Warm-up as You Walk In

Given

" Set actions (persistent/static)
" Set states (persistent/static)
" Function T (s,a,s prime)

Write the pseudo code for:
" fynction V(s) return wvalue

that implements:

V(s) = max Z T(s,a,sV(s")

acactions
s’ Estates

Al: Representation and Problem Solving

Markov Decision Processes

Instructor: Pat Virtue

Slide credits: CMU Al and http://ai.berkeley.edu

Minimax Notation

V(s) = max V(s),
a
where s' = result(s, a)
d = argmax V(s'),
a
where s’ = result(s, a)

Expectations

Time: 20 min
X +
Probability: 0.25

Max node notation Chance node notation
V(s) = max V(s), V(s)=) P(s)V(s)
a
S/

where s’ = result(s, a)

Previous Poll

Expectimax tree search:
Which action do we

choose?
Left

A) Left Center

B) Center

C) Right

D) Eight

) Eig 1/4 172 | \1/2
1/4

v

12 3 4 3 6 12 6

Expectimax Notation

V(is) = mc?xz P(s'|s,a) V(s")

Warm-up as You Log In

Given

" Set actions (persistent/static)
" Set states (persistent/static)
" Function T (s,a,s prime)

Write the pseudo code for:
" fynction V(s) return wvalue

that implements:

V(s) = max Z T(s,a,sV(s")

acactions
s’ Estates

MDP Notation

Standard expectimax: V(s) = maxz P(s'|s,a)V(s")
a =
Bellman equations: V*(s) = maxz P(s'|s,a)[R(s,a,s") + yV*(s")]
a
S/
Value iteration: Vis1(s) = maxz P(s'ls,a)[R(s,a,s") +yVi(s)], Vs
a =
Q-iteration: Qi+1(s,a) = Z P(s'|s,a)[R(s,a,s") + ymax Qi (s’,a")], Vs,a
S/ 4
Policy extraction: my(s) = argmaxz P(s'|s,a)[R(s,a,s") +yV(s')], Vs
a S/
Policy evaluation: Vi,(s) = Z P(s'|s,m(s))[R(s,m(s),s") + yVF(s")], Vs
Y

Policy improvement: Tpew(S) = argmaxz P(s'|s,a)[R(s,a,s") +yVTold(s")], Vs
a
S/

MDP Notation

Standard expectimax: V(s) = maXZ P(s'|s,a)V(s")
a =
Bellman equations: V*(s) = maxz P(s'|s,a)[R(s,a,s") + yV*(s")]
a =

Value iteration: Vis1(s) = maxz P(s'ls,a)[R(s,a,s") +yVi(s))], Vs

a =
Q-iteration: Qi+1(s,a) = z P(s'|s,a)[R(s,a,s") + ymax Q,(s',a")], Vs,a

S/ 4

Policy extraction: my(s) = argmaxz P(s'|s,a)[R(s,a,s") + yV(s')], Vs

a S/
Policy evaluation: Vi,(s) = z P(s'|s,m(s))[R(s,m(s),s") + yVF(s")], Vs

S/

Policy improvement: Tnew(S) = argmaxz P(s'|s,a)[R(s,a,s") +yV™olda(s")], Vs
a
S/

Non-Deterministic Search

Example: Grid World

A maze-like problem
= The agentlivesin a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as planned

= 80% of the time, the action North takes the agent North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10% East

= If thereis a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World Stochastic Grid World

Markov Decision Processes

An MDP is defined by:

= Asetofstatess €S

A set of actionsa € A

A transition function T(s, a, s’)

= Probability that a from s leads to s/, i.e., P(s’| s, a)
= Also called the model or the dynamics

A reward function R(s, a, s’)

= Sometimes just R(s) or R(s’)

Maybe a terminal state

MDPs are non-deterministic search problems

= One way to solve them is with expectimax search
= We’ll have a new tool soon

[Demo — gridworld manual intro (L8D1)]

Demo of Gridworld

What is Markov about MDPs?

“Markov” generally means that given the present state, the future
and the past are independent

For Markov decision processes, “Markov” means action outcomes
depend only on the current state

P(St—i—l = S’\St — StaAt = Qg, Si—1 = 8t—1,At—1, ...5 = So)

P(Siy1 =5'|St = s¢, Ar = ay)

This is just like search, where the successor function could only
depend on the current state (not the history)

Andrey Markov
(1856-1922)

Policies

In deterministic single-agent search problems, we
wanted an optimal plan, or sequence of actions,
from start to a goal

For MDPs, we want an optimal policy t*:S - A
= A policy & gives an action for each state

= An optimal policy is one that maximizes
expected utility if followed

= An explicit policy defines a reflex agent

Optimal policy when R(s, a, s’) =-0.03
for all non-terminals s

Expectimax didn’t compute entire policies
" |t computed the action for a single state only

Poll 1

Which is the best move?

A. North
B. East

C. South
D. West

Poll 2

Which sequence of optimal policies matches

the following sequence of living rewards:
{-0.01, -0.03, -0.04, -2.0}

A)

. {A, B, C, D}
Il. {B, C, A, D}
Il. {D, C, B, A}
V. {D, A, C, B}

C)| » D)

Optimal Policies

o
o o
1 Il
—
o S
1 I
= 2 2

MDP Outline

MDP Setup
" Expectimax: State, actions, non-deterministic transition functions
= Example: GridWorld

= Policies: Mapping states = actions &

= Rewards
= Discounting, y

Solving MDPs
= Method 1) Value iteration
= Method 2) Policy Iteration

T (Terminal)

Simple Deterministic Example

R(A, Exit, T) = 10 R(A, Exit, T) =1
= Actions: B, C, D: East, West
= Actions: A, E: Exit

" Transitions: deterministic
= Rewards only for transitioning to terminal state

V(s) = mc?X[R(S, a,s')+ V(s')]

T (Terminal)

Simple Deterministic Example

R(A, Exit, T) =10 R(A, Exit, T) =1
= Actions: B, C, D: East, West
= Actions: A, E: Exit

" Transitions: deterministic
= Rewards only for transitioning to terminal state

Viera () = max[R(s, a,5") + Vi(s)]

T (Terminal)

Simple Deterministic Example

R(A, Exit, T) =10 R(E, Exit, T) =1
= Actions: B, C, D: East, West
= Actions: A, E: Exit

" Transitions: deterministic
= Rewards only for transitioning to terminal state

Vir1(s) = max[R(s,a,s") + Vie(s")] .
\[O(g}_: O XS \)D O
O
®)

V(A vV (8)
% r-ofﬁ £ /=0 \/’L

Utilities of Sequences

Utilities of Sequences

What preferences should an agent have over reward sequences?
More orless? [1,2,2] or [2,3,4]

Now or later? [0,0,1] or [1,0,0]

Discounting

It’s reasonable to maximize the sum of rewards
It’s also reasonable to prefer rewards now to rewards later

One solution: values of rewards decay exponentially

N/ L
v @

1 Y v

Worth Now Worth Next Step Worth In Two Steps

Discounting

How to discount?

= Each time we descend a level, we
multiply in the discount once

Why discount?

= Sooner rewards probably do have
higher utility than later rewards

= Also helps our algorithms converge
= Important: use0<y<1

Poll

What is the value of this ordered sequence of
rewards [2,4,8] withy = 0.5?

o0 wx
N o w

Bonus: What is the value of [8,4,2] withy = 0.5?

	Slide 1: Warm-up as You Walk In
	Slide 2: AI: Representation and Problem Solving
	Slide 3: Minimax Notation
	Slide 4: Expectations
	Slide 5: Previous Poll
	Slide 6: Expectimax Notation
	Slide 7: Warm-up as You Log In
	Slide 8: MDP Notation
	Slide 9: MDP Notation
	Slide 10: Non-Deterministic Search
	Slide 11: Example: Grid World
	Slide 12: Grid World Actions
	Slide 13: Markov Decision Processes
	Slide 14: Demo of Gridworld
	Slide 15: What is Markov about MDPs?
	Slide 16: Policies
	Slide 17: Poll 1
	Slide 18: Poll 2
	Slide 19: Optimal Policies
	Slide 20: MDP Outline
	Slide 21: Simple Deterministic Example
	Slide 22: Simple Deterministic Example
	Slide 23: Simple Deterministic Example
	Slide 24: Utilities of Sequences
	Slide 25: Utilities of Sequences
	Slide 26: Discounting
	Slide 27: Discounting
	Slide 28: Poll

