
Warm-up as You Walk In

Given

▪ Set actions (persistent/static)

▪ Set states (persistent/static)

▪ Function T(s,a,s_prime)

Write the pseudo code for:
▪ function V(s) return value

that implements:

AI: Representation and Problem Solving

Markov Decision Processes

Instructor: Pat Virtue

Slide credits: CMU AI and http://ai.berkeley.edu

𝑎 = argmax
𝑎

 𝑉 𝑠′ ,

 where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

ො𝑎 = argmax
𝑎

 𝑉 𝑠′ ,

 where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

Minimax Notation

𝑉 𝑠 = max
𝑎

 𝑉 𝑠′ ,

 where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

Expectations

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
x x x+ +

6020 30

0.25

0.5

0.25

𝑉 𝑠 = max
𝑎

 𝑉 𝑠′ ,

 where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

Max node notation Chance node notation

𝑉 𝑠 = ෍

𝑠′

𝑃 𝑠′ 𝑉 𝑠′

Previous Poll

Expectimax tree search:
Which action do we
choose?

A) Left
B) Center
C) Right
D) Eight

412 8 8 6 12 6

1/4

1/4

1/2 1/2 1/2 1/3 2/3

Left
Center

Right

𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎) 𝑉(𝑠′)

Expectimax Notation

Warm-up as You Log In

Given

▪ Set actions (persistent/static)

▪ Set states (persistent/static)

▪ Function T(s,a,s_prime)

Write the pseudo code for:
▪ function V(s) return value

that implements:

MDP Notation

Standard expectimax: 𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉∗ 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 max
𝑎′

𝑄𝑘(𝑠′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy evaluation:

Policy improvement:

MDP Notation

Standard expectimax: 𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉∗ 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 max
𝑎′

𝑄𝑘(𝑠′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy evaluation:

Policy improvement:

Non-Deterministic Search

Example: Grid World

▪ A maze-like problem

▪ The agent lives in a grid

▪ Walls block the agent’s path

▪ Noisy movement: actions do not always go as planned

▪ 80% of the time, the action North takes the agent North
(if there is no wall there)

▪ 10% of the time, North takes the agent West; 10% East

▪ If there is a wall in the direction the agent would have
been taken, the agent stays put

▪ The agent receives rewards each time step

▪ Small “living” reward each step (can be negative)

▪ Big rewards come at the end (good or bad)

▪ Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World Stochastic Grid World

Markov Decision Processes

An MDP is defined by:
▪ A set of states s  S
▪ A set of actions a  A
▪ A transition function T(s, a, s’)
▪ Probability that a from s leads to s’, i.e., P(s’| s, a)
▪ Also called the model or the dynamics

▪ A reward function R(s, a, s’)
▪ Sometimes just R(s) or R(s’)

▪ Maybe a terminal state

MDPs are non-deterministic search problems
▪ One way to solve them is with expectimax search
▪ We’ll have a new tool soon

[Demo – gridworld manual intro (L8D1)]

Demo of Gridworld

What is Markov about MDPs?

“Markov” generally means that given the present state, the future
and the past are independent

For Markov decision processes, “Markov” means action outcomes
depend only on the current state

This is just like search, where the successor function could only
depend on the current state (not the history)

Andrey Markov
(1856-1922)

Policies

Optimal policy when R(s, a, s’) = -0.03
for all non-terminals s

In deterministic single-agent search problems, we
wanted an optimal plan, or sequence of actions,
from start to a goal

For MDPs, we want an optimal policy *: S → A

▪ A policy  gives an action for each state

▪ An optimal policy is one that maximizes
expected utility if followed

▪ An explicit policy defines a reflex agent

Expectimax didn’t compute entire policies

▪ It computed the action for a single state only

Which is the best move?

A. North

B. East

C. South

D. West

Poll 1

Which sequence of optimal policies matches

the following sequence of living rewards:

{-0.01, -0.03, -0.04, -2.0}

I. {A, B, C, D}

II. {B, C, A, D}

III. {D, C, B, A}

IV. {D, A, C, B}

Poll 2

D)

A)

C)

B)+1

-1

+1

-1

+1

-1

+1

-1

Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

MDP Setup

▪ Expectimax: State, actions, non-deterministic transition functions

▪ Example: GridWorld

▪ Policies: Mapping states → actions

▪ Rewards

▪ Discounting, 𝛾

Solving MDPs

▪ Method 1) Value iteration

▪ Method 2) Policy Iteration

MDP Outline

Simple Deterministic Example
▪ Actions: B, C, D: East, West

▪ Actions: A, E: Exit

▪ Transitions: deterministic

▪ Rewards only for transitioning to terminal state
A B C D E

T (Terminal)

R(A, Exit, T) = 10 R(A, Exit, T) = 1

𝑉 𝑠 = max
𝑎

𝑅 𝑠, 𝑎, 𝑠′ + 𝑉 𝑠′

Simple Deterministic Example

A B C D E

T (Terminal)

R(A, Exit, T) = 10 R(A, Exit, T) = 1

𝑉𝑘+1 𝑠 = max
𝑎

𝑅 𝑠, 𝑎, 𝑠′ + 𝑉𝑘 𝑠′

▪ Actions: B, C, D: East, West

▪ Actions: A, E: Exit

▪ Transitions: deterministic

▪ Rewards only for transitioning to terminal state

Simple Deterministic Example

A B C D E

T (Terminal)

R(A, Exit, T) = 10 R(E, Exit, T) = 1

𝑉𝑘+1 𝑠 = max
𝑎

𝑅 𝑠, 𝑎, 𝑠′ + 𝑉𝑘 𝑠′

▪ Actions: B, C, D: East, West

▪ Actions: A, E: Exit

▪ Transitions: deterministic

▪ Rewards only for transitioning to terminal state

Utilities of Sequences

Utilities of Sequences
What preferences should an agent have over reward sequences?

More or less?

Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or

Discounting

It’s reasonable to maximize the sum of rewards

It’s also reasonable to prefer rewards now to rewards later

One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting

How to discount?

▪ Each time we descend a level, we
multiply in the discount once

Why discount?

▪ Sooner rewards probably do have
higher utility than later rewards

▪ Also helps our algorithms converge

▪ Important: use 0 <  < 1

Poll

What is the value of this ordered sequence of
rewards [2,4,8] with 𝛾 = 0.5?

A. 3

B. 6

C. 7

D. 14

Bonus: What is the value of [8,4,2] with 𝛾 = 0.5?

	Slide 1: Warm-up as You Walk In
	Slide 2: AI: Representation and Problem Solving
	Slide 3: Minimax Notation
	Slide 4: Expectations
	Slide 5: Previous Poll
	Slide 6: Expectimax Notation
	Slide 7: Warm-up as You Log In
	Slide 8: MDP Notation
	Slide 9: MDP Notation
	Slide 10: Non-Deterministic Search
	Slide 11: Example: Grid World
	Slide 12: Grid World Actions
	Slide 13: Markov Decision Processes
	Slide 14: Demo of Gridworld
	Slide 15: What is Markov about MDPs?
	Slide 16: Policies
	Slide 17: Poll 1
	Slide 18: Poll 2
	Slide 19: Optimal Policies
	Slide 20: MDP Outline
	Slide 21: Simple Deterministic Example
	Slide 22: Simple Deterministic Example
	Slide 23: Simple Deterministic Example
	Slide 24: Utilities of Sequences
	Slide 25: Utilities of Sequences
	Slide 26: Discounting
	Slide 27: Discounting
	Slide 28: Poll

