
AI: Representation and Problem Solving

Classical Planning

or Symbolic Planning

Instructor: Pat Virtue

Slide credits: CMU AI

Represent this Blocks World
A robot arm (yellow) can pick up and put down blocks to form stacks.

It cannot pick up a block that has another block on top of it.

It cannot pick up more than one block at a time.

Any number of blocks can sit on the table.

How would solve Blocks World problems with search, e.g., BFS?

Represent this Blocks World
A robot arm (yellow) can pick up and put down blocks to form stacks.

It cannot pick up a block that has another block on top of it.

It cannot pick up more than one block at a time.

Any number of blocks can sit on the table.

How would solve Blocks World problems with logical planning?

Search, Logic, and Classical Planning
Search Planning

▪ Assumes actions and transitions are provided for you, s’ = result(s, a)

▪ State changes as you take actions

Propositional Logic Planning

▪ Can reason about what actions are possible and their effects

▪ Represent world with only Boolean symbols

▪ Different symbols for different time points

Classical Planning

▪ Can reason about what actions are possible and their effects

▪ State changes as you take actions

Idea of Classical Planning
Represent objects/values separately from the state (instances)

Define predicates as true/false functions over the objects (propositions)

States are conjunctions of predicates

Goals are conjunctions of predicates

Operators (actions)

A B C

Robot Arm

STRIPS Representation
STRIPS = Stanford Research Institute Problem Solver (1970s system)

Actions defined by:

▪ Preconditions

▪ Add effects

▪ Delete effects

Convention: all other facts remain unchanged → avoids frame axioms

Poll 1
Which predicates apply to this state? (Select all that apply)

Instances: A, B, C

Predicates:

 1) In-Hand(A)

 2) In-Hand(B)

 3) In-Hand(C)

 4) On-Table(A)

 5) On-Table(B)

 6) On-Table(C)

 7) On-Block(B,C)

 8) On-Block(A,B)

 9) HandEmpty()

A

B

C

Poll 1
Which predicates apply to this state? (Select all that apply)

Instances: A, B, C

Predicates:

 1) In-Hand(A)

 2) In-Hand(B)

 3) In-Hand(C)

 4) On-Table(A)

 5) On-Table(B)

 6) On-Table(C)

 7) On-Block(B,C)

 8) On-Block(A,B)

 9) HandEmpty()

A

B

C

Full State Description

Instances: A, B, C

Predicates:

 In-Hand(C)

 On-Table(B)

 On-Block(A,B)

 Clear(A)

 Clear(C)

 Optional: ~HandEmpty(), ~On-Table(C), ~On-Table(A), ~On-Block(B,A),
 ~On-Block(C,A), ~On-Block(B,C), ~On-Block(C,B), ~On-Block(A,C),

 ~Clear(B), ~In-Hand(A), ~In-Hand(B)

A

B

C

Operators
Operators change the state by adding/deleting predicates

Preconditions:

 Actions can be applied only if all precondition predicates are true in
the current state

Effects:

 New state is a copy of the current predicates with the addition or
deletion of specified predicates

Unlike the successor-state axioms, we do not explicitly represent time

The Frame Problem
Frame problem: how to specify what remains unchanged after actions

▪ Frame axioms (logic): one per unaffected predicate

▪ Successor-State Axiom: combines persistence + change

▪ STRIPS convention: actions only list what changes (preconditions, add, delete)

Rules of Blocks World

Blocks are picked up and put down by the hand

Blocks can be picked up only if they are clear

Hand can pick up a block only if the hand is empty

Hand can pick up and put down blocks on blocks or on the table

Pickup Block C from Table (State Transition)

Instances:
Blocks A, B, C

Possible Predicates:
HandEmpty()
On-Table(block)
On-Block(b1,b2)
Clear(block)
In-Hand(block)

State:
HandEmpty()
On-Table(B)
On-Table(C)
On-Block(A,B)
Clear(A)
Clear(C)

State:
In-Hand(C)
On-Table(B)
On-Block(A,B)
Clear(A)
Clear(C)

A

B C

Pickup Block C from Table (Preconditions, Effects)

Instances:
Blocks A, B, C

Possible Predicates:
HandEmpty()
On-Table(block)
On-Block(b1,b2)
Clear(block)
In-Hand(block)

State:
HandEmpty()
On-Table(B)
On-Table(C)
On-Block(A,B)
Clear(A)
Clear(C)

State:
In-Hand(C)
On-Table(B)
On-Block(A,B)
Clear(A)
Clear(C)

A

B C

State:
HandEmpty()
On-Table(B)
On-Table(C)
On-Block(A,B)
Clear(A)
Clear(C)

State:
In-Hand(C)
On-Table(B)
On-Block(A,B)
Clear(A)
Clear(C)
Delete HandEmpty()
Delete On-Table(C)

Operator: Pickup-Block-C from Table

 Preconditions Effects

 HandEmpty() Add In-Hand(C)

 Clear(C) Delete HandEmpty()

 On-Table(C) On-Table(C)

A

B C

Operator: Pickup-Block from Table

 Preconditions Effects

 HandEmpty() Add In-Hand(block)

 Clear(block) Delete HandEmpty()

 On-Table(block) On-Table(block)

Create a variable that takes on the value of a particular instance for
all times it appears in an operator.

Operator: PutDown-Block on Table

 Preconditions Effects

 In-Hand(block) Add HandEmpty()

 On-Table(block)

 Delete In-Hand(block)

Why don’t we need to check if ~HandEmpty() is true?

Full State Description
Instances: A, B, C

Predicates:

 In-Hand(C)

 On-Table(B)

 On-Block(A,B)

 Clear(A)

 Clear(C)

 Optional: ~HandEmpty(), ~On-Table(C), ~On-Table(A), ~On-Block(B,A),
 ~On-Block(C,A), ~On-Block(B,C), ~On-Block(C,B), ~On-Block(A,C),

 ~Clear(B), ~In-Hand(A), ~In-Hand(B)

RULE OF THUMB: If you must match that Predicate is explicitly not true, you must
include ~Predicate in the state description.

A

B

C

Operators for Block Stacking
Pickup_Table(b):

 Pre: HandEmpty(), Clear(b), On-Table(b)

 Add: In-Hand(b)

 Delete: HandEmpty(), On-Table(b)

Putdown_Table(b):

 Pre: In-Hand(b)

 Add: HandEmpty(), On-Table(b)

 Delete: In-Hand(b)

Pickup_Block(b,c):

 Pre: HandEmpty(), On-Block(b,c), b!=c

 Add: In-Hand(b), Clear(c)

 Delete: HandEmpty(), On-Block(b,c)

Putdown_Block(b,c):

 Pre: In-Hand(b), Clear(c)

 Add: HandEmpty(), On-Block(b,c)

 Delete: Clear(c), In-Hand(b)

Why do we need separate operators for table vs on a block?

HandEmpty() & On-Table(O) & On-Block(B,O) & Clear(B) & On-Table(G) & Clear(G)

Example Matching Operators

Example Matching Operators

HandEmpty() & On-Table(O) & On-Block(B,O) & Clear(B) & On-Table(G) & Clear(G)

Pickup_Block(b,c):
Pre: HandEmpty(), On-Block(b,c), b!=c
Add: In-Hand(b), Clear(c)
Delete: HandEmpty(), On(b,c)

Pickup_Table(b):
Pre: HandEmpty, Clear(b), On-Table(b)
Add: In-Hand(b)
Delete: HandEmpty(), On-Table(b)

State Space Graph (also called Reachability Graph)

Start Goal

HandEmpty() & On-Table(O) & On-Block(B,O) & Clear(B) & On-Table(G) & Clear(G)

 Pickup_Block(B,O)

On-Table(O) & Clear(B) & On-Table(G) & Clear(G) & In-Hand(B) & Clear(O)

 Putdown_Table(B)

On-Table(O) & Clear(O) & On-Table(G) & Clear(G) & Clear(B) & On-Table(B) & HandEmpty()

 Pickup_Table(G)

On-Table(O) & Clear(B) & Clear(G) & Clear(O) & On-Table(B) & In-Hand(G)

 Putdown_Block(G,O)

On-Table(O) & Clear(B) & Clear(G) & On-Table(B) & On-Block(G,O) & HandEmpty()

Example Matching Operators

Search with a State Space Graph

Start Goal

Finding Plans with Symbolic Representations
Breadth-First Search

 Sound?

 Complete?

 Optimal?

Soundness - all solutions found are legal plans

Completeness - a solution can be found whenever one actually exists

Optimality - the order in which solutions are found is consistent with some measure of plan quality

Yes

Yes

Yes

Size of the Search Tree
A planning tree’s size is exponential in the number of predicates

Even if we use linear or non-linear planning, they use this graph

Can we reduce the size of the planning graph?

GraphPlan

GraphPlan
GraphPlan is a relaxation of other classical planning search techniques

The GraphPlan search graph space is linear in the number of predicates

1) Allow actions to be simultaneous
2) Always add predicates (don't delete)

putShoeR

putSockR bareL()
sockR()

bareL()
bareR()

putShoeL
sockL()
bareR()

putSockL

putSockL

putSockR

State space search

GraphPlan
GraphPlan is a relaxation of other classical planning search techniques

The GraphPlan search graph space is linear in the number of predicates

𝑆0
putShoeR

putSockR

noop

bareL()
sockR()

bareL()
bareR()

putSockR

putSockL
sockL()

bareL()

bareR()

sockR()

bareL()

bareR()

putShoeL
sockL()
bareR()

putSockL

1) Allow actions to be simultaneous
2) Always add predicates (don't delete)

𝑆1 𝐴1

putSockL

putSockR

putShoeR

putShoeL

𝐴0

putSockR

putSockL

bareL()
bareR()noop

noop

State space search GraphPlan graph

GraphPlan
GraphPlan is a relaxation of other classical planning search techniques

The GraphPlan search graph space is linear in the number of predicates

𝑆0
putShoeR

putSockR

noop

bareL()
sockR()

bareL()
bareR()

putSockR

putSockL
sockL()

bareL()

bareR()

sockR()

bareL()

bareR()

putShoeL
sockL()
bareR()

putSockL

1) Allow actions to be simultaneous
2) Always add predicates (don't delete)

𝑆1 𝐴1

putSockL

putSockR

putShoeR

putShoeL

𝐴0

putSockR

putSockL

bareL()
bareR()noop

noop

Building a GraphPlan Graph
Initialize 𝑆0 with all predicates in the start state

𝑆0

bareL()

bareR()

𝑆1𝐴0

Building a GraphPlan Graph
Extend graph to 𝑆1 with all actions in 𝐴0 that can be taked from 𝑆0

𝑆0

noop

putSockR

putSockL
sockL()

bareL()

bareR()

sockR()

bareL()

bareR()

𝑆1𝐴0

For now, we are just assuming
that any actions (including no-ops)
can be taken individually in any
order to get us to the next state
→ This certainly isn't always true
 E.g., we can't put our socks
 on and then take the no-ops

that require bare feet
(More on these exclusion checks later)

Building a GraphPlan Graph
Search for solution. Does 𝑆1 contain all goal propositions, shoeL(), shoeR()?

𝑆0

noop

putSockR

putSockL
sockL()

bareL()

bareR()

sockR()

bareL()

bareR()

𝑆1𝐴0

Nope, not yet

Building a GraphPlan Graph
Extend graph to 𝑆2 with all actions in 𝐴1 that can be taked from 𝑆1

𝑆0 𝑆1𝐴0 𝑆2𝐴1

noop

putSockR

putSockL
sockL()

bareL()

bareR()

sockR()

bareL()

bareR()

putShoeR

putShoeL

noop

putSockR

putSockL

shoeL()

sockL()

bareL()

bareR()

sockR()

shoeR()

Building a GraphPlan Graph
Search for solution. Does 𝑆2 contain all goal propositions, shoeL(), shoeR()?

Yes, but
....is this ok??

Maybe ☺

We need to check
that we can
actually take the
subset of actions
that lead us the
goal proposition

𝑆0 𝑆1𝐴0 𝑆2𝐴1

noop

putSockR

putSockL
sockL()

bareL()

bareR()

sockR()

bareL()

bareR()

putShoeR

putShoeL

noop

putSockR

putSockL

shoeL()

sockL()

bareL()

bareR()

sockR()

shoeR()

𝑆0 𝑆1𝐴0 𝑆2𝐴1

noop

putSockR

putSockL
sockL()

bareL()

bareR()

sockR()

bareL()

bareR()

putShoeR

putShoeL

noop

putSockR

putSockL

shoeL()

sockL()

bareL()

bareR()

sockR()

shoeR()

Building a GraphPlan Graph
Search for solution. Does 𝑆2 contain all goal propositions, shoeL(), shoeR()?

Are the goal propositions ok?
▪ Do they directly contradict each

other (negation)?
▪ Are the actions that produced

them ok (consistent support)?
▪ We'll need to check putShoeL

and putShoeR
▪ Can we really do both of these

actions in either order?

𝑆0 𝑆1𝐴0 𝑆2𝐴1

noop

putSockR

putSockL
sockL()

bareL()

bareR()

sockR()

bareL()

bareR()

putShoeR

putShoeL

noop

putSockR

putSockL

shoeL()

sockL()

bareL()

bareR()

sockR()

shoeR()

Building a GraphPlan Graph
Search for solution. Does 𝑆2 contain all goal propositions, shoeL(), shoeR()?

Are the actions leading to the goals
okay (not exclusive)?

Actions A and B are exclusive (mutex) at
action-level i, if:

Interference: one action effect deletes or
negates a precondition of the other

Inconsistency: one action effect deletes
or negates the effect of the other

Competing Needs: the actions have
preconditions that are mutex in prev.
proposition-level

𝑆0 𝑆1𝐴0 𝑆2𝐴1

noop

putSockR

putSockL
sockL()

bareL()

bareR()

sockR()

bareL()

bareR()

putShoeR

putShoeL

noop

putSockR

putSockL

shoeL()

sockL()

bareL()

bareR()

sockR()

shoeR()

Building a GraphPlan Graph
Search for solution. Does 𝑆2 contain all goal propositions, shoeL(), shoeR()?

Are the actions leading to the goals
okay (not exclusive)?

If yes, we need to check the 𝑆1 pre-
condition propositions of those
actions: sockL() and sockR()

... and, then check the actions in 𝐴0
that led us to that set of
propositions...

Building a GraphPlan Graph
Search backwards for solution of non-exclusive propositions and actions

Solution found!

We can do
putSockL and
putSockR
in any order, then

We can do
putShoeL and
putShoeR
in any order

𝑆0 𝑆1𝐴0 𝑆2𝐴1

noop

putSockR

putSockL
sockL()

bareL()

bareR()

sockR()

bareL()

bareR()

putShoeR

putShoeL

noop

putSockR

putSockL

shoeL()

sockL()

bareL()

bareR()

sockR()

shoeR()

GraphPlan High Level Algorithm
Initialize first proposition layer with proposition from initial state
Loop
 Extend the GraphPlan graph by adding an action level and
 then a proposition level

 If graph has leveled off (no new propositions added from previous level):
 Return NO SOLUTION

 If all propositions in the goal are present in the added proposition level:

 Search for a possible plan in the planning graph
 (see solution algorithm)

 If plan found, return with that plan

GraphPlan and GraphPlan Graph Representation
Graphplan graphs contain two types of layers
▪ Proposition layers – all reachable predicates

▪ Action layers – actions that could be taken

▪ Both layers represent one time step

GraphPlan algorithm includes two subtasks
▪ Extend: One time step (two layers) in the graphplan graph
▪ Search: Find a valid plan in the graphplan graph

GraphPlan finds a plan or proves that no plan has fewer time steps
▪ Each time step can contain multiple actions

Details: Searching the GraphPlan Graph
▪ Search states: set of propositions in a proposition layer BUT it also includes an

additional list of "goals" for that state. The "goals" for this initial state will be the set
of planning goals propositions, but as you'll see below that will change as we search
backwards.

▪ Initial search state: the set of propositions from the last level of the planning graph.
We also keep track of the goals for this state, which are the goal propositions for the
planning problem. Call this level 𝑆𝑖 for now.

▪ Search actions: any subset of operators in the preceding action level, 𝐴𝑖−1, where
none of these actions are conflicting at that level and their collective effects include
the full set of goals we are considering in 𝑆𝑖

▪ Search transitions: lead to a next search state with the set of propositions in 𝑆𝑖−1
and the "goals" for this state are the preconditions for all of the operators in the
search action that was selected.

▪ Search goal: We keep searching to try to get to 𝑆0, where the "goals" of that search
state are all satisfied by 𝑆0.

What kind of mutex are actions to each other? (select all that apply)
1) Pickup-pickup are interference
2) Pickup-pickup are inconsistent
3) Pickup-pickup are competing needs
4) Pickup-put are interference
5) Pickup-put are inconsistent
6) Pickup-put are competing needs

Poll

Actions A and B are exclusive (mutex) at action-
level i, if:

Interference: one action effect deletes or
negates a precondition of the other

Inconsistency: one action effect deletes or
negates the effect of the other

Competing Needs: the actions have
preconditions that are mutex in previous
proposition-level

Pickup(B)

Pickup(G)

Pickup(O)

Put(B,O)

Put(B,G)

Put-Table(B)

Put-Table(G)

Put(G,B)

HandEmpty

On-Table(O)
On-Table(B)
On-Table(G)
On(G,B)
On(B,O)
On(B,G)
Clear(B)

Clear(G)

Clear(O)

In-Hand(B)

In-Hand(G)

HandEmpty

On-Table(O)

On-Table(G)

On(B,O)

Clear(B)

Clear(G)

Clear(O)

In-Hand(B)

In-Hand(G)

What kind of mutex are actions to each other? (select all that apply)
1) Pickup-pickup are interference
2) Pickup-pickup are inconsistent
3) Pickup-pickup are competing needs
4) Pickup-put are interference
5) Pickup-put are inconsistent
6) Pickup-put are competing needs

Poll

Actions A and B are exclusive (mutex) at action-
level i, if:

Interference: one action effect deletes or
negates a precondition of the other

Inconsistency: one action effect deletes or
negates the effect of the other

Competing Needs: the actions have
preconditions that are mutex in previous
proposition-level

Pickup(B)

Pickup(G)

Pickup(O)

Put(B,O)

Put(B,G)

Put-Table(B)

Put-Table(G)

Put(G,B)

HandEmpty

On-Table(O)
On-Table(B)
On-Table(G)
On(G,B)
On(B,O)
On(B,G)
Clear(B)

Clear(G)

Clear(O)

In-Hand(B)

In-Hand(G)

HandEmpty

On-Table(O)

On-Table(G)

On(B,O)

Clear(B)

Clear(G)

Clear(O)

In-Hand(B)

In-Hand(G)

GraphPlan Big Picture
Construct a Graphplan graph as an approximation of the planning graph in
polynomial space

The approximation: we do not delete any predicates that were EVER true
since the start of the search. The GraphPlan graph computes the possibly
reachable states although they aren’t necessarily feasible

-> We can match multiple actions in one timestep if preconditions all match
 Finds shorter than optimal plans if actions are sequential
 How do we fix this?

-> We have to handle the case that plans that couldn’t be actually executed
because one action negates another

We provide the GraphPlan implementation
In the programming assignment, you will create the representation,
which will be passed into our GraphPlan implementation

In written assignments, you’ll be asked to build graph plan graphs and
assess the graph plan graph for mutexes, goals, leveling off, and
solutions.

Implementation

Implementing Symbolic Representations
Literals: Each thing/object in our model

 i = Instance(“name”,TYPE)

Variables: Can take on any TYPE thing

 v = Variable(“v_name”,TYPE)

Block World Example:

Pickup_from_Table(b):

 Pre: HandEmpty(), Clear(b), On-Table(b)

 Add: In-Hand(b)

 Delete: HandEmpty(), On-Table(b)

Instances: “A”, “B”, “C” of type BLOCK
Variable: “b” of type BLOCK

In this operator, b can take on the
value of any block instance

Implementing Symbolic Representations
Literals: Each thing/object in our model

 i_a = Instance(“A”,BLOCK), i_b = Instance(“B”,BLOCK)

Variables: Can take on any TYPE thing

 v_block = Variable(“b”,BLOCK)

Block World Example:

Pickup_from_Table(b):

 Pre: HandEmpty(), Clear(b), On-Table(b)

 Add: In-Hand(b)

 Delete: HandEmpty(), On-Table(b)

ALERT: no two literals nor variables
can have the same string name!!

Implementing Symbolic Representations
Literals: Each thing/object in our model

 i_a = Instance(“A”,BLOCK), i_b = Instance(“B”,BLOCK)

Variables: Can take on any TYPE thing

 v_block = Variable(“b”,BLOCK)

Propositions: Predicate Relationships

 p1 = proposition(“relation”, v_a, i, …)

Block World Example:

HandEmpty(), Clear(b), On-Table(b), On-Block(b1,b2)

Proposition(“handempty”), Proposition(“clear”,v_block),
Proposition(“on-table”,v_block), Proposition(“on-block”,v_block, i_a)

NOTE: variables and instances do not
have to start with i_ and v_

Initial State and Goal State
Create lists of Propositions as the initial state and goal state

initial = [Proposition(“handempty”), Proposition(“on-table”, i_c),
 Proposition(“on-table”, i_b), Proposition(“on-block”, i_a, i_b),
 Proposition(“clear”, i_a), Proposition(“clear”, i_c)]

Goal = [Proposition(“on-table”,i_b), Proposition(“on-table”,i_c),
 Proposition(“on-block”,i_a, i_c), Proposition(“clear”,i_a),
 Proposition(“clear”,”c”)]

Implementing Symbolic Representations
Operators: the actions we take change state

 pickup_table = Operator(“pick_table”, #name

 [Proposition(“handempty”,), #preconditions

 Proposition(“clear”, v_block),

 Proposition(“on-table”, v_block)],

 [Proposition(“in-hand”, v_block)], #add effects

 [Proposition(“handempty”), #delete effects

 Proposition(“on-table”, v_block]

)

Lists are conjunctions!

All propositions with a
variable must take on
the same instance!

Variables that don’t
match name don’t
have to be the same
but can be unless
otherwise specified!

We provide the GraphPlan implementation
You will create the representation, which will be passed into our
GraphPlan implementation

Another Example - Rocket Ship
Suppose we have a rocket ship that can only be used once.
It has to carry two payloads.

Another Example - Rocket Ship
Suppose we have a rocket ship that can only be used once.
It has to carry two payloads.

Literals?

Another Example - Rocket Ship
Suppose we have a rocket ship that can only be used once.
It has to carry two payloads.

Literals: Rocket, G, O, LocA, LocB

Another Example - Rocket Ship

Suppose we have a rocket ship that can only be used once.
It has to carry two payloads.

Literals: Rocket, G, O, LocA, LocB
Start state:
 At(Rocket, LocA), Has-Fuel(),
 Unloaded(G,LocA), Unloaded(O,LocA)
Goal state:
 At(Rocket, LocB), Unloaded(G,LocB), Unloaded(O,LocB)

I create literals and variables as I go
through the problem. In order to create
the start state and the goal state, I
need the literals defined.

Another Example - Rocket Ship
Literals: Rocket, G, O, LocA, LocB
Start state:
 At(Rocket, LocA), Has-Fuel(),
 Unloaded(G,LocA), Unloaded(O,LocA)
Goal state:
 At(Rocket, LocB), Unloaded(G,LocB), Unloaded(O,LocB)

Move: Load: Unload:

As I create my operators, I will add
variables.

Another Example - Rocket Ship
Literals: Rocket, G, O, LocA, LocB
Start state:
 At(Rocket, LocA), Has-Fuel(),
 Unloaded(G,LocA), Unloaded(O,LocA)
Goal state:
 At(Rocket, LocB), Unloaded(G,LocB), Unloaded(O,LocB)

Move:
P:
A:
D:

Another Example - Rocket Ship
Literals: Rocket, G, O, LocA, LocB
Start state:
 At(Rocket, LocA), Has-Fuel(),
 Unloaded(G,LocA), Unloaded(O,LocA)
Goal state:
 At(Rocket, LocB), Unloaded(G,LocB), Unloaded(O,LocB)
Variables: L

Move:
P: At(Rocket,L)
A:
D:

The rocket starts at a location, and it
could be either location. I need to add
a location variable

Another Example - Rocket Ship
Literals: Rocket, G, O, LocA, LocB
Start state:
 At(Rocket, LocA), Has-Fuel(),
 Unloaded(G,LocA), Unloaded(O,LocA)
Goal state:
 At(Rocket, LocB), Unloaded(G,LocB), Unloaded(O,LocB)
Variables: L

Move:
P: At(Rocket,L), Has-Fuel()
A:
D:

Another Example - Rocket Ship
Literals: Rocket, G, O, LocA, LocB
Start state:
 At(Rocket, LocA), Has-Fuel(),
 Unloaded(G,LocA), Unloaded(O,LocA)
Goal state:
 At(Rocket, LocB), Unloaded(G,LocB), Unloaded(O,LocB)
Variables: L, Dest

Move:
P: At(Rocket,L), Has-Fuel(), L!=Dest
A: At(Rocket,Dest)
D:

The rocket needs to go to a destination,
which needs to be different from the
start location. We need to define a dest
variable.

Another Example - Rocket Ship
Literals: Rocket, G, O, LocA, LocB
Start state:
 At(Rocket, LocA), Has-Fuel(),
 Unloaded(G,LocA), Unloaded(O,LocA)
Goal state:
 At(Rocket, LocB), Unloaded(G,LocB), Unloaded(O,LocB)
Variables: L, Dest

Move:
P: At(Rocket,L), Has-Fuel(), L!=Dest
A: At(Rocket,Dest)
D: Has-Fuel(),At(Rocket,L)

Another Example - Rocket Ship
Literals: Rocket, G, O, LocA, LocB
Start state:
 At(Rocket, LocA), Has-Fuel(),
 Unloaded(G,LocA), Unloaded(O,LocA)
Goal state:
 At(Rocket, LocB), Unloaded(G,LocB), Unloaded(O,LocB)
Variables: L, Dest

Load:
P:
A:
D:

Another Example - Rocket Ship
Literals: Rocket, G, O, LocA, LocB
Start state:
 At(Rocket, LocA), Has-Fuel(),
 Unloaded(G,LocA), Unloaded(O,LocA)
Goal state:
 At(Rocket, LocB), Unloaded(G,LocB), Unloaded(O,LocB)
Variables: L, Dest, Pkg

Load:
P: At(Rocket,L), Unloaded(Pkg,L)
A:
D:

The rocket needs to load a specific
package G or O. The load action doesn’t
care which package it is. We need a
variable pkg to use.

Another Example - Rocket Ship
Literals: Rocket, G, O, LocA, LocB
Start state:
 At(Rocket, LocA), Has-Fuel(),
 Unloaded(G,LocA), Unloaded(O,LocA)
Goal state:
 At(Rocket, LocB), Unloaded(G,LocB), Unloaded(O,LocB)
Variables: L, Dest, Pkg

Load:
P: At(Rocket,L), Unloaded(Pkg,L)
A: Loaded(Pkg,Rocket)
D: Unloaded(Pkg,L)

Another Example - Rocket Ship
Literals: Rocket, G, O, LocA, LocB
Start state:
 At(Rocket, LocA), Has-Fuel(),
 Unloaded(G,LocA), Unloaded(O,LocA)
Goal state:
 At(Rocket, LocB), Unloaded(G,LocB), Unloaded(O,LocB)
Variables: L, Dest, Pkg

Unload:
P: At(Rocket,Dest), Loaded(Pkg,Rocket)
A: Unloaded(Pkg,Dest)
D: Loaded(Pkg,Rocket)

No new variables needed for unload.

Rocket Ship GraphPlan Graph

At(Rocket,LocA)

Has-Fuel()

Unloaded(G,LocA)

Unloaded(O,LocA)

Move

Load(G)

At(Rocket,LocB)

At(Rocket,LocA)

Has-Fuel()

Unloaded(G,LocA)

Unloaded(O,LocA)

Loaded(G,Rocket)

Loaded(O,Rocket)

Load(O)

Start state Action Layer 1 Predicate Layer 1

Rocket Ship GraphPlan Graph

At(Rocket,LocA)

Has-Fuel()

Unloaded(G,LocA)

Unloaded(O,LocA)

Move

Load(G)

At(Rocket,LocB)

At(Rocket,LocA)

Has-Fuel()

Unloaded(G,LocA)

Unloaded(O,LocA)

Loaded(G,Rocket)

Loaded(O,Rocket)

Load(O)

Mutex Actions
Interference:
 Move deletes At which is a precondition of Load
Inconsistent:
 Move deletes At but noop adds it
 Move deletes Has-Fuel but noop adds it

Mutex Propositions:
- At(Rocket,LocB) and
At(Rocket,LocA) because
Move and noop are mutex
actions
- What else?

Rocket Ship GraphPlan Graph

At(Rocket,LocA)

Has-Fuel()

Unloaded(G,LocA)

Unloaded(O,LocA)

Move

Load(G)

At(Rocket,LocB)

At(Rocket,LocA)

Has-Fuel()

Unloaded(G,LocA)

Unloaded(O,LocA)

Loaded(G,Rocket)

Loaded(O,Rocket)

Load(O)

Move

Load(G)

At(Rocket,LocB)

At(Rocket,LocA)

Has-Fuel()

Unloaded(G,LocA)

Unloaded(O,LocA)

Loaded(G,Rocket)

Loaded(O,Rocket)

Load(O)

Start state Action Layer 1 Predicate Layer 1 Action Layer 2 Predicate Layer 2

Rocket Ship GraphPlan Graph

At(Rocket,LocA)

Has-Fuel()

Unloaded(G,LocA)

Unloaded(O,LocA)

Move

Load(G)

At(Rocket,LocB)

At(Rocket,LocA)

Has-Fuel()

Unloaded(G,LocA)

Unloaded(O,LocA)

Loaded(G,Rocket)

Loaded(O,Rocket)

Load(O)

At time 1: Move can be performed OR both Load actions
At time 2: Possible plans include:
 Load(G), Load(O), Move(LocB)  reachable goal in two steps but feasible in three
 Load(G), Move(LocB)
 Load(O), Move(LocB)

Move

Load(G)

At(Rocket,LocB)

At(Rocket,LocA)

Has-Fuel()

Unloaded(G,LocA)

Unloaded(O,LocA)

Loaded(G,Rocket)

Loaded(O,Rocket)

Load(O)

	Slide 1: AI: Representation and Problem Solving
	Slide 2: Represent this Blocks World
	Slide 3: Represent this Blocks World
	Slide 4: Search, Logic, and Classical Planning
	Slide 5: Idea of Classical Planning
	Slide 6: STRIPS Representation
	Slide 7: Poll 1
	Slide 8: Poll 1
	Slide 9: Full State Description
	Slide 10: Operators
	Slide 11: The Frame Problem
	Slide 12: Rules of Blocks World
	Slide 13: Pickup Block C from Table (State Transition)
	Slide 14: Pickup Block C from Table (Preconditions, Effects)
	Slide 15: Operator: Pickup-Block-C from Table
	Slide 16: Operator: Pickup-Block from Table
	Slide 17: Operator: PutDown-Block on Table
	Slide 18: Full State Description
	Slide 19: Operators for Block Stacking
	Slide 20: Example Matching Operators
	Slide 21: Example Matching Operators
	Slide 22: State Space Graph (also called Reachability Graph)
	Slide 23: Example Matching Operators
	Slide 24: Search with a State Space Graph
	Slide 25: Finding Plans with Symbolic Representations
	Slide 26: Size of the Search Tree
	Slide 27: GraphPlan
	Slide 28: GraphPlan
	Slide 29: GraphPlan
	Slide 30: GraphPlan
	Slide 31: Building a GraphPlan Graph
	Slide 32: Building a GraphPlan Graph
	Slide 33: Building a GraphPlan Graph
	Slide 34: Building a GraphPlan Graph
	Slide 35: Building a GraphPlan Graph
	Slide 36: Building a GraphPlan Graph
	Slide 37: Building a GraphPlan Graph
	Slide 38: Building a GraphPlan Graph
	Slide 39: Building a GraphPlan Graph
	Slide 40: GraphPlan High Level Algorithm
	Slide 41: GraphPlan and GraphPlan Graph Representation
	Slide 42: Details: Searching the GraphPlan Graph
	Slide 43: Poll
	Slide 44: Poll
	Slide 45: GraphPlan Big Picture
	Slide 46: We provide the GraphPlan implementation
	Slide 47: Implementation
	Slide 48: Implementing Symbolic Representations
	Slide 49: Implementing Symbolic Representations
	Slide 50: Implementing Symbolic Representations
	Slide 51: Initial State and Goal State
	Slide 52: Implementing Symbolic Representations
	Slide 53: We provide the GraphPlan implementation
	Slide 54: Another Example - Rocket Ship
	Slide 55: Another Example - Rocket Ship
	Slide 56: Another Example - Rocket Ship
	Slide 57: Another Example - Rocket Ship
	Slide 58: Another Example - Rocket Ship
	Slide 59: Another Example - Rocket Ship
	Slide 60: Another Example - Rocket Ship
	Slide 61: Another Example - Rocket Ship
	Slide 62: Another Example - Rocket Ship
	Slide 63: Another Example - Rocket Ship
	Slide 64: Another Example - Rocket Ship
	Slide 65: Another Example - Rocket Ship
	Slide 66: Another Example - Rocket Ship
	Slide 67: Another Example - Rocket Ship
	Slide 68: Rocket Ship GraphPlan Graph
	Slide 69: Rocket Ship GraphPlan Graph
	Slide 70: Rocket Ship GraphPlan Graph
	Slide 71: Rocket Ship GraphPlan Graph

