(s'|s,a)[R(s,a,s") +yV,(s")], Vs until convergence
= Step 2: Policy extraction:
my(s) = argmax)., P(s'|s,a)[R(s,a,s") + yV(s')], Vs
a

Policy iteration
= Step 1: Policy evaluation:
VE1(s) =Y P(s'|s,m(s))[R(s,m(s),s") + yViF(s")], Vs until convergence
= Step 2: Policy improvement:
Thew(S) = argmax .., P(s'|s,a)|R(s,a,s’) + yV™old(s")], Vs
a

= Repeat steps until policy converges

Comparison

Both value iteration and policy iteration compute the same thing
(all optimal values)

In value iteration:
= Every iteration updates both the values and (implicitly) the policy
= We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

= We do several passes that update values with fixed policy (each pass is fast because we
consider only one action, not all of them; however we do many passes)

= After the policy is evaluated, a new policy is chosen (with (arg)max like value iteration)
" The new policy will be better (or we’re done)

(Both are dynamic programs for solving MDPs)

Summary: MDP Algorithms

So you want to....

" Compute optimal values: use value iteration or policy iteration

=" Compute values for a particular policy: use policy evaluation

* Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!

" They basically are — they are all variations of Bellman updates

" They all use one-step lookahead expectimax fragments

* They differ only in whether we plug in a fixed policy or max over actions

MDP Notation

Standard expectimax: V(s) = mc?xz P(s'|s,a)V(s")

Bellman equations: V*(s) = mc?xz P(s'|s,a)[R(s,a,s") + yV*(s")]
Value iteration: Vier1(s) = maa;Z P(s'|s,a)[R(s,a,s") + yVi,(s")], Vs
Q-iteration: Qr+1(s,a) = zSP(S’IS, a)[R(s,a,s") + y max Q,(s',a)], Vs,a
S7
Policy extraction: my(s) = argcrlnaxz P(s'|s,a)[R(s,a,s") + yV(s')], Vs
S/
Policy evaluation: Vi (s) = z P(s'|s,m(s))[R(s,m(s),s") + yViF(s')], Vs
S7

Policy improvement: Thew(S) = argmax E P(s'|s,a)[R(s,a,s") + yV™oud(s")], Vs
a
S/

MDP Notation

Standard expectimax: V(s) = mc?xz P(s'|s,a)V(s")

Bellman equations: V*(s) = mc?xz P(s'ls,a)[R(s,a,s") + yV*(s")]
Value iteration: Vis1(s) = maa:(Z P(s'|s,a)[R(s,a,s") +yVi,(s")], Vs
Q-iteration: Qi+1(s,a) = ZSP(S’IS, a)[R(s,a,s") + y max 0,(s",a], Vs,a
Policy extraction: my(s) = argcrln;XZ P(s'ls,a)[R(s,a,s") + yV(s")], Vs
S7
Policy evaluation: Vi, (s) = Z P(s'|s,m(s))[R(s,m(s),s") + yV,F(s")], Vs
S7

Policy improvement: Tnew(S) = argmax E P(s'|s,a)[R(s,a,s") + yVTolda(s")], Vs
a
S/

MDP Notation

Standard expectimax: V(s) = mc?xz P(s'|s,a)V(s")

Bellman equations: V*(s) = mc?xz P(s'|s,a)[R(s,a,s") + yV*(s")]
Value iteration: Vier1(s) = maa;Z P(s'|s,a)[R(s,a,s") + yVi,(s")], Vs
Q-iteration: Qr+1(s,a) = zSP(S’IS, a)[R(s,a,s") + y max Q,(s',a)], Vs,a
S7
Policy extraction: my(s) = argcrlnaxz P(s'|s,a)[R(s,a,s") + yV(s')], Vs
S/
Policy evaluation: Vi (s) = z P(s'|s,m(s))[R(s,m(s),s") + yViF(s')], Vs
S7

Policy improvement: Thew(S) = argmax E P(s'|s,a)[R(s,a,s") + yV™oud(s")], Vs
a
S/

MDP Notation

Standard expectimax: V(s) = mc?xz P(s'|s,a)V(s")

Bellman equations: Ve(s) = mc?xz P(s'ls,a)[R(s,a,s") + yV*(s")]
Value iteration: Vierr1(s) = maa;Z P(s'|s,a)[R(s,a,s") + yVi(s")], Vs
Q-iteration: Qr+1(s,a) = zSP(S’IS, a)[R(s,a,s") + y max Q,(s',a")], Vs,a
57
Policy extraction: my(s) = argcrlnaxz P(s'|s,a)[R(s,a,s") + yV(s')], Vs
57
Policy evaluation: Vi (s) = z P(s'|s,m(s))[R(s,m(s),s") + YV (s")], Vs
S7

Policy improvement: Thew(S) = argmax E P(s'|s,a)[R(s,a,s") + yV™oud(s")], Vs
a
S/

	Slide 1: Warm-up as you walk in: Grid World
	Slide 2: AI: Representation and Problem Solving
	Slide 3: Outline
	Slide 4: Discounting
	Slide 5: Recursive Expectimax
	Slide 10: Discounting
	Slide 13: Outline
	Slide 14: Solving MDPs
	Slide 19: Value Iteration
	Slide 21: k=0
	Slide 22: k=1
	Slide 23: k=2
	Slide 24: k=3
	Slide 25: k=4
	Slide 26: k=5
	Slide 27: k=6
	Slide 28: k=7
	Slide 29: k=8
	Slide 30: k=9
	Slide 31: k=10
	Slide 32: k=11
	Slide 33: k=12
	Slide 34: k=100
	Slide 35: Value Iteration
	Slide 36: Value Iteration
	Slide 37: Poll 1
	Slide 38: Poll 1
	Slide 39: Value Iteration Convergence
	Slide 40: Summary: Value Iteration
	Slide 41: Optimal Values & Bellman Equations
	Slide 42: Optimal Quantities
	Slide 43: Optimal Quantities
	Slide 44: Optimal Quantities
	Slide 45: Gridworld Values V*
	Slide 46: Gridworld: Q*
	Slide 47: The Bellman Equations
	Slide 48: The Bellman Equations
	Slide 49: The Bellman Equations
	Slide 50: The Bellman Equations
	Slide 51: MDP Notation
	Slide 52: Summary: Bellman Equations vs Value Iteration
	Slide 53: Outline
	Slide 54: Solved MDP! Now what?
	Slide 55: Poll 2
	Slide 56: Poll 2
	Slide 57: Policy Extraction
	Slide 58: Computing Actions from Values
	Slide 59: Computing Actions from Q-Values
	Slide 60: Value Iteration Notes
	Slide 61: k=0
	Slide 62: k=1
	Slide 63: k=2
	Slide 64: k=3
	Slide 65: k=4
	Slide 66: k=5
	Slide 67: k=6
	Slide 68: k=7
	Slide 69: k=8
	Slide 70: k=9
	Slide 71: k=10
	Slide 72: k=11
	Slide 73: k=12
	Slide 74: k=100
	Slide 75: Outline
	Slide 76: Policy Iteration
	Slide 77: Two Methods for Solving MDPs
	Slide 78: Policy Evaluation
	Slide 79: Example: Policy Evaluation
	Slide 80: Example: Policy Evaluation
	Slide 81: Policy Evaluation: Fixed Policies
	Slide 82: Policy Evaluation: Utilities for a Fixed Policy
	Slide 83: Policy Evaluation
	Slide 84: Policy Improvement
	Slide 85: Policy Iteration:
	Slide 86: Two Methods for Solving MDPs
	Slide 87: Comparison
	Slide 88: Summary: MDP Algorithms
	Slide 89: MDP Notation
	Slide 90: MDP Notation
	Slide 91: MDP Notation
	Slide 92: MDP Notation

