
Warm-up as You Walk In

Given

▪ Set  actions (persistent/static)

▪ Set  states (persistent/static)

▪ Function T(s,a,s_prime)

Write the pseudo code for:
▪ function V(s) return value

that implements:



AI: Representation and Problem Solving

Markov Decision Processes

Instructor: Pat Virtue

Slide credits: CMU AI and http://ai.berkeley.edu



𝑎 = argmax
𝑎

 𝑉 𝑠′ ,

        where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

ො𝑎 = argmax
𝑎

 𝑉 𝑠′ ,

        where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

Minimax Notation

𝑉 𝑠 = max
𝑎

 𝑉 𝑠′ ,

    where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)



Expectations
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𝑉 𝑠 = max
𝑎

 𝑉 𝑠′ ,

 where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

Max node notation Chance node notation 

𝑉 𝑠 = ෍

𝑠′

𝑃 𝑠′  𝑉 𝑠′



Previous Poll

Expectimax tree search:
Which action do we 
choose?

A) Left
B) Center
C) Right
D) Eight
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𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎) 𝑉(𝑠′)

Expectimax Notation



Warm-up as You Log In

Given

▪ Set  actions    (persistent/static)

▪ Set  states    (persistent/static)

▪ Function T(s,a,s_prime)

Write the pseudo code for:
▪ function V(s) return value

that implements:



MDP Notation

Standard expectimax: 𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉∗ 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 max
𝑎′

𝑄𝑘(𝑠′, 𝑎′)] ,  ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′ ] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′ ] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy evaluation:

Policy improvement:



MDP Notation

Standard expectimax: 𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉∗ 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 max
𝑎′

𝑄𝑘(𝑠′, 𝑎′)] ,  ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′ ] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′ ] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy evaluation:

Policy improvement:



Non-Deterministic Search



Example: Grid World

▪ A maze-like problem

▪ The agent lives in a grid

▪ Walls block the agent’s path

▪ Noisy movement: actions do not always go as planned

▪ 80% of the time, the action North takes the agent North 
(if there is no wall there)

▪ 10% of the time, North takes the agent West; 10% East

▪ If there is a wall in the direction the agent would have 
been taken, the agent stays put

▪ The agent receives rewards each time step

▪ Small “living” reward each step (can be negative)

▪ Big rewards come at the end (good or bad)

▪ Goal: maximize sum of rewards



Grid World Actions

Deterministic Grid World Stochastic Grid World



Markov Decision Processes

An MDP is defined by:
▪ A set of states s  S
▪ A set of actions a  A
▪ A transition function T(s, a, s’)
▪ Probability that a from s leads to s’, i.e., P(s’| s, a)
▪ Also called the model or the dynamics

▪ A reward function R(s, a, s’) 
▪ Sometimes just R(s) or R(s’)

▪ Maybe a terminal state

MDPs are non-deterministic search problems
▪ One way to solve them is with expectimax search
▪ We’ll have a new tool soon

[Demo – gridworld manual intro (L8D1)]



Demo of Gridworld



What is Markov about MDPs?

“Markov” generally means that given the present state, the future 
and the past are independent

For Markov decision processes, “Markov” means action outcomes 
depend only on the current state

This is just like search, where the successor function could only 
depend on the current state (not the history)

Andrey Markov 
(1856-1922)



Policies

Optimal policy when R(s, a, s’) = -0.03 
for all non-terminals s

In deterministic single-agent search problems, we 
wanted an optimal plan, or sequence of actions, 
from start to a goal

For MDPs, we want an optimal policy *: S → A

▪ A policy  gives an action for each state

▪ An optimal policy is one that maximizes        
expected utility if followed

▪ An explicit policy defines a reflex agent

Expectimax didn’t compute entire policies

▪ It computed the action for a single state only



Which is the best move? 

A. North

B. East

C. South

D. West

Poll 1



Which sequence of optimal policies matches 

the following sequence of living rewards:

{-0.01, -0.03, -0.04, -2.0} 

I. {A, B, C, D}

II. {B, C, A, D}

III. {D, C, B, A}

IV. {D, A, C, B}

Poll 2

D)

A)

C)

B)+1

-1

+1

-1

+1

-1

+1

-1



Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01



MDP Setup

▪ Expectimax: State, actions, non-deterministic transition functions

▪ Example: GridWorld

▪ Policies: Mapping states → actions

▪ Rewards

▪ Discounting, 𝛾

Solving MDPs

▪ Method 1) Value iteration

▪ Method 2) Policy Iteration

MDP Outline



Simple Deterministic Example
▪ Actions: B, C, D: East, West

▪ Actions: A, E: Exit

▪ Transitions: deterministic

▪ Rewards only for transitioning to terminal state
A B C D E

T (Terminal)

R(A, Exit, T) = 10 R(A, Exit, T) = 1

𝑉 𝑠 = max
𝑎

𝑅 𝑠, 𝑎, 𝑠′ +  𝑉 𝑠′



Simple Deterministic Example

A B C D E

T (Terminal)

R(A, Exit, T) = 10 R(A, Exit, T) = 1

𝑉𝑘+1 𝑠 = max
𝑎

𝑅 𝑠, 𝑎, 𝑠′ +  𝑉𝑘 𝑠′

▪ Actions: B, C, D: East, West

▪ Actions: A, E: Exit

▪ Transitions: deterministic

▪ Rewards only for transitioning to terminal state



Simple Deterministic Example

A B C D E

T (Terminal)

R(A, Exit, T) = 10 R(E, Exit, T) = 1

𝑉𝑘+1 𝑠 = max
𝑎

𝑅 𝑠, 𝑎, 𝑠′ +  𝑉𝑘 𝑠′

▪ Actions: B, C, D: East, West

▪ Actions: A, E: Exit

▪ Transitions: deterministic

▪ Rewards only for transitioning to terminal state



Utilities of Sequences



Utilities of Sequences
What preferences should an agent have over reward sequences?

More or less?

Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or



Discounting

It’s reasonable to maximize the sum of rewards

It’s also reasonable to prefer rewards now to rewards later

One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps



Discounting

How to discount?

▪ Each time we descend a level, we 
multiply in the discount once

Why discount?

▪ Sooner rewards probably do have 
higher utility than later rewards

▪ Also helps our algorithms converge

▪ Important: use 0 <  < 1



Poll

What is the value of this ordered sequence of 
rewards [2,4,8] with 𝛾 = 0.5?

A. 3

B. 6

C. 7

D. 14

Bonus: What is the value of [8,4,2] with 𝛾 = 0.5?
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