Al: Representation and Problem Solving

Classical Planning
or Symbolic Planning

Instructor: Pat Virtue

Slide credits: CMU Al

Represent this Blocks World

A robot arm (yellow) can pick up and put down blocks to form stacks.
It cannot pick up a block that has another block on top of it.
It cannot pick up more than one block at a time.

Any number of blocks can sit on the table.

How would solve Blocks World problems with search, e.g., BFS?

Represent this Blocks World

A robot arm (yellow) can pick up and put down blocks to form stacks.
It cannot pick up a block that has another block on top of it.
It cannot pick up more than one block at a time.

Any number of blocks can sit on the table.

How would solve Blocks World problems with logical planning?

Search, Logic, and Classical Planning

Search Planning
= Assumes actions and transitions are provided for you, s’ = result(s, a)
= State changes as you take actions

Propositional Logic Planning

= (Can reason about what actions are possible and their effects
= Represent world with only Boolean symbols

= Different symbols for different time points

Classical Planning
= (Can reason about what actions are possible and their effects
= State changes as you take actions

|dea of Classical Planning

Represent objects/values separately from the state (instances)
Define predicates as true/false functions over the objects (propositions)
States are conjunctions of predicates

Goals are conjunctions of predicates
Robot Arm

Operators (actions)

STRIPS Representation

STRIPS = Stanford Research Institute Problem Solver (1970s system)
Actions defined by:

" Preconditions

= Add effects

= Delete effects

Convention: all other facts remain unchanged - avoids frame axioms

Poll 1

Which predicates apply to this state? (Select all that apply)
Instances: A, B, C

Predicates:

1) In-Hand(A)
2) In-Hand(B) -
3) In-Hand(C)

4) On-Table(A)
5) On-Table(B)

6) On-Table(C)

7) On-Block(B,C)
8) On-Block(A,B)
9) HandEmpty()

Poll 1

Which predicates apply to this state? (Select all that apply)
Instances: A, B, C

Predicates:

1) In-Hand(A)
2) In-Hand(B) -
3) In-Hand(C)

4) On-Table(A)
5) On-Table(B)

6) On-Table(C)

7) On-Block(B,C)
8) On-Block(A,B)
9) HandEmpty()

Full State Description

Instances: A, B, C
Predicates:
In-Hand(C)
On-Table(B) .
On-Block(A,B)
Clear(A)

Clear(C)

Optional: “HandEmpty(), ~On-Table(C), ~On-Table(A), ~On-Block(B,A),
~0On-Block(C,A), ~On-Block(B,C), ~On-Block(C,B), ~On-Block(A,C),
~Clear(B), ~In-Hand(A), ~In-Hand(B)

Operators

Operators change the state by adding/deleting predicates
Preconditions:

Actions can be applied only if all precondition predicates are true in
the current state

Effects:

New state is a copy of the current predicates with the addition or
deletion of specified predicates

Unlike the successor-state axioms, we do not explicitly represent time

The Frame Problem

Frame problem: how to specify what remains unchanged after actions
"= Frame axioms (logic): one per unaffected predicate
= Successor-State Axiom: combines persistence + change

= STRIPS convention: actions only list what changes (preconditions, add, delete)

Rules of Blocks World

Blocks are picked up and put down by the hand

Blocks can be picked up only if they are clear

Hand can pick up a block only if the hand is empty

Hand can pick up and put down blocks on blocks or on the table

Pickup Block C from Table (State Transition)

Instances:
Blocks A, B, C .

l-

Possible Predicates: State:
HandEmpty() HandEmpty()
On-Table(block) On-Table(B)
On-Block(b1,b2) On-Table(C)
Clear(block) On-Block(A,B)
In-Hand(block) Clear(A)

Clear(C)

State:
In-Hand(C)
On-Table(B)
On-Block(A,B)
Clear(A)
Clear(C)

Pickup Block C from Table (Preconditions, E

l-

Instances:

Blocks A, B, C

Possible Predicates:

HandEmpty()

On-Table(block)
On-Block(b1,b2)

Clear(block)

In-Hand(block)

State:
HandEmpty()
On-Table(B)
On-Table(C)
On-Block(A,B)
Clear(A)
Clear(C)

State:
In-Hand(C)
On-Table(B)
On-Block(A,B)
Clear(A)
Clear(C)

‘ects)

Delete HandEmpty()

Delete On-Table(C)

Operator: Pickup-Block-C from Table

i BT

Preconditions Effects
HandEmpty() Add In-Hand(C)
Clear(C) Delete HandEmpty()

On-Table(C) On-Table(C)

Operator: Pickup-Block from Table

iI= 0"

Preconditions Effects

HandEmpty() Add In-Hand(block)
Clear(block) Delete HandEmpty()
On-Table(block) On-Table(block)

Create a variable that takes on the value of a particular instance for
all times it appears in an operator.

Operator: PutDown-Block on Table

Preconditions Effects
In-Hand(block) Add HandEmpty()

On-Table(block)
Delete In-Hand(block)

Why don’t we need to check if "HandEmpty() is true?

Full State Description

Instances: A, B, C
Predicates:
In-Hand(C)
On-Table(B) .
On-Block(A,B)
Clear(A)

Clear(C)

Optional: “HandEmpty(), ~On-Table(C), ~On-Table(A), ~On-Block(B,A),
~0On-Block(C,A), ~On-Block(B,C), ~On-Block(C,B), ~On-Block(A,C),
~Clear(B), ~In-Hand(A), ~In-Hand(B)

RULE OF THUMB: If you must match that Predicate is explicitly not true, you must
include ~Predicate in the state description.

Operators for Block Stacking

Pickup_Table(b): Pickup_Block(b,c):
Pre: HandEmpty(), Clear(b), On-Table(b) Pre: HandEmpty(), On-Block(b,c), b!=c
Add: In-Hand(b) Add: In-Hand(b), Clear(c)
Delete: HandEmpty(), On-Table(b) Delete: HandEmpty(), On-Block(b,c)
Putdown_Table(b): Putdown_Block(b,c):
Pre: In-Hand(b) Pre: In-Hand(b), Clear(c)
Add: HandEmpty(), On-Table(b) Add: HandEmpty(), On-Block(b,c)
Delete: In-Hand(b) Delete: Clear(c), In-Hand(b)

Why do we need separate operators for table vs on a block?

Example Matching Operators

HandEmpty() & On-Table(O) & On-Block(B,0) & Clear(B) & On-Table(G) & Clear(G)

l

Example Matching Operators

HandEmpty() & On-Table(O) & On-Block(B,0) & Clear(B) & On-Table(G) & Clear(G)

?

Pickup_Block(b,c): le(b):

Pre: HandEmpty(), On-Block(b,c), b!=c Pre: HandEmpty, Clear(b), On-Table(b)
Add: In-Hand(b), Clear(c) Add: In-Hand(b)

Delete: HandEmpty(), On(b,c) Delete: HandEmpty(), On-Table(b)

l

State Space Graph (also called Reachability Graph)

e By
LR

= =p K
(.
'Sl N | Ii

Example Matching Operators

HandEmpty() & On-Table(O) & On-Block(B,0) & Clear(B) & On-Table(G) & Clear(G)
Pickup_Block(B,0)

On-Table(O) & Clear(B) & On-Table(G) & Clear(G) & In-Hand(B) & Clear(O)
Putdown_Table(B)

On-Table(O) & Clear(O) & On-Table(G) & Clear(G) & Clear(B) & On-Table(B) & HandEmpty()
Pickup _Table(G)

On-Table(O) & Clear(B) & Clear(G) & Clear(O) & On-Table(B) & In-Hand(G)
Putdown_Block(G,0)

On-Table(O) & Clear(B) & Clear(G) & On-Table(B) & On-Block(G,0) & HandEmpty()

Search with a State Space Graph

e By
LR

I' 'I
o

'Sl N | Ii

Finding Plans with Symbolic Representations
Breadth-First Search

Sound? Yes
Complete? Yes

Optimal? Yes

Soundness - all solutions found are legal plans
Completeness - a solution can be found whenever one actually exists
Optimality - the order in which solutions are found is consistent with some measure of plan quality

Size of the Search Tree

A planning tree’s size is exponential in the number of predicates
Even if we use linear or non-linear planning, they use this graph

N ﬁ n
/7 N
] e Em'E
7 \N NN 7NN

Can we reduce the size of the planning graph?

GraphPlan

1) Allow actions to be simultaneous

GraphPlan /' 2) Always add predicates (don't delete)

GraphPlan is a relaxation of other classical planning search techniques
The GraphPlan search graph space is linear in the number of predicates

State space search

outSockL putShoel

putSockR

putSockL
putSockR

putShoeR

1) Allow actions to be simultaneous
GraphPlan / 2) Always add predicates (don't delete)
GraphPlan is a relaxation of other classical planning search techniques
The GraphPlan search graph space is linear in the number of predicates

State space search GraphPlan graph

putShoel outShoel
putSockL - sockL()//
utSoc

putSockR / P / putSockL

barel() ¢ bareL()?

bareR()x\ bareR()y
putSockL putSockR ~ \ outSockR

putSockR sockR()

T\ putShoeR

putShoeR
50 A 51 A,

1) Allow actions to be simultaneous

GraphPlan /' 2) Always add predicates (don't delete)

GraphPlan is a relaxation of other classical planning search techniques
The GraphPlan search graph space is linear in the number of predicates

putShoel outShoel
putSockL - sockL()//
utSoc

putSockR / P / putSockL

barel() ¢ bareL()?

bareR()x\ bareR()y
putSockL putSockR ~ \ outSockR

putSockR sockR()

T\ putShoeR

putShoeR
50 A 51 A,

Building a GraphPlan Graph

Initialize S, with all predicates in the start state

barel()

bareR()

Building a GraphPlan Graph

Extend graph to §; with all actions in A, that can be taked from S,

For now, we are just assuming
that any actions (including no-ops)

_ sockL() can be taken individually in any
putSockL -
v order to get us to the next state
bareL() - barel () - This certainly isn't always true
E.g., we can't put our socks
bareR() 3 ~bareR() on and then take the no-ops
sockR() that require bare feet

(More on these exclusion checks later)

S, Aq S,

Building a GraphPlan Graph

Search for solution. Does S; contain all goal propositions, shoel(), shoeR()?

Nope, not yet

/ putSockL /' sockL{

bareL() - "L barel()
noop

bareR() z - ~rbareR()
\ putSockR \

" sockR()

50 Ag 51

Building a GraphPlan Graph

Extend graph to S, with all actions in A; that can be taked from §;

L shoel()
_~ putShoel /
_sockL() 4 - + sockL()
VZ putSockL / / putSockL /
barelL() - * bareL() ¢ - “1 barel()
noop noop
bareR() s - bareR()\ - bareR()
\ putSockR \ putSockR \
" sockR() < B L sockR()
N putShoeR \
 shoeR()

50 Ag 51 Ay 52

Building a GraphPlan Graph

Search for solution. Does S, contain all goal propositions, shoel(), shoeR()?

barel() ?

bareR() =

/

N\

putSockL =~

‘0
L
“
*

_sockL() 4

*barelL() 4

-bareR() s

" sockR() 4

.0
*
.0
9

L shoel()

- sockL()

- barelL()

-bareR()

_sockR()

 shoeR()

52

Yes, but
....is this ok??

Maybe ©

We need to check
that we can
actually take the
subset of actions
that lead us the
goal proposition

Building a GraphPlan Graph

Search for solution. Does S, contain all goal propositions, shoel(), shoeR()?

‘0
“
.

* barel() 4

_sockL() 4

X bareR() \

" sockR()

.0
r
‘e
o

/ putSockL /

\ putSockR \

N putShoeR \

. shoel()

- sockL()

- barelL()
+bareR()

I sockR()

 shoeR()

51

Aq

5

Are the goal propositions ok?
= Do they directly contradict each
other (negation)?
= Are the actions that produced
them ok (consistent support)?
= We'll need to check putShoel
and putShoeR
= Can we really do both of these
actions in either order?

Building a GraphPlan Graph

Search for solution. Does S, contain all goal propositions, shoel(), shoeR()?

‘0
“
.

* barel() 4

_sockL() 4

X bareR() \

" sockR()

Ve putShoel

.0
L 2
‘e
o

/ putSockL /

\ putSockR \

\l putShoeR '\

. shoel()

- sockL()

- barelL()

+bareR()

- sockR()

 shoeR()

Are the actions leading to the goals
okay (not exclusive)?

51

Aq

5

Actions A and B are exclusive (mutex) at
action-level j, if:

Interference: one action effect deletes or
negates a precondition of the other

Inconsistency: one action effect deletes
or negates the effect of the other

Competing Needs: the actions have
preconditions that are mutex in prev.
proposition-level

Building a GraphPlan Graph

Search for solution. Does S, contain all goal propositions, shoel(), shoeR()?

| reE Are the actions leading to the goals
_ outShoel okay (not exclusive)?
| sockL()? ;;’sockL()
S/ putSockL If yes, we need to check the §; pre-
~barel() ¢ T bareL() condition propositions of those
bareR()~\ | bareR(actions: sockL() and sockR()
~ sockR()-< PUt>ockR \ sockR() ... and, then check the actions in Ag
™ putshoeR K that led us to that set of
" shoeR() propositions...

51 Ay 52

Building a GraphPlan Graph

Search backwards for solution of non-exclusive propositions and actions

L shoel()
Ve putShoel [, |
_sockL()9 - - sockL()
putSockL }/ / putSockL /
bareL()? - * barelL() 4 - “4 barelL()
noop noop
bareR()+ - bareR()\ - —~FbareR()
putSockR }\ putSockR L
’ sockR()\\| B L sockR()
putShoeR K
'\' shoeR()
SO AO S]_ Al Sz

Solution found!

We can do
putSockL and
putSockR

in any order, then

We can do
putShoel and
putShoeR

in any order

GraphPlan High Level Algorithm

Initialize first proposition layer with proposition from initial state
Loop
Extend the GraphPlan graph by adding an action level and
then a proposition level

If graph has leveled off (no new propositions added from previous level):
Return NO SOLUTION

If all propositions in the goal are present in the added proposition level:
Search for a possible plan in the planning graph

(see solution algorithm)

If plan found, return with that plan

GraphPlan and GraphPlan Graph Representation

Graphplan graphs contain two types of layers
" Proposition layers — all reachable predicates

= Action layers — actions that could be taken

" Both layers represent one time step

GraphPlan algorithm includes two subtasks

* Extend: One time step (two layers) in the graphplan graph
= Search: Find a valid plan in the graphplan graph

GraphPlan finds a plan or proves that no plan has fewer time steps
" Each time step can contain multiple actions

Details: Searching the GraphPlan Graph

Search states: set of propositions in a proposition layer BUT it also includes an
additional list of "goals" for that state. The "goals" for this initial state will be the set
of planning goals propositions, but as you'll see below that will change as we search
backwards.

Initial search state: the set of propositions from the last level of the planning graph.
We also keep track of the goals for this state, which are the goal propositions for the
planning problem. Call this level S; for now.

Search actions: any subset of operators in the preceding action level, A;_1, where
none of these actions are conflicting at that level and their collective effects include
the full set of goals we are considering in S;

Search transitions: lead to a next search state with the set of propositions in S;_4
and the "goals" for this state are the preconditions for all of the operators in the
search action that was selected.

Search goal: We keep searching to try to get to Sy, where the "goals" of that search
state are all satisfied by §,.

Poll

What kind of mutex are actions to each other? (select all that apply)
1) Pickup-pickup are interference

2) Pickup-pickup are inconsistent HandEmpty ~ HandEmpty
3) Pickup-pickup are competing needs Pickup(B) < ;
ickup-put are interference ! On-Table(B)

1

5) Pickup-put are inconsistent On-Table(G)
6) Pickup-put are competing needs

On-Table(G)
On(G,B)

On(B,0) * On(B,0)

/ Put(B,0)

Actions A and B are exclusive (mutex) at action-

level i, if: Clear(B) Clear(B)
Interference: one action effect deletes or
negates a precondition of the other Clear(G) - Clear(G)

’ A\ \
A\

’ ' Clear(0)

) Y

/

In-Hand(B)

Inconsistency: one action effect deletes or

negates the effect of the other Clear(O)

Competing Needs: the actions have
preconditions that are mutex in previous
proposition-level

i In-Hand(B)

In-Hand(G) . In-Hand(G)

Poll

What kind of mutex are actions to each other? (select all that apply)

1) Pickup-pickup are interference

2) Pickup-pickup are inconsistent

3) Pickup-pickup are competing needs
4) Pickup-put are interference

5) Pickup-put are inconsistent

6) Pickup-put are competing needs

Actions A and B are exclusive (mutex) at action-
level i, if:

Interference: one action effect deletes or
negates a precondition of the other

Inconsistency: one action effect deletes or
negates the effect of the other

Competing Needs: the actions have
preconditions that are mutex in previous
proposition-level

HandEmpty ——» HandEmpty
Pickup(B) -~

On-Table(O) ', On-Table(O)

/. On-Table(B)

1

On-Table(G) On-Table(G)

On(B,0)

/ Put(B,0)

Clear(B) Clear(B)

CIear(G)f/ - Clear(G)

Clear(O) } L Clear(O)
PUt(G,B) < ,’II \‘ \\\

In-Hand(B) * In-Hand(B)

In-Hand(G) . In-Hand(G)

GraphPlan Big Picture

Construct a Graphplan graph as an approximation of the planning graph in
polynomial space

The approximation: we do not delete any predicates that were EVER true
since the start of the search. The GraphPlan graph computes the possibly
reachable states although they aren’t necessarily feasible

-> We can match multiple actions in one timestep if preconditions all match
Finds shorter than optimal plans if actions are sequential
How do we fix this?

-> We have to handle the case that plans that couldn’t be actually executed
because one action negates another

We provide the GraphPlan implementation

In the programming assignment, you will create the representation,
which will be passed into our GraphPlan implementation

In written assignments, you’ll be asked to build graph plan graphs and
assess the graph plan graph for mutexes, goals, leveling off, and
solutions.

Implementation

Implementing Symbolic Representations

Literals: Each thing/object in our model
i = Instance(“name”, TYPE)

Variables: Can take on any TYPE thing
v = Variable(“v_name”, TYPE)

Block World Example:

Pickup_from_Table(b): Instances: “A”, “B”, “C” of type BLOCK
Pre: HandEmpty(), Clear(b), On-Table(b) variable: “b” of type BLOCK
Add: In-Hand(b)

Delete: HandEmpty(), On-Table(b) In this operator, b can take on the
value of any block instance

Implementing Symbolic Representations

Literals: Each thing/object in our model
i_a = Instance(“A”,BLOCK), i b =Instance(“B”,BLOCK)

Variables: Can take on any.TYPE thing ALERT: no two literals nor variables
v_block = Variable(“b”,BLOCK) can have the same string name!!

Block World Example:
Pickup_from_Table(b):
Pre: HandEmpty(), Clear(b), On-Table(b)
Add: In-Hand(b)
Delete: HandEmpty(), On-Table(b)

Implementing Symbolic Representations

Literals: Each thing/object in our model

i_a = Instance(“A”,BLOCK), i b =Instance(“B”,BLOCK)
Variables: Can take on any TYPE thing

v_block = Variable(“b”,BLOCK)

Propositions: Predicate Relationships
pl = proposition(“relation”, v_a, |, ...)

NOTE: variables and instances do not
have to start withi_and v_

Block World Example:
HandEmpty(), Clear(b), On-Table(b), On-Block(b1,b2)

Proposition(“handempty”), Proposition(“clear”,v_block),
Proposition(“on-table”,v_block), Proposition(“on-block”,v_block, i a)

Initial State and Goal State

Create lists of Propositions as the initial state and goal state

initial = [Proposition(“handempty”), Proposition(“on-table”, i c),
Proposition(“on-table”, i_b), Proposition(“on-block”, i_a, i _b),
Proposition(“clear”, i_a), Proposition(“clear”, i_c)]

Goal = [Proposition(“on-table”,i b), Proposition(“on-table”,i c),
Proposition(“on-block”,i _a, i _c), Proposition(“clear”,i_a),
Proposition(“clear”,”c”)]

Implementing Symbolic Representations

Operators: the actions we take change state
pickup table = Operator(“pick _table”, #name

[Proposition(“handempty”,), #preconditions

Lists are conjunctions! Proposition(“clear”, v_block),

All propositions with a Proposition(“on-table”, v_block)],
variable must take on [Proposition(“in-hand”, v_block)], #add effects
the same instance! .

[Proposition(“handempty”), #delete effects

Variables that don’t Proposition(“on-table”, v_block]

match name don’t

have to be the same)
but can be unless
otherwise specified!

We provide the GraphPlan implementation

You will create the representation, which will be passed into our
GraphPlan implementation

Another Example - Rocket Ship

Suppose we have a rocket ship that can only be used once.
It has to carry two payloads.

Another Example - Rocket Ship

Suppose we have a rocket ship that can only be used once.
It has to carry two payloads.

Literals?

Another Example - Rocket Ship

Suppose we have a rocket ship that can only be used once.
It has to carry two payloads.

Literals: Rocket, G, O, LocA, LocB

Another Example - Rocket Ship

Suppose we have a rocket ship that can only be used once.
It has to carry two payloads.

| create literals and variables as | go

Literals: Rocket, G, O, LocA, LocB through the problem. In order to create

Start state: the start state and the goal state, |
At(Rocket, LocA), Has-Fuel(), need the literals defined.
Unloaded(G,LocA), Unloaded(O,LocA)

Goal state:

At(Rocket, LocB), Unloaded(G,LocB), Unloaded(O,LocB)

Another Example - Rocket Ship

Literals: Rocket, G, O, LocA, LocB

Start state: As !create my operators, | will add
At(Rocket, LocA), Has-Fuel(), variables.
Unloaded(G,LocA), Unloaded(O,LocA)

Goal state:

At(Rocket, LocB), Unloaded(G,LocB), Unloaded(O,LocB)

Move: Load: Unload:

Another Example - Rocket Ship

Literals: Rocket, G, O, LocA, LocB
Start state:
At(Rocket, LocA), Has-Fuel(),
Unloaded(G,LocA), Unloaded(O,LocA)
Goal state:
At(Rocket, LocB), Unloaded(G,LocB), Unloaded(O,LocB)

Move:

Another Example - Rocket Ship

Literals: Rocket, G, O, LocA, LocB

Start state: The rocket starts at a location, and it

At(i?ocket LocA), Has-Fuel() could be either location. | need to add
' ' ’ location variabl

Unloaded(G,LocA), Unloaded(O,LocA) a location variable

Goal state:
At(Rocket, LocB), Unloaded(G,LocB), Unloaded(O,LocB)

Variables: L

Move:

P: At(Rocket,L)

A:

D:

Another Example - Rocket Ship

Literals: Rocket, G, O, LocA, LocB
Start state:
At(Rocket, LocA), Has-Fuel(),
Unloaded(G,LocA), Unloaded(O,LocA)
Goal state:

At(Rocket, LocB), Unloaded(G,LocB), Unloaded(O,LocB)
Variables: L

Move:

P: At(Rocket,L), Has-Fuel()
A:

D:

Another Example - Rocket Ship

Literals: Rocket, G, O, LocA, LocB

Start state: Thg rocket needs to go to a destination,
which needs to be different from the
At(ROCket’ LOCA)’ HaS_Fuel()’ start location. We need to define a dest
Unloaded(G,LocA), Unloaded(O,LocA)

variable.
Goal state:

At(Rocket, LocB), Unloaded(G,LocB), Unloaded(O,LocB)
Variables: L, Dest

Move:

P: At(Rocket,L), Has-Fuel(), L!=Dest
A: At(Rocket,Dest)

D:

Another Example - Rocket Ship

Literals: Rocket, G, O, LocA, LocB
Start state:
At(Rocket, LocA), Has-Fuel(),
Unloaded(G,LocA), Unloaded(O,LocA)
Goal state:

At(Rocket, LocB), Unloaded(G,LocB), Unloaded(O,LocB)
Variables: L, Dest

Move:

P: At(Rocket,L), Has-Fuel(), L!=Dest
A: At(Rocket,Dest)

D: Has-Fuel(),At(Rocket,L)

Another Example - Rocket Ship

Literals: Rocket, G, O, LocA, LocB
Start state:
At(Rocket, LocA), Has-Fuel(),
Unloaded(G,LocA), Unloaded(O,LocA)
Goal state:
At(Rocket, LocB), Unloaded(G,LocB), Unloaded(O,LocB)
Variables: L, Dest

Load:
P:
A:
D:

Another Example - Rocket Ship

Literals: Rocket, G, O, LocA, LocB

Start state: The rocket needs to load a speuflc ’
package G or O. The load action doesn’t
At(Rocket, LocA), Has-Fuel(), care which package it is. We need a
Unloaded(G,LocA), Unloaded(O,LocA)

variable pkg to use.
Goal state:

At(Rocket, LocB), Unloaded(G,LocB), Unloaded(O,LocB)
Variables: L, Dest, Pkg

Load:

P: At(Rocket,L), Unloaded(Pkg,L)
A:

D:

Another Example - Rocket Ship

Literals: Rocket, G, O, LocA, LocB
Start state:
At(Rocket, LocA), Has-Fuel(),
Unloaded(G,LocA), Unloaded(O,LocA)
Goal state:
At(Rocket, LocB), Unloaded(G,LocB), Unloaded(O,LocB)
Variables: L, Dest, Pkg

Load:

P: At(Rocket,L), Unloaded(Pkg,L)
A: Loaded(Pkg,Rocket)

D: Unloaded(Pkg,L)

Another Example - Rocket Ship

Literals: Rocket, G, O, LocA, LocB _

Start state: No new variables needed for unload.
At(Rocket, LocA), Has-Fuel(),
Unloaded(G,LocA), Unloaded(O,LocA)

Goal state:
At(Rocket, LocB), Unloaded(G,LocB), Unloaded(O,LocB)

Variables: L, Dest, Pkg

Unload:

P: At(Rocket,Dest), Loaded(Pkg,Rocket)
A: Unloaded(Pkg,Dest)

D: Loaded(Pkg,Rocket)

Rocket Ship GraphPlan Graph

Start state Action Layer 1 Predicate Layer 1
/ At(Rocket,LocB)
Move <-__
At(Rocket,LocA) *. "7~ At(Rocket,LocA)
Has-Fuel() N

Load(G) "~ Has-Fuel()
0a \
Unloaded(G,LocA) \ Unloaded(G,LocA)

Unloaded(O,LocA) .
Load(O) N Unloaded(O,LocA)

\ \
\ \

.\ Loaded(G,Rocket)

\
\
\

R Loaded(O,Rocket)

Rocket Ship GraphPlan Graph

At(Rocket,LocB)

At(Rocket,LocA) Move Sx----. At(Rocket,{ocA)

Has-Fuel() . Has-Fuel()

Load(G)
Unloaded(G,LocA) j \ Unloaded(G,LocA)

Unloaded(O,LocA)
Lfﬁd'(o \\—‘_ Unloaded(O,LocA)

\ \
\ \

.\ Loaded(G,Rocket)

\
\
\

R Loaded(O,Rocket)

Mutex Actions Mutex Propositions:

Interference: - At(Rocket,LocB) and
Move deletes At which is a precondition of Load At(Rocket,LocA) because

Inconsistent: Move and noop are mutex
Move deletes At but noop adds it actions

Move deletes Has-Fuel but noop adds it - What else?

Rocket Ship GraphPlan Graph

Start state Action Layer 1 Predicate Layer 1 Action Layer 2 Predicate Layer 2
At(Rocket,LocB) At(Rocket,LocB)
Move - Move -
At(Rocket,LocA) “=-- At(Rocket,LocA)) "~--At(Rocket,LocA)

Has-Fuel() ** Has-Fuel() “*Has-Fuel()

Load(G) Load(G) -
Unloaded(G,LocA) j \ j)
'\\\ Unloaded(G,LocA) \\\Unloaded(G,LocA)

Unloaded(O,LocA)

'fjd'(o) " ~ Unloaded(O,LocA) L/03d'(0) - T Unloaded(O,LocA)
\\\ "\ Loaded(G,Rocket) \\\ ‘Loaded(G,Rocket)

\ \
\ \

R Loaded(O,Rocket) \‘Loaded(O, Rocket)

Rocket Ship GraphPlan Graph

At(Rocket,LocB) At(Rocket,LocB)

At(Rocket,LocA) Move

-~

-~ At(Rocket,LocA))~ ~=-At(Rocket,LocA)

Has-Fuel() ** Has-Fuel() “*Has-Fuel()

Load|G) Load(G) -
Unloaded(G,LocA) j \ j)
'\\\ Unloaded(G,LocA) \\\Unloaded(G,LocA)

Unloaded(O,LocA) . .
'—/Ojd'(o) " Unloaded(O,LocA) L/o§d'(0) *__Unloaded(O,LocA)

\
\
\
\ \

.\ Loaded(G,Rocket)

\

\

\ ‘Loaded(G,Rocket)

\ \
\ \

R Loaded(O,Rocket) \‘Loaded(O, Rocket)

\

At time 1: Move can be performed OR both Load actions
At time 2: Possible plans include:

Load(G), Load(O), Move(LocB) € reachable goal in two steps but feasible in three

Load(G), Move(LocB)
Load(O), Move(LocB)

	Slide 1: AI: Representation and Problem Solving
	Slide 2: Represent this Blocks World
	Slide 3: Represent this Blocks World
	Slide 4: Search, Logic, and Classical Planning
	Slide 5: Idea of Classical Planning
	Slide 6: STRIPS Representation
	Slide 7: Poll 1
	Slide 8: Poll 1
	Slide 9: Full State Description
	Slide 10: Operators
	Slide 11: The Frame Problem
	Slide 12: Rules of Blocks World
	Slide 13: Pickup Block C from Table (State Transition)
	Slide 14: Pickup Block C from Table (Preconditions, Effects)
	Slide 15: Operator: Pickup-Block-C from Table
	Slide 16: Operator: Pickup-Block from Table
	Slide 17: Operator: PutDown-Block on Table
	Slide 18: Full State Description
	Slide 19: Operators for Block Stacking
	Slide 20: Example Matching Operators
	Slide 21: Example Matching Operators
	Slide 22: State Space Graph (also called Reachability Graph)
	Slide 23: Example Matching Operators
	Slide 24: Search with a State Space Graph
	Slide 25: Finding Plans with Symbolic Representations
	Slide 26: Size of the Search Tree
	Slide 27: GraphPlan
	Slide 28: GraphPlan
	Slide 29: GraphPlan
	Slide 30: GraphPlan
	Slide 31: Building a GraphPlan Graph
	Slide 32: Building a GraphPlan Graph
	Slide 33: Building a GraphPlan Graph
	Slide 34: Building a GraphPlan Graph
	Slide 35: Building a GraphPlan Graph
	Slide 36: Building a GraphPlan Graph
	Slide 37: Building a GraphPlan Graph
	Slide 38: Building a GraphPlan Graph
	Slide 39: Building a GraphPlan Graph
	Slide 40: GraphPlan High Level Algorithm
	Slide 41: GraphPlan and GraphPlan Graph Representation
	Slide 42: Details: Searching the GraphPlan Graph
	Slide 43: Poll
	Slide 44: Poll
	Slide 45: GraphPlan Big Picture
	Slide 46: We provide the GraphPlan implementation
	Slide 47: Implementation
	Slide 48: Implementing Symbolic Representations
	Slide 49: Implementing Symbolic Representations
	Slide 50: Implementing Symbolic Representations
	Slide 51: Initial State and Goal State
	Slide 52: Implementing Symbolic Representations
	Slide 53: We provide the GraphPlan implementation
	Slide 54: Another Example - Rocket Ship
	Slide 55: Another Example - Rocket Ship
	Slide 56: Another Example - Rocket Ship
	Slide 57: Another Example - Rocket Ship
	Slide 58: Another Example - Rocket Ship
	Slide 59: Another Example - Rocket Ship
	Slide 60: Another Example - Rocket Ship
	Slide 61: Another Example - Rocket Ship
	Slide 62: Another Example - Rocket Ship
	Slide 63: Another Example - Rocket Ship
	Slide 64: Another Example - Rocket Ship
	Slide 65: Another Example - Rocket Ship
	Slide 66: Another Example - Rocket Ship
	Slide 67: Another Example - Rocket Ship
	Slide 68: Rocket Ship GraphPlan Graph
	Slide 69: Rocket Ship GraphPlan Graph
	Slide 70: Rocket Ship GraphPlan Graph
	Slide 71: Rocket Ship GraphPlan Graph

