
AI: Representation and Problem Solving

Classical Planning

(aka. Symbolic Planning)

Instructor: Tuomas Sandholm and Vincent Conitzer

Slide credits: CMU AI

Image: Shutterstock 



Changing a Tire
You start with a flat tire on the axle of your car and a spare in the trunk

You can perform the following actions:

Remove(tire,axle) 

Put(tire,axle)

Remove(tire,trunk)

Put(tire,trunk)

Your goal is to replace the flat tire on the axle with the spare in the trunk.

How would solve this problem with search, e.g., BFS?



Changing a Tire
You start with a flat tire on the axle of your car and a spare in the trunk

You can perform the following actions:

Remove(tire,axle) 

Put(tire,axle)

Remove(tire,trunk)

Put(tire,trunk)

Your goal is to replace the flat tire with the spare.

How would solve this problem with logic?



Search, Logic, and Classical Planning
Search Planning

▪ State representation that changes as you act

Propositional Logic Planning

▪ Represent world with Boolean propositions and successor state axioms

▪ Different symbols for different time points

Classical Planning

▪ Represent the world with objects and Boolean predicates 

▪ State changes as you act



Idea of Classical Planning

Represent objects/values (instances) separately from the state 

Define predicates as true/false functions over the objects

States are conjunctions of predicates

Goals are conjunctions of predicates



Poll 1
Which predicates apply to this state? (Select all that apply)
Instances: 

TIRES: flat_tire, spare_tire

LOCS: axle, trunk, ground

Predicates:

     1) On(flat_tire, axle)

     2) On(spare_tire, axle)

     3) On(flat_tire, trunk)

     4) On(spare_tire, trunk)

     5) On(flat_tire, ground)

     6) On(spare_tire, ground)

     7) Empty(trunk)

     8) Empty(axle)

flat_tire

spare_tire



Full State Description
Instances: 

TIRES: flat_tire, spare_tire

LOCS: axle, trunk, ground

Predicates:

On(spare_tire, trunk)

On(flat_tire, ground)

Empty(axle)

Optional: ~On(flat_tire, axle), ~On(spare_tire, axle), 

    ~On(flat_tire, trunk), ~On(spare_tire, ground),

    ~Empty(trunk)

Why Optional?

flat_tire

spare_tire



Operators 
Operators change the state by adding/deleting predicates

Preconditions:

Actions can be applied only if all precondition predicates are true in 
the current state

Effects:

New state is a copy of the current predicates with the addition or 
deletion of specified predicates

Unlike the successor-state axioms, we do not explicitly represent time and 
we can use our objects and predicates to more easily scale to new more 
complex problems (e.g., new objects, predicates, and operators).



Rules of Tire Fixing

A tire can be removed from an axle if it is on the axle (precondition)

Effect: the tire is on the ground

A tire can be put on an axle if it is on the ground (precondition)

Effect: the tire is on the axle

A tire can be removed from the trunk if it is in the trunk (precondition)

Effect: the tire is on the ground

A tire can be put in the trunk if it is on the ground (precondition)

Effect: the tire is in the trunk



Rules of Tire Fixing

A tire can be removed from an axle/trunk if it is on there (precondition)

Effect: the tire is on the ground

A tire can be put on an axle/trunk if it is on the ground (precondition)

Effect: the tire is on the axle/trunk

The trunk/axle can be empty if nothing is on it

At most one thing can be on the trunk/axle

NOTE: A successor state axiom in logic would have to be defined for EACH tire and EACH loc, 
but in classical planning, these rules are defined for an object type



Remove Tire from Trunk (State Transition)

Instances: 
Tires: flat, spare
Locs: axle, trunk, ground

Possible Predicates:
On(tire, loc)

flat_tire

spare_tire

Old State:
Empty(axle)
On(flat,ground)
On(spare,trunk)

New State:
Empty(axle)
On(flat,ground)
On(spare,ground)
Empty(trunk)



Remove Tire from Trunk (State Transition)

Instances: 
Tires: flat, spare
Locs: axle, trunk, ground

Possible Predicates:
On(tire, loc)

Old State:
On(flat,ground)
On(spare,trunk)

New State:
On(flat,ground)
On(spare,ground)
Empty(trunk)

flat_tire

spare_tire

Add Effect: 
On(spare,ground)
Empty(trunk)

Delete Effect:
On(spare,trunk)



Operator: Remove(tire, trunk)

Preconditions Effects

On(tire,trunk) Add On(tire,ground)

Empty(trunk)

Delete On(tire,trunk) 

flat_tire

spare_tire



Operator: Remove(tire, loc)

Preconditions Effects

On(tire,loc) Add On(tire,ground)

Empty(loc)

Delete On(tire,loc) 

flat_tire

spare_tire
WAIT: THIS DOESN’T WORK! WHAT IF LOC=GROUND???



Operator: Remove(tire, loc)

Preconditions Effects

On(tire,loc) Add On(tire,ground)

loc != ground Empty(loc)

Delete On(tire,loc) 

flat_tire

spare_tire



Operator: Remove(tire, loc)

Preconditions Effects

On(tire,loc) Add On(tire,ground)

~On(tire,ground) Empty(loc)

Delete On(tire,loc) 

~On(tire, ground)

flat_tire

spare_tire



Operator: Put(tire, loc)

Preconditions Effects

On(tire,ground)Add On(tire,loc)

loc != ground Delete On(tire,ground) 

Empty(loc)   Empty(loc)

flat_tire

spare_tire



Operators for Fixing a Tire
Put(tire,loc):

Pre: On(tire,ground), loc != ground

Empty(loc)

Add: On(tire,loc)

        Delete: On(tire,ground), Empty(loc)

Remove(tire,loc):

Pre: On(tire,loc), loc != ground

Add: On(tire,ground), Empty(loc)

Delete: On(tire,loc)
Why does ground get referenced directly instead of as a location like axle and trunk?
Why do we add Empty but not add ~Empty when it’s full?



On(flat, axle) AND On(spare, trunk)

Example Matching Operators



On(flat, axle) AND On(spare, trunk)

Example Matching Operators

Remove(tire,loc):
Pre: On(tire,loc), loc != ground
Add: On(tire,ground), Empty(loc)
Delete: On(tire,loc)



On(flat, axle) AND On(spare, trunk)

Remove(flat, axle)

On(flat, ground) AND On(spare, trunk) AND Empty(axle)

Example Matching Operators

Remove(tire,loc):
Pre: On(tire,loc), loc != ground
Add: On(tire,ground), Empty(loc)
Delete: On(tire,loc)

Put(tire,loc):
Pre: On(tire,ground), loc != ground

Empty(loc)
Add: On(tire,loc)

        Delete: On(tire,ground), Empty(loc)



On(flat, axle) AND On(spare, trunk)

Remove(flat, axle)

On(flat, ground) AND On(spare, trunk) AND Empty(axle)

Remove(spare, trunk)

Example Matching Operators

Remove(tire,loc):
Pre: On(tire,loc), loc != ground
Add: On(tire,ground), Empty(loc)
Delete: On(tire,loc)

Put(tire,loc):
Pre: On(tire,ground), loc != ground

Empty(loc)
Add: On(tire,loc)

        Delete: On(tire,ground), Empty(loc)



On(flat, axle) AND On(spare, trunk)

Remove(flat, axle)

On(flat, ground) AND On(spare, trunk) AND Empty(axle)

Remove(spare, trunk)

On(flat, ground) AND On(spare, ground) AND Empty(axle) AND Empty(trunk)

Example Matching Operators

Remove(tire,loc):
Pre: On(tire,loc), loc != ground
Add: On(tire,ground), Empty(loc)
Delete: On(tire,loc)

Put(tire,loc):
Pre: On(tire,ground), loc != ground

Empty(loc)
Add: On(tire,loc)

        Delete: On(tire,ground), Empty(loc)



On(flat, axle) AND On(spare, trunk)

Remove(flat, axle)

On(flat, ground) AND On(spare, trunk) AND Empty(axle)

Remove(spare, trunk)

On(flat, ground) AND On(spare, ground) AND Empty(axle) AND Empty(trunk)

Put(spare, axle)

On(flat, ground) AND On(spare, axle) AND Empty(trunk)

Put(flat, trunk)

On(flat, trunk) AND On(spare, axle)

Example Matching Operators

Remove(tire,loc):
Pre: On(tire,loc), loc != ground
Add: On(tire,ground), Empty(loc)
Delete: On(tire,loc)

Put(tire,loc):
Pre: On(tire,ground), loc != ground

Empty(loc)
Add: On(tire,loc)

        Delete: On(tire,ground), Empty(loc)



Matching Operators as Search

On(flat, axle) AND On(spare, trunk)

Remove(flat, axle) Remove(spare, trunk)

On(flat, ground) AND On(spare, trunk) On(spare, ground) AND On(flat, axle)

Remove(spare, trunk)

On(spare, ground) AND On(flat, ground)

Remove(flat, axle)

Put(flat, axle)
Put(spare, trunk)

On(spare, axle) AND On(flat, trunk)



Finding Plans with Symbolic Representations
Breadth-First Search

Sound? 

Complete? 

Optimal?

Soundness - all solutions found are legal plans 

Completeness - a solution can be found whenever one actually exists

Optimality - the order in which solutions are found is consistent with some measure of plan quality

Yes

Yes

Yes, if equal costs of actions



Linear Planning
Since we have a conjunction of goal predicates, let’s try to solve one at a time
▪Maintain a stack of achievable goals
▪ Use BFS (or anything else) to find a plan to achieve that single goal
▪ Add a goal back on the stack if a later change makes it violated



Linear Planning Spare Tire Example

Action Plan:Goal Stack
On(flat,trunk)
On(spare,axle)

On(flat,trunk)
      Remove(flat,axle)
      Remove(spare,trunk)
      Put(flat,trunk)
On(spare,axle)
      Put(spare,axle)

Start State
On(flat,axle)
On(spare,trunk)



Spare Tire Example with Tools

Suppose that you needed a tool like a wrench to remove and put the tire on the axle

Suppose that the wrench needed to be stored in a tool box as a goal

Action Plan:Goal Stack
On(flat,trunk)
In(wrench,box)
On(spare,axle)

On(flat,trunk)
      Remove(wrench,box)
      Remove(flat,axle)
      Remove(spare,trunk)
      Put(flat,trunk)
In(wrench,box)
      Put(wrench,box)
On(spare,axle)
      Remove(wrench,box)
      Put(spare,axle)
In(wrench,box)
      Put(wrench,box)

Start State
On(flat,axle)
On(spare,trunk)
In(wrench,box)

What 
happened?



Sussman’s Anomaly
A weakness of linear planning is that sometimes you get long plans 

One goal can be achieved 
The second goal immediately undoes it

In fact, there are some problems for which solving goals one at a time will 
never result in a feasible plan.

Note: This isn’t just a choice of goals. The anomaly can happen no matter 
which goal is first



Non-Linear Planning 
Interleave goals to achieve plans
▪Maintain a set of unachieved goals
▪ Search all interleavings of goals (in practice, this is very hard!)
▪ Add a goal back to the set if a later change makes it violated



Heuristics – Search Graph Representation

For planning, the state graph’s size is potentially exponential in the number of 
predicates

It is possible that each action changes exactly one predicate

Can we reduce the size of the planning graph?



GraphPlan

GraphPlan is a relaxation of other classical planning search techniques

The GraphPlan search graph space is linear in the number of predicates



GraphPlan and GraphPlan Graph Representation

Graphplan graphs contain two types of layers
▪ Proposition layers – all reachable predicates
▪ Action layers – actions that could be taken
▪ Both layers represent one time step

GraphPlan algorithm includes two subtasks
▪ Extend: One time step (two layers) in the graphplan graph
▪ Search: Find a valid plan in the graphplan graph

GraphPlan finds a plan or proves that no plan has fewer time steps
▪ Each time step can contain multiple actions



Building a GraphPlan Graph

Start the planning graph with all starting predicates

On(flat, axle)

On(spare,trunk)



Building a GraphPlan Graph

Extend the graph with all applicable actions. Designate all effects (add/delete)

On(flat, axle)

On(spare,trunk)

Remove(flat,axle)

Remove(spare,trunk)

On(flat, axle)

On(flat, ground)

Empty(axle)

On(spare,trunk)

On(spare,ground)

Empty(trunk)

No-op

No-op



Building a GraphPlan Graph

Search the graph to find feasible solutions. Determine mutually exclusive actions.

On(flat, axle)

On(spare,trunk)

Remove(flat,axle)

Remove(spare,trunk)

On(flat, axle)

On(flat, ground)

Empty(axle)

On(spare,trunk)

On(spare,ground)

Empty(trunk)

No-op

No-op

Actions A and B are exclusive 
(mutex) at action-level i, if:

Interference: one action 
effect deletes or negates a 
precondition of the other
Inconsistency: one action 
effect deletes or negates 
the effect of the other
Competing Needs: the 
actions have preconditions 
that are mutex in prev. 
proposition-level 

The search could be structured as a binary CSP 
where the variables are the actions at each 
action level. I will show a better search in a bit.



Building a GraphPlan Graph

Search the graph to find feasible solutions. Determine mutually exclusive predicates.

On(flat, axle)

On(spare,trunk)

Remove(flat,axle)

Remove(spare,trunk)

On(flat, axle)

On(flat, ground)

Empty(axle)

On(spare,trunk)

On(spare,ground)

Empty(trunk)

No-op

No-op

Propositions P and Q are exclusive 
(mutex) at proposition-level i, if:

Negation: They are the negation 
of each other or can’t appear at 
the same time in a plan
Inconsistent Support: if there is 
no set of non-mutex actions in 
action layer i-1 that produce both 
P and Q



Building a GraphPlan Graph

Extend the graph with all applicable actions. Designate all effects (add/delete)

On(flat, axle)

On(spare,trunk)

Remove(flat,axle)

Remove(spare,trunk)

On(flat, axle)

On(flat, ground)

Empty(axle)

On(spare,trunk)

On(spare,ground)

Empty(trunk)

No-op

No-op

Remove(flat,axle)

Remove(spare,trunk)

On(flat, axle)

On(flat, ground)

Empty(axle)

On(spare,trunk)

On(spare,ground)

Empty(trunk)

Put(flat,axle)

Put(flat,trunk)

Put(spare,axle)

Put(spare,trunk)

On(flat,trunk)

On(spare,axle)



Building a GraphPlan Graph

On(flat, axle)

On(spare,trunk)

Remove(flat,axle)

Remove(spare,trunk)

On(flat, axle)

On(flat, ground)

Empty(axle)

On(spare,trunk)

On(spare,ground)

Empty(trunk)

No-op

No-op

Remove(flat,axle)

Remove(spare,trunk)

On(flat, axle)

On(flat, ground)

Empty(axle)

On(spare,trunk)

On(spare,ground)

Empty(trunk)

Put(flat,axle)

Put(flat,trunk)

Put(spare,axle)

Put(spare,trunk)

On(flat,trunk)

On(spare,axle)

Search the graph to find feasible solutions. Determine mutually exclusive actions/predicates.

The goal predicates are both present but are they mutex?

Can we perform this plan in 2 steps?



GraphPlan Big Picture 

Construct a Graphplan graph as an approximation of the planning graph in 
polynomial space

The approximation: we do not delete any predicates that were EVER true 
since the start of the search. The GraphPlan graph computes the possibly 
reachable states although they aren’t necessarily feasible 

-> We can match multiple actions in one timestep if preconditions all match 
Finds shorter than optimal plans if actions are sequential
How do we fix this?
-> We have to handle the case that plans that couldn’t be actually 

executed because one action negates another 



GraphPlan High Level Algorithm
Initialize first proposition layer with proposition from initial state
Loop

Extend the GraphPlan graph by adding an action level and
then a proposition level

If graph has leveled off (no new propositions added from previous level):
Return NO SOLUTION

If all propositions in goal are present w/o mutex in the added proposition level:         
Search for a possible plan in the planning graph

(see solution algorithm)
If plan found, return with that plan



Searching the GraphPlan Graph
 



GraphPlan Takeaways
GraphPlan is a relaxation of other classical planning search techniques like BFS

It creates a different kind of graph that allows you to decide that no plan is 
reachable at a given depth. 

If it finds a reachable solution, it may not be a feasible solution because it 
allows you to perform multiple actions at the same time.
▪ Can be made into a complete planning algorithm by continuing to add layers until either 

a feasible plan is found or a memoization called no-good set levels off too, in which case 
there is no feasible plan
▪ Each no-good represents a combination of goals that cannot be achieved by a given level of the graph

▪ No-goods are stored in a hash table

The search graph is linear space in the number of predicates

Know the differences between the mutex conditions!! 



We provide the GraphPlan implementation
In the programming assignment, you will create the representation, 
which will be passed into our GraphPlan implementation

In written assignments, you’ll be asked to assess the graph plan graph 
for mutexes and goals.



Implementing Symbolic Representations
Literals: Each thing/object in our model

i = Instance(“name”,TYPE)

Variables: Can take on any TYPE thing 

v = Variable(“v_name”,TYPE)

Spare Tire Example:
Instances: “flat”, “spare” of type TIRE
Variable: “tire” of type TIRE
In an operator, tire can take on the value of any TIRE instance

Instances: “axle”, “trunk”, “ground” of type LOC
Variable: “loc” of type LOC
In an operator, loc can take on the value of any LOC instance



Implementing Symbolic Representations
Literals: Each thing/object in our model

i_spare = Instance(“spare”,TIRE), i_flat = Instance(“flat”,TIRE)

Variables: Can take on any TYPE thing 

v_tire = Variable(“tire”,TIRE)
ALERT: no two literals nor variables 
can have the same string name!!



Implementing Symbolic Representations
Literals: Each thing/object in our model

i_spare = Instance(“spare”,TIRE), i_flat = Instance(“flat”,TIRE)

Variables: Can take on any TYPE thing 

v_tire = Variable(“tire”,TIRE)

Propositions

     Proposition(“on”, v_tire, v_loc) matches any tire and any loc

     Proposition(“on”, v_tire, i_ground) matches any tire + the ground instance

     Proposition(“on”, i_spare, i_axle) matches the spare tire and axle

ALERT: no two literals nor variables 
can have the same string name!!



Initial State and Goal State
Create lists of Propositions as the initial state and goal state (conjunctions)

initial = [Proposition(“on”, i_spare, i_trunk), Proposition(“on”, i_flat, i_axle)]

goal = [Proposition(“on”, i_spare, i_axle), Proposition(“on”, i_flat, i_trunk)]



Implementing Symbolic Representations
Operators: the actions we take change state

put = Operator(“put”, #name

[Proposition(“on”, v_tire, i_ground), #preconditions

 v_loc != i_ground, 

 Proposition(“empty”, v_loc)],

[Proposition(“on”, v_tire, v_loc)], #add effects

[Proposition(“empty”, v_loc), #delete effects

 Proposition(“on”, v_tire, i_ground)]

    )

Lists are conjunctions!

All propositions with a 
variable must take on 
the same instance!

Variables that don’t 
match name don’t 
have to be the same 
but can be unless 
otherwise specified!



Another Example - Rocket Ship
Suppose we have a rocket ship that has enough fuel for 1 trip from A to B. 
It needs to transport 2 payloads G1 and G2. Both fit in the rocket together.
The rocket can Move, and we can Load and Unload it.

G1 G2

A B



Another Example - Rocket Ship
Suppose we have a rocket ship that has enough fuel for 1 trip from A to B. 
It needs to transport 2 payloads G1 and G2. Both fit in the rocket together.

Literals?

G1 G2



Another Example - Rocket Ship
Suppose we have a rocket ship that has enough fuel for 1 trip from A to B. 
It needs to transport 2 payloads G1 and G2. Both fit in the rocket together.

Literals: Rocket, G1, G2, LocA, LocB

G1 G2



Another Example - Rocket Ship
Suppose we have a rocket ship that has enough fuel for 1 trip from A to B. 
It needs to transport 2 payloads G1 and G2.

Literals: Rocket, G1, G2, LocA, LocB
Start state: 

At(Rocket, LocA), Has-Fuel(),
Unloaded(G1,LocA), Unloaded(G2,LocA)

Goal state: 
At(Rocket, LocB), Unloaded(G1,LocB), Unloaded(G2,LocB)

G1 G2

I create literals and variables as I go 
through the problem. In order to create 
the start state and the goal state, I need 
the literals defined.



Another Example - Rocket Ship
Literals: Rocket, G1, G2, LocA, LocB
Start state: 

At(Rocket, LocA), Has-Fuel(),
Unloaded(G1,LocA), Unloaded(G2,LocA)

Goal state: 
At(Rocket, LocB), Unloaded(G1,LocB), Unloaded(G2,LocB)

Move: Load: Unload:

As I create my operators Move, Load, 
and Unload, I will add variables.



Another Example - Rocket Ship
Literals: Rocket, G1, G2, LocA, LocB
Start state: 

At(Rocket, LocA), Has-Fuel(),
Unloaded(G1,LocA), Unloaded(G2,LocA)

Goal state: 
At(Rocket, LocB), Unloaded(G1,LocB), Unloaded(G2,LocB)

Move:
P:
A:
D:



Another Example - Rocket Ship
Literals: Rocket, G1, G2, LocA, LocB
Start state: 

At(Rocket, LocA), Has-Fuel(),
Unloaded(G1,LocA), Unloaded(G2,LocA)

Goal state: 
At(Rocket, LocB), Unloaded(G1,LocB), Unloaded(G2,LocB)

Variables: Start

Move:
P: At(Rocket,Start)
A:
D:

The rocket starts at a location, and it 
could be either location. I need to add a 
location variable. There is only 1 rocket, 
so I don’t need a variable for it.



Another Example - Rocket Ship
Literals: Rocket, G1, G2, LocA, LocB
Start state: 

At(Rocket, LocA), Has-Fuel(),
Unloaded(G1,LocA), Unloaded(G2,LocA)

Goal state: 
At(Rocket, LocB), Unloaded(G1,LocB), Unloaded(G2,LocB)

Variables: Start

Move:
P: At(Rocket,Start), Has-Fuel()
A:
D:

The rocket needs fuel.



Another Example - Rocket Ship
Literals: Rocket, G1, G2, LocA, LocB
Start state: 

At(Rocket, LocA), Has-Fuel(),
Unloaded(G1,LocA), Unloaded(G2,LocA)

Goal state: 
At(Rocket, LocB), Unloaded(G1,LocB), Unloaded(G2,LocB)

Variables: Start, Dest

Move:
P: At(Rocket,Start), Has-Fuel(), Start !=Dest
A: At(Rocket,Dest)
D:

The rocket needs to go to a destination, 
which needs to be different from the 
start location. We need to define a dest 
variable, which we will add after 
moving the rocket. 



Another Example - Rocket Ship
Literals: Rocket, G1, G2, LocA, LocB
Start state: 

At(Rocket, LocA), Has-Fuel(),
Unloaded(G1,LocA), Unloaded(G2,LocA)

Goal state: 
At(Rocket, LocB), Unloaded(G1,LocB), Unloaded(G2,LocB)

Variables: Start, Dest

Move:
P: At(Rocket,Start), Has-Fuel(), Start !=Dest
A: At(Rocket,Dest)
D: Has-Fuel(),At(Rocket,Start)

Once the rocket has moved, it has no 
more fuel and it is no longer at Start.



Another Example - Rocket Ship
Literals: Rocket, G1, G2, LocA, LocB
Start state: 

At(Rocket, LocA), Has-Fuel(),
Unloaded(G1,LocA), Unloaded(G2,LocA)

Goal state: 
At(Rocket, LocB), Unloaded(G1,LocB), Unloaded(G2,LocB)

Variables: Start, Dest

Load:
P:
A:
D:



Another Example - Rocket Ship
Literals: Rocket, G1, G2, LocA, LocB
Start state: 

At(Rocket, LocA), Has-Fuel(),
Unloaded(G1,LocA), Unloaded(G2,LocA)

Goal state: 
At(Rocket, LocB), Unloaded(G1,LocB), Unloaded(G2,LocB)

Variables: Start, Dest, Pkg

Load:
P: At(Rocket,Start), Unloaded(Pkg,Start)
A:
D:

The rocket needs to load a specific 
package G1 or G2. The load action 
doesn’t care which package it is 
because both are loaded the same way. 
We need a variable pkg to use, and we 
need to say it starts at the starting 
location unloaded from the rocket.



Another Example - Rocket Ship
Literals: Rocket, G1, G2, LocA, LocB
Start state: 

At(Rocket, LocA), Has-Fuel(),
Unloaded(G1,LocA), Unloaded(G2,LocA)

Goal state: 
At(Rocket, LocB), Unloaded(G1,LocB), Unloaded(G2,LocB)

Variables: Start, Dest, Pkg

Load:
P: At(Rocket,Start), Unloaded(Pkg,Start)
A: Loaded(Pkg,Rocket)
D: Unloaded(Pkg,Start)



Another Example - Rocket Ship
Literals: Rocket, G1, G2, LocA, LocB
Start state: 

At(Rocket, LocA), Has-Fuel(),
Unloaded(G1,LocA), Unloaded(G2,LocA) 

Goal state: 
At(Rocket, LocB), Unloaded(G1,LocB), Unloaded(G2,LocB)

Variables: Start, Dest, Pkg

Unload:
P: At(Rocket,Dest), Loaded(Pkg,Rocket)
A: Unloaded(Pkg,Dest)
D: Loaded(Pkg,Rocket)

No new variables needed for unload, 
which works like Load but in reverse.



Rocket Ship GraphPlan Graph

At(Rocket,LocA)

Has-Fuel()

Unloaded(G1,LocA)

Unloaded(G2,LocA)

Move

Load(G1)

At(Rocket,LocB)

At(Rocket,LocA)

Has-Fuel()

Loaded(G1,Rocket)

Loaded(G2,Rocket)

Unloaded(G1,LocA)

Unloaded(G2,LocA)

Load(G2)

Start state Action Layer 1 Predicate Layer 1



At(Rocket,LocB)

At(Rocket,LocA)

Has-Fuel()

Loaded(G1,Rocket)

Loaded(G2,Rocket)

Unloaded(G1,LocA)

Unloaded(G2,LocA)

Rocket Ship GraphPlan Graph

At(Rocket,LocA)

Has-Fuel()

Unloaded(G1,LocA)

Unloaded(G2,LocA)

Move

Load(G1
)

Load(G2
)

Mutex Actions
Interference: 

Move deletes At which is a precondition of Load
Inconsistent:

Move deletes At but noop adds it
Move deletes Has-Fuel but noop adds it 

Mutex Propositions:
- At(Rocket,LocB) and 
At(Rocket,LocA) because 
Move and noop are mutex 
actions
- What else?

…


