Warm-up as You Walk In

Given

- Set actions (persistent/static)
- Set states (persistent/static)
- Function T(s,a,s_prime)

Write the pseudo code for:

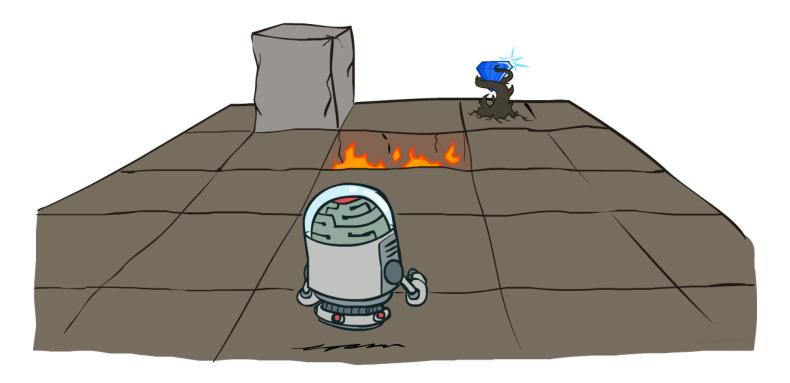
function V(s) return value

that implements:

$$V(s) = \max_{a \in actions} \sum_{s' \in states} T(s, a, s')V(s')$$

AI: Representation and Problem Solving

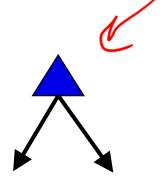
Markov Decision Processes



Instructor: Pat Virtue

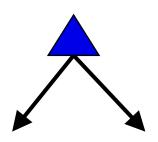
Slide credits: CMU AI and http://ai.berkeley.edu

Minimax Notation



$$V(s) = \max_{a} V(s'),$$

where $s' = result(s, a)$



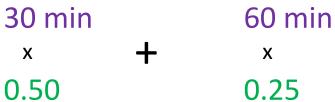
$$\hat{a} = \underset{a}{\operatorname{argmax}} V(s'),$$
where $s' = result(s, a)$

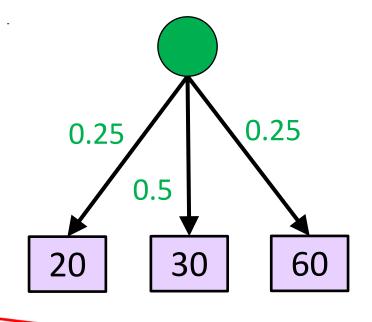
Expectations

Time: 20 min x +

Probability: 0.25







Max node notation

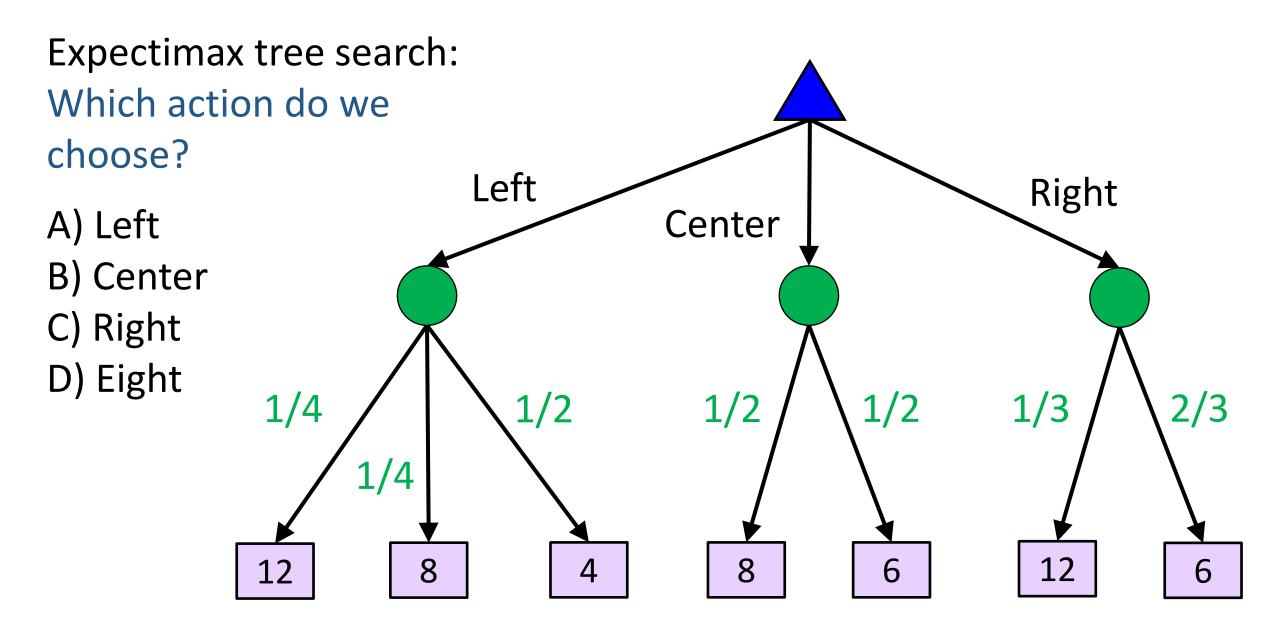
$$V(s) = \max_{a} V(s'),$$

where $s' = result(s, a)$

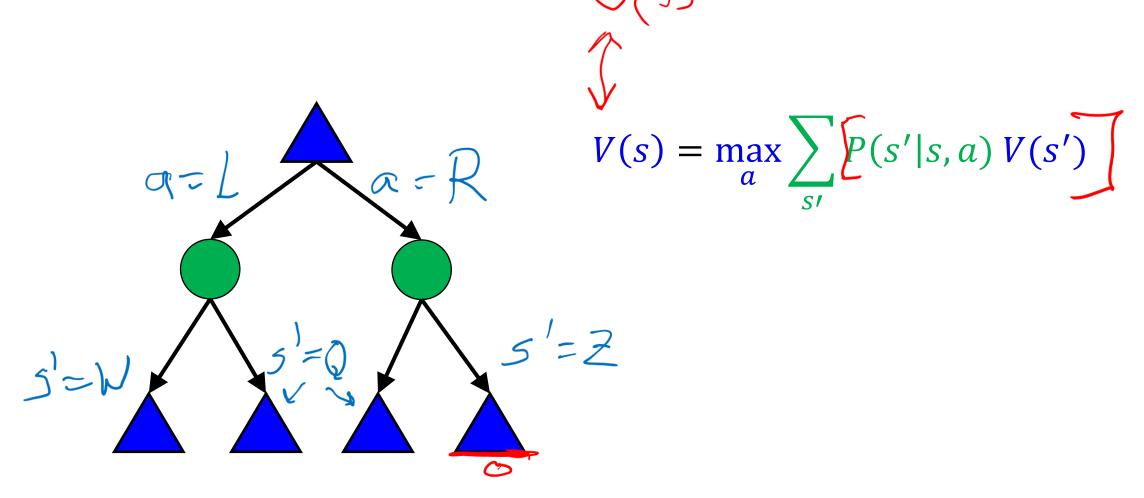
Chance node notation

$$V(s) = \sum_{s'} P(s') V(s')$$

Previous Poll



Expectimax Notation



Warm-up as You Log In

tef V(s)

Given

- Set actions (persistent/static)
- Set states (persistent/static)
- Function T(s,a,s prime)

Write the pseudo code for:

function V(s) return value

that implements:

$$V(s) = \max_{a \in actions} \sum_{s' \in states} T(s, a, s') V(s')$$

for 5 in 5tats p=T(5,a,5) val += p V(5)

for a in actions

MDP Notation

Policy evaluation:

Standard expectimax:
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a)V(s')$$
 Bellman equations:
$$V^*(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V^*(s')]$$
 Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k(s')], \quad \forall \ s$$
 Q-iteration:
$$Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall \ s,a$$
 Policy extraction:
$$\pi_V(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')], \quad \forall \ s$$
 Policy evaluation:
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall \ s$$

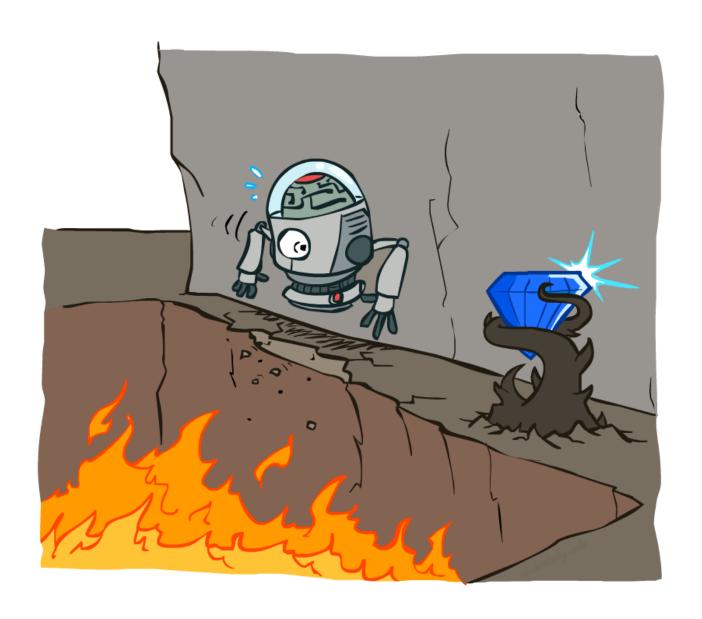
Policy improvement:
$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s$$

 $\forall s$

MDP Notation

Standard expectimax:
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a)V(s')$$
 Bellman equations:
$$V^*(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V^*(s')]$$
 Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k(s')], \quad \forall \, s$$
 Q-iteration:
$$Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall \, s,a$$
 Policy extraction:
$$\pi_V(s) = \arg\max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')], \quad \forall \, s$$
 Policy evaluation:
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall \, s$$
 Policy improvement:
$$\pi_{new}(s) = \arg\max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k^{\pi}(s')], \quad \forall \, s$$

Non-Deterministic Search

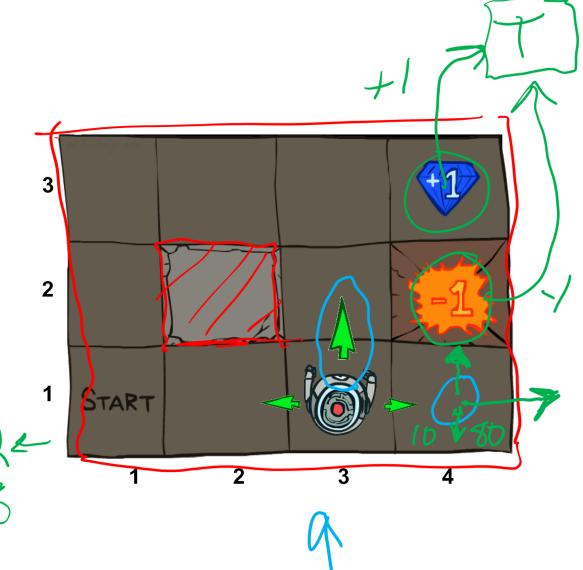


Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path

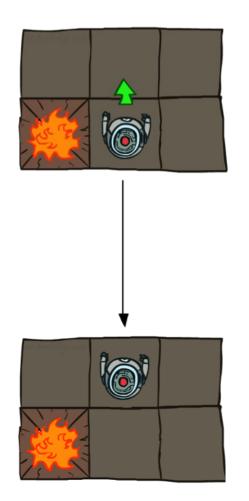
Noisy movement: actions do not always go as planned

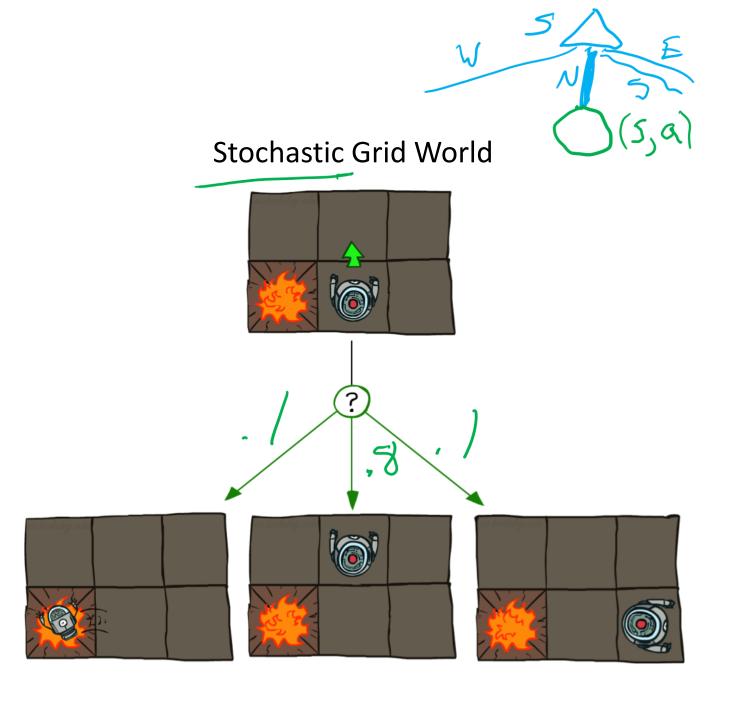
- 80% of the time, the action North takes the agent North (if there is no wall there)
- 10% of the time, North takes the agent West; 10% East
- If there is a wall in the direction the agent would have been taken, the agent stays put
 NOTSC= OR
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards



Grid World Actions

Deterministic Grid World





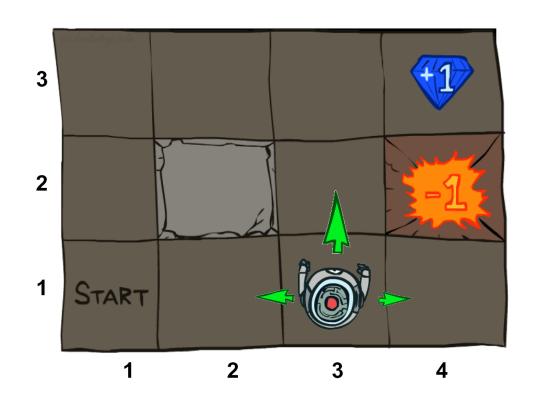
Markov Decision Processes

An MDP is defined by:

- A set of states $s \in S$
- A set of actions a ∈ A
- A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
- A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
- Maybe a terminal state ~ 7 possible action

MDPs are non-deterministic search problems

- One way to solve them is with expectimax search
- We'll have a new tool soon



Demo of Gridworld

What is Markov about MDPs?

"Markov" generally means that given the present state, the future and the past are independent

For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t / S_{t-1} = s_{t-1} / A_{t-1}, \dots / S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

This is just like search, where the successor function could only depend on the current state (not the history)

Andrey Markov (1856-1922)

Policies

 $S_{1}: \alpha_{1}$ $S_{2}: \alpha_{3}$ $S_{3}: \alpha_{3}$

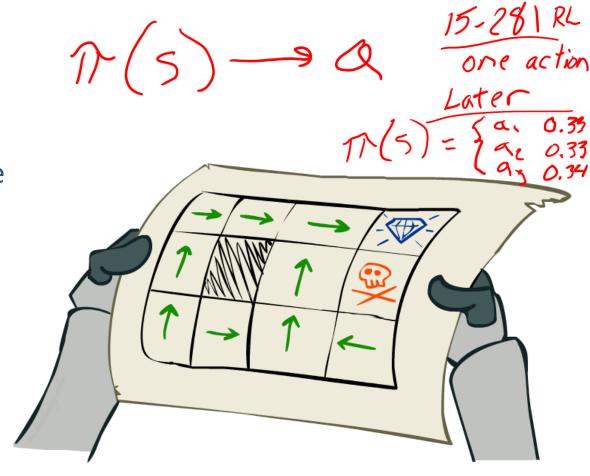
In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal

For MDPs, we want an optimal policy $\pi^*: S \rightarrow A$

- A policy π gives an action for each state
- An optimal policy is one that maximizes expected utility if followed
- An explicit policy defines a reflex agent

Expectimax didn't compute entire policies

It computed the action for a single state only

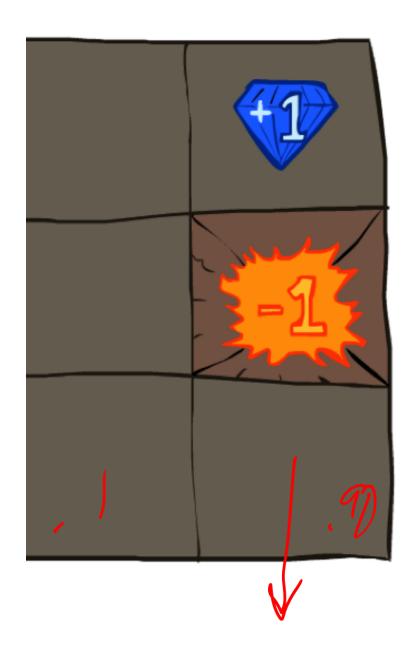


Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

Which is the best move?

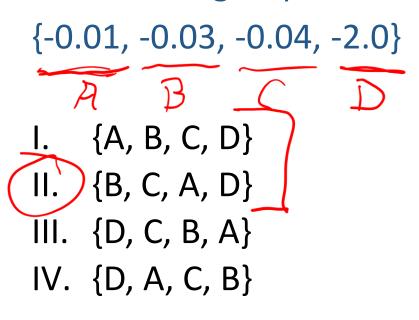
- A. North
- B. East
- C. South
- D. West

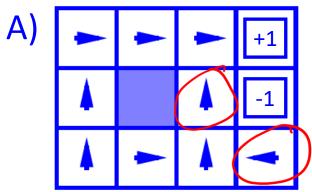
$$R(s) = -10$$

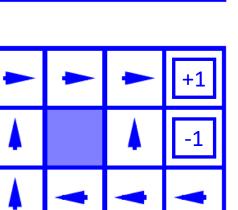


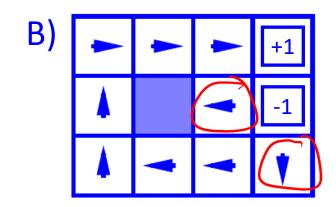
Poll 2

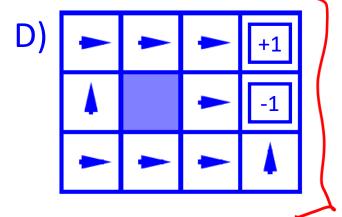
Which sequence of optimal policies matches the following sequence of living rewards:



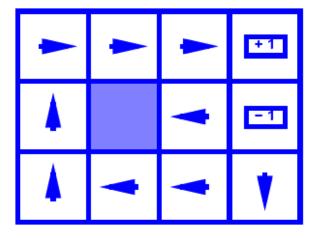




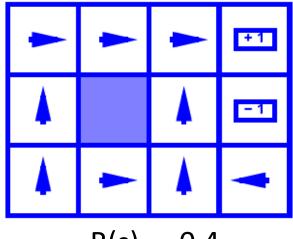




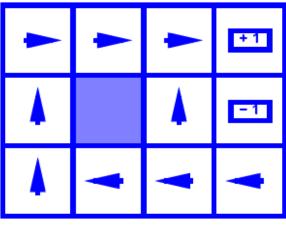
Optimal Policies



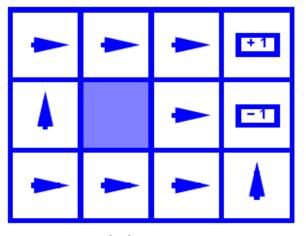
$$R(s) = -0.01$$



$$R(s) = -0.4$$



$$R(s) = -0.03$$



$$R(s) = -2.0$$

MDP Outline

MDP Setup

Example: GridWorld

Policies: Mapping states → actions

Rewards

• Discounting, γ

Solving MDPs

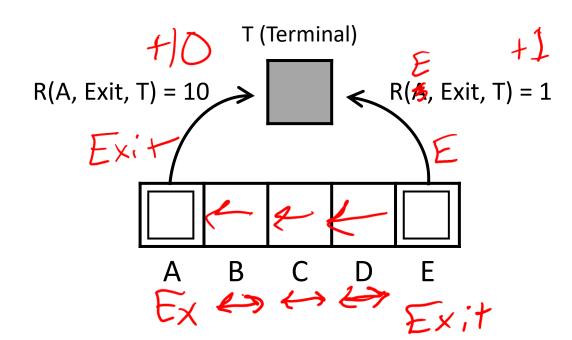
- Method 1) Value iteration
- Method 2) Policy Iteration

Value Iteration

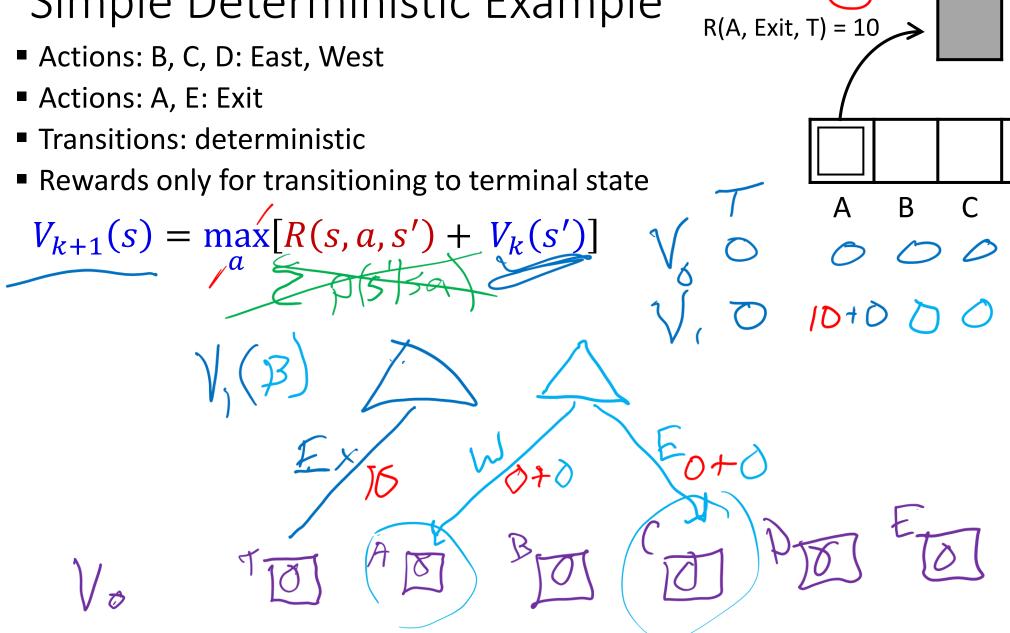
Simple Deterministic Example

- Actions: B, C, D: East, West
- Actions: A, E: Exit
- Transitions: deterministic
- Rewards only for transitioning to terminal state

$$V(s) = \max_{a} [R(s, a, s') + V(s')]$$



Simple Deterministic Example



T (Terminal)

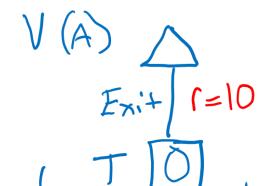
R(E, Exit, T) = 1

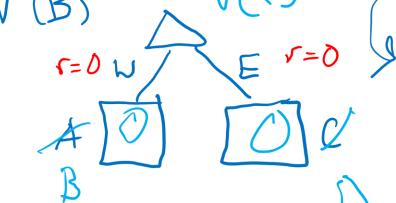
Simple Deterministic Example

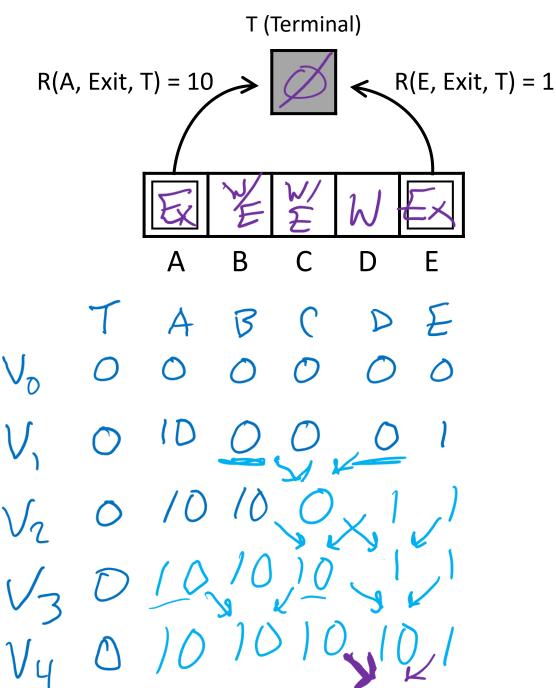
- Actions: B, C, D: East, West
- Actions: A, E: Exit
- Transitions: deterministic
- Rewards only for transitioning to terminal state

$$V_{k+1}(s) = \max_{a} [R(s, a, s') + V_k(s')]$$

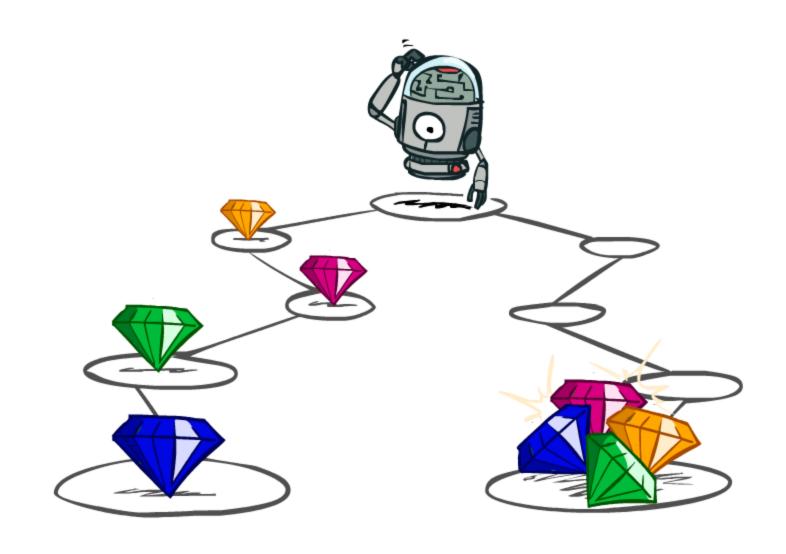
$$V_o(s) = 0 \quad \forall s$$







Utilities of Sequences

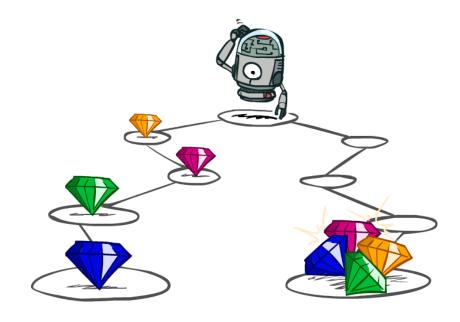


Utilities of Sequences

What preferences should an agent have over reward sequences?

More or less? [1, 2, 2] or [2, 3, 4]

Now or later? [0, 0, 1] or [1, 0, 0]



Discounting

8=0.9

It's reasonable to maximize the sum of rewards
It's also reasonable to prefer rewards now to rewards later
One solution: values of rewards decay exponentially

1

Worth Now

 γ

Worth Next Step

 γ^2

Worth In Two Steps

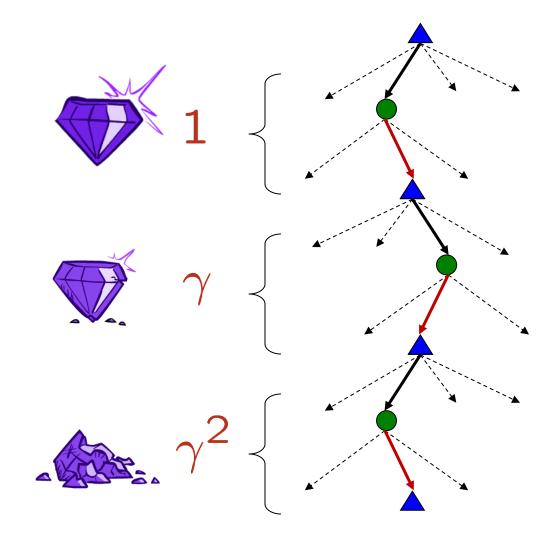
Discounting

How to discount?

 Each time we descend a level, we multiply in the discount once

Why discount?

- Sooner rewards probably do have higher utility than later rewards
- Also helps our algorithms converge
- Important: use $0 < \gamma < 1$



Poll

What is the value of this ordered sequence of rewards [2,4,8] with $\gamma = 0.5$?

- A. 3
- B. 6
- C. 7
- D. 14

Bonus: What is the value of [8,4,2] with $\gamma = 0.5$?