Al: Representation and Problem Solving

Classical Planning
(aka. Symbolic Planning)

Instructor: Tuomas Sandholm and Vincent Conitzer
Slide credits: CMU Al

Image: Shutterstock

Changing a Tire

You start with a flat tire on the axle of your car and a spare in the trunk
You can perform the following actions:
Remove(tire,axle)
Put(tire,axle)
Remove(tire,trunk)
Put(tire,trunk)

Your goal is to replace the flat tire on the axle with the spare in the trunk.
How would solve this problem with search, e.g., BFS?

Changing a Tire

You start with a flat tire on the axle of your car and a spare in the trunk
You can perform the following actions:
Remove(tire,axle)
Put(tire,axle)
Remove(tire,trunk)
Put(tire,trunk)

Your goal is to replace the flat tire with the spare.
How would solve this problem with logic?

Search, Logic, and Classical Planning

Search Planning
= State representation that changes as you act

Propositional Logic Planning
= Represent world with Boolean propositions and successor state axioms
= Different symbols for different time points

Classical Planning
= Represent the world with objects and Boolean predicates
= State changes as you act

ldea of Classical Planning

Represent objects/values (instances) separately from the state
Define predicates as true/false functions over the objects
States are conjunctions of predicates

Goals are conjunctions of predicates

Poll 1

Which predicates apply to this state? (Select all that apply)

Instances:
TIRES: flat_tire, spare_tire
LOCS: axle, trunk, ground

Predicates:
1) On(flat_tire, axle)
2) On(spare_tire, axle)
3) On(flat_tire, trunk)
4) On(spare_tire, trunk)
5) On(flat_tire, ground)
6) On(spare_tire, ground)
7) Empty(trunk)
8) Empty(axle)

flat_tire

spare_tire

Full State Description

Instances:
TIRES: flat_tire, spare_tire
LOCS: axle, trunk, ground

Predicates:
On(spare_tire, trunk)
On(flat_tire, ground)

Empty(axle)

Optional: ~On(flat_tire, axle), “On(spare_tire, axle), spare_tire
~On(flat_tire, trunk), ~On(spare_tire, ground), flat_tire
~Empty(trunk)

Why Optional?

Operators

Operators change the state by adding/deleting predicates
Preconditions:

Actions can be applied only if all precondition predicates are true in
the current state

Effects:

New state is a copy of the current predicates with the addition or
deletion of specified predicates

Unlike the successor-state axioms, we do not explicitly represent time and
we can use our objects and predicates to more easily scale to new more
complex problems (e.g., new objects, predicates, and operators).

Rules of Tire Fixing

A tire can be removed from an axle if it is on the axle (precondition)
Effect: the tire is on the ground

A tire can be put on an axle if it is on the ground (precondition)
Effect: the tire is on the axle

A tire can be removed from the trunk if it is in the trunk (precondition)
Effect: the tire is on the ground

A tire can be put in the trunk if it is on the ground (precondition)
Effect: the tire is in the trunk

Rules of Tire Fixing

A tire can be removed from an axle/trunk if it is on there (precondition)
Effect: the tire is on the ground

A tire can be put on an axle/trunk if it is on the ground (precondition)
Effect: the tire is on the axle/trunk

The trunk/axle can be empty if nothing is on it

At most one thing can be on the trunk/axle

NOTE: A successor state axiom in logic would have to be defined for EACH tire and EACH loc,
but in classical planning, these rules are defined for an object type

Remove Tire from Trunk (State Transition)

Instances: Old State: New State:
Tires: flat, spare Empty(axle) Empty(axle)
Locs: axle, trunk, ground On(flat,ground) On(flat,ground)
On(spare,trunk) On(spare,ground)
Empty(trunk)

spare_tire

flat_tire

Remove Tire from Trunk (State Transition)

Instances: Old State: New State:
Tires: flat, spare On(flat,ground) On(flat,ground)
Locs: axle, trunk, ground On(spare,trunk) On(spare,ground)
Empty(trunk)
Add Effect:
On(spare,ground)
Empty(trunk)

spare_tire

Delete Effect:
On(spare,trunk)

flat_tire

Operator: Remove(tire, trunk)

Preconditions Effects
e,trunk) Add On(tire,ground)
Empty(trunk)
Delete On(tire,trunk)

Spare_tire

flat_tire

Operator: Remove(tire, loc)

Preconditions Effects
2,loc) Add On(tire,ground)
Empty(loc)

Delete On(tire,loc)

WAIT: THIS DOESN’T WORK! WHAT IF LOC=GROUND???

Spare_tire

flat_tire

Operator: Remove(tire, loc)

Preconditions Effects
2,loc) Add On(tire,ground)
ground Empty(loc)

Delete On(tire,loc)

- -..r'(.‘,-'u - 3 -.;!
: /ll > = »
f AV
fias i

Spare_tire

flat_tire

Operator: Remove(tire, loc)

Preconditions Effects
2,loc) Add On(tire,ground)
re,ground) Empty(loc)

Delete On(tire,loc)
~On(tire, ground)

Spare_tire

flat_tire

Operator: Put(tire, loc)

Preconditions Effects
e,ground)Add On(tire,loc)
ground Delete On(tire,ground)

(loc) Empty(loc)

— TS .
| § e,
1 4 s
| /| - =
V))
]

Spare_tire

flat_tire

Operators for Fixing a Tire

Put(tire,loc):
Pre: On(tire,ground), loc != ground
Empty(loc)
Add: On(tire,loc)
Delete: On(tire,ground), Empty(loc)

Remove(tire,loc):
Pre: On(tire,loc), loc != ground
Add: On(tire,ground), Empty(loc)

Why lgg% gorggqu%flé)e% referenced directly instead of as a location like axle and trunk?

Why do we add Empty but not add “Empty when it’s full?

Example Matching Operators

On(flat, axle) AND On(spare, trunk)

Example Matching Operators

On(flat, axle) AND On(spare, trunk)

Remove(tire,loc):
Pre: On(tire,loc), loc != ground
Add: On(tire,ground), Empty(loc)
Delete: On(tire,loc)

Example Matching Operators

On(flat, axle) AND On(spare, trunk)
Remove(flat, axle)

On(flat, ground) AND On(spare, trunk) AND Empty(axle)

Remove(tire,loc): Put(tire,loc):
Pre: On(tire,loc), loc != ground Pre: On(tire,ground), loc != ground
Add: On(tire,ground), Empty(loc) Empty(loc)
Delete: On(tire,loc) Add: On(tire,loc)

Delete: On(tire,ground), Empty(loc)

Example Matching Operators

On(flat, axle) AND On(spare, trunk)

Remove(flat, axle)

On(flat, ground) AND On(spare, trunk) AND Empty(axle)

Remove(spare, trunk)

Remove(tire,loc):
Pre: On(tire,loc), loc != ground
Add: On(tire,ground), Empty(loc)
Delete: On(tire,loc)

Put(tire,loc):
Pre: On(tire,ground), loc != ground
Empty(loc)
Add: On(tire,loc)
Delete: On(tire,ground), Empty(loc)

Example Matching Operators

On(flat, axle) AND On(spare, trunk)
Remove(flat, axle)

On(flat, ground) AND On(spare, trunk) AND Empty(axle)
Remove(spare, trunk)

On(flat, ground) AND On(spare, ground) AND Empty(axle) AND Empty(trunk)

Remove(tire,loc): Put(tire,loc):
Pre: On(tire,loc), loc != ground Pre: On(tire,ground), loc != ground
Add: On(tire,ground), Empty(loc) Empty(loc)
Delete: On(tire,loc) Add: On(tire,loc)

Delete: On(tire,ground), Empty(loc)

Example Matching Operators

On(flat, axle) AND On(spare, trunk)
Remove(flat, axle)
On(flat, ground) AND On(spare, trunk) AND Empty(axle)
Remove(spare, trunk)
On(flat, ground) AND On(spare, ground) AND Empty(axle) AND Empty(trunk)
Put(spare, axle)
On(flat, ground) AND On(spare, axle) AND Empty(trunk)
Put(flat, trunk)
On(flat, trunk) AND On(spare, axle)

Remove(tire,loc): Put(tire,loc):
Pre: On(tire,loc), loc != ground Pre: On(tire,ground), loc != ground
Add: On(tire,ground), Empty(loc) Empty(loc)
Delete: On(tire,loc) Add: On(tire,loc)

Delete: On(tire,ground), Empty(loc)

Matching Operators as Search

Put(spare, trunk)

Put(flat, axle) On(flat, axle) AND On(spare, trunk)

Remove(ﬂatwve(spare, trunk)

On(flat, ground) AND On(spare, trunk) On(spare, ground) AND On(flat, axle)

Remove(spam)\ Move(ﬂat, axle)

On(spare, ground) AND On(flat, ground)

On(spare, axle) AND On(flat, trunk)

Finding Plans with Symbolic Representations
Breadth-First Search

Sound? Yes
Complete? Yes
Optimal? Yes, if equal costs of actions

Soundness - all solutions found are legal plans
Completeness - a solution can be found whenever one actually exists
Optimality - the order in which solutions are found is consistent with some measure of plan quality

Linear Planning

Since we have a conjunction of goal predicates, let’s try to solve one at a time
= Maintain a stack of achievable goals

= Use BFS (or anything else) to find a plan to achieve that single goal

= Add a goal back on the stack if a later change makes it violated

Linear Planning Spare Tire Example

Start State
On(flat,axle)
On(spare,trunk)

Goal Stack

On(flat,trunk)
On(spare,axle)

Action Plan:

On(flat,trunk)
Remove(flat,axle)
Remove(spare,trunk)
Put(flat,trunk)

On(spare,axle)
Put(spare,axle)

Spare Tire Example with Tools

Suppose that you needed a tool like a wrench to remove and put the tire on the axle

Suppose that the wrench needed to be stored in a tool box as a goal

Start State
On(flat,axle)
On(spare,trunk)
In(wrench,box)

Goal Stack

On(flat,trunk)
In(wrench,box)
On(spare,axle)

Action Plan:
On(flat,trunk)
Remove(wrench,box)
Remove(flat,axle)
Remove(spare,trunk)
Put(flat,trunk)
In(wrench,box)
Put(wrench,box)
On(spare,axle)
Remove(wrench,box)
Put(spare,axle)
In(wrench,box)
Put(wrench,box)

What
happened?

Sussman’s Anomaly

A weakness of linear planning is that sometimes you get long plans

One goal can be achieved

The second goal immediately undoes it
In fact, there are some problems for which solving goals one at a time will
never result in a feasible plan.

Note: This isn’t just a choice of goals. The anomaly can happen no matter
which goal is first

Non-Linear Planning

Interleave goals to achieve plans

= Maintain a set of unachieved goals

= Search all interleavings of goals (in practice, this is very hard!)
= Add a goal back to the set if a later change makes it violated

Heuristics — Search Graph Representation

For planning, the state graph’s size is potentially exponential in the number of
predicates

It is possible that each action changes exactly one predicate

Can we reduce the size of the planning graph?

GraphPlan

GraphPlan is a relaxation of other classical planning search techniques

The GraphPlan search graph space is linear in the number of predicates

GraphPlan and GraphPlan Graph Representation

Graphplan graphs contain two types of layers
» Proposition layers — all reachable predicates

= Action layers — actions that could be taken

= Both layers represent one time step

GraphPlan algorithm includes two subtasks

» Extend: One time step (two layers) in the graphplan graph
= Search: Find a valid plan in the graphplan graph

GraphPlan finds a plan or proves that no plan has fewer time steps
= Each time step can contain multiple actions

Building a GraphPlan Graph

Start the planning graph with all starting predicates

On(flat, axle)

On(spare,trunk)

Building a GraphPlan Graph

Extend the graph with all applicable actions. Designate all effects (add/delete)

No-op

On(flat, axle)\ —~ On(flat, axle)
Remove(flat,axle)’/i On(flat, ground)
Empty(axle)
No-op

On(spare,trunk) On(spare,trunk)

Remove(spare,trunk) On(spare,ground)

Empty(trunk)

The search could be structured as a binary CSP
where the variables are the actions at each
action level. | will show a better search in a bit.

Building a GraphPlan Gra

Search the graph to find feasible solutions. Determine mutually exclusive actions.

No-op Actions A and B are exclusive
On(flat, axle)\ -~ On(flat, axle) (mutex) at action-level i, if:
. On(flat d) Interference: one action
Remove(flat,axle) § nitiat, groun effect deletes or negates a
precondition of the other
Empty(axle) . .
N Inconsistency: one action
- ffect del
On(spare,trunk) On(spare,trunk) eftect deletes or negates
the effect of the other
Remove(spare,trunk) On(spare,ground) Competing Needs: the
actions have preconditions
Empty(trunk) that are mutex in prev.

proposition-level

Building a GraphPlan Graph

Search the graph to find feasible solutions. Determine mutually exclusive predicates.

No-op

On(flat, axle)\
Remove(flat,axle) <=

On(flat, axle)

On(flat, ground)

AN

Empty(axle)

No-op
On(spare,trunk)

Remove(spare,trunk)

On(spare,trunk)

On(spare,ground)

Empty(trunk)

Propositions P and Q are exclusive
(mutex) at proposition-level i, if:

Negation: They are the negation
of each other or can’t appear at
the same time in a plan

Inconsistent Support: if there is
no set of non-mutex actions in
action layer i-1 that produce both
P and Q

Building a GraphPlan Graph

Extend the graph with all applicable actions. Designate all effects (add/delete)

On(flat,trunk)
No-op Put(flat,trunk)

On(flat, axle On(flat, axle) \\
~ Remove(flat,axle)
Remove(flat,axle) < On(flat, ground)-

~—_ ~so--— On(flat, ground)
[Put(flat,axle) <27

> On(flat, axle)

Empty(axle) —== Empty(axle)
No-op
On(spare,trunk) On(spare,trunk) On(spare,trunk)
Remove(spare,trunk) —~ /
Remove(spare,trunk) On(spare,ground) 7,7 0n(spare,ground)
Put(spare,trunk)
Empty(trunk) Empty(trunk)

Put(spare,axle) \ on o)
n(spare,axle

Building a GraphPlan Graph

Search the graph to find feasible solutions. Determine mutually exclusive actions/predicates.

On(flat,trunk)
No-op Put(flat,trunk)
On(flat, axle On(flat, axle) ~_ > On(flat, axle)
. ~
~ Remove(flat,axle)
Remove(flat,axle) < On(flat, ground) < “<_--—On(flat, ground)
| — Put(flat,axle) <17\
Empty(axle) —== Empty(axle)
No-op
On(spare,trunk) On(spare,trunk) /~ On(spare,trunk)
Remove(spare,trunk) —~ /
Remove(spare,trunk) On(spare,ground) /<7 On(spare,ground)
Put(spare,trunk) /.~
Empty(trunk) Empty(trunk)
Put(spare,axle) <
T On(spare,axle)

The goal predicates are both present but are they mutex?

Can we perform this plan in 2 steps?

GraphPlan Big Picture

Construct a Graphplan graph as an approximation of the planning graph in
polynomial space

The approximation: we do not delete any predicates that were EVER true
since the start of the search. The GraphPlan graph computes the possibly
reachable states although they aren’t necessarily feasible

-> We can match multiple actions in one timestep if preconditions all match
Finds shorter than optimal plans if actions are sequential
How do we fix this?

-> We have to handle the case that plans that couldn’t be actually
executed because one action negates another

GraphPlan High Level Algorithm

Initialize first proposition layer with proposition from initial state
Loop
Extend the GraphPlan graph by adding an action level and
then a proposition level
If graph has leveled off (no new propositions added from previous level):
Return NO SOLUTION
If all propositions in goal are present w/o mutex in the added proposition level:
Search for a possible plan in the planning graph
(see solution algorithm)
If plan found, return with that plan

Searching the GraphPlan Graph

Search states: set of propositions in a proposition layer BUT it also includes an
additional list of "goals" for that state. The "goals" for this initial state will be the set
of planning goals propositions, but as you'll see below that will change as we search
backwards.

Initial search state: the set of propositions from the last level of the planning graph.
We also keep track of the goals for this state, which are the goal propositions for the
planning problem. Call this level S; for now.

Search actions: any subset of operators in the preceding action level, A;_1, where
none of these actions are conflicting at that level and their collective effects include
the full set of goals we are considering in S;

Search transitions: lead to a next search state with the set of propositions in S;_4
and the "goals" for this state are the preconditions for all of the operators in the
search action that was selected.

Search goal: We keep searching to try to get to Sy, where the "goals" of that search
state are all satisfied by S.

GraphPlan Takeaways

GraphPlan is a relaxation of other classical planning search techniques like BFS

It creates a different kind of graph that allows you to decide that no plan is
reachable at a given depth.

If it finds a reachable solution, it may not be a feasible solution because it
allows you to perform multiple actions at the same time.

» Can be made into a complete planning algorithm by continuing to add layers until either
a feasible plan is found or a memoization called no-good set levels off too, in which case
there is no feasible plan

= Each no-good represents a combination of goals that cannot be achieved by a given level of the graph
» No-goods are stored in a hash table

The search graph is linear space in the number of predicates
Know the differences between the mutex conditions!!

We provide the GraphPlan implementation

In the programming assignment, you will create the representation,
which will be passed into our GraphPlan implementation

In written assignments, you’ll be asked to assess the graph plan graph
for mutexes and goals.

Implementing Symbolic Representations

Literals: Each thing/object in our model
i = Instance(“name”, TYPE)
Variables: Can take on any TYPE thing
v = Variable(“v_name”, TYPE)

Spare Tire Example:

Instances: “flat”, “spare” of type TIRE
Variable: “tire” of type TIRE
In an operator, tire can take on the value of any TIRE instance

Instances: “axle”, “trunk”, “ground” of type LOC
Variable: “loc” of type LOC
In an operator, loc can take on the value of any LOC instance

Implementing Symbolic Representations

Literals: Each thing/object in our model
i_spare = Instance(“spare”, TIRE), i_flat = Instance(“flat”, TIRE)
Variables: Can take on any TYPE thing

ALERT: no two literals nor variables
v_tire = Variable(“tire”, TIRE) can have the same string name!!

Implementing Symbolic Representations

Literals: Each thing/object in our model
i_spare = Instance(“spare”, TIRE), i_flat = Instance(“flat”, TIRE)

Variables: Can take on any TYPE thing ALERT: no two literals nor variables
v_tire = Variable(“tire”, TIRE) can have the same string name!!

Propositions
Proposition(“on”, v_tire, v_loc) matches any tire and any loc

Proposition(“on”, v_tire, i_ground) matches any tire + the ground instance

Proposition(“on”, i_spare, i_axle) matches the spare tire and axle

Initial State and Goal State

Create lists of Propositions as the initial state and goal state (conjunctions)
initial = [Proposition(“on”, i_spare, i_trunk), Proposition(“on”, i_flat, i _axle)]

goal = [Proposition(“on”, i_spare, i_axle), Proposition(“on”, i_flat, i_trunk)]

Implementing Symbolic Representations

Operators: the actions we take change state
put = Operator(“put”, #name

[Proposition(“on”, v_tire, i_ground), #preconditions

Lists are conjunctiqpsiqe 1= j ground,

All propositions wiffreposition(“empty”, v_loc)],
variable must take[9?oposition(”on”, v_tire, v_loc)], #add effects

the same instance o
[Proposition(“empty”, v_loc), #delete effects
Variables that don broposition(”

match name don’t
have to be the sahe
but can be unless
otherwise specified!

on”, v_tire, i_ground)]

Another Example - Rocket Ship

Suppose we have a rocket ship that has enough fuel for 1 trip from A to B.
It needs to transport 2 payloads G1 and G2. Both fit in the rocket together.
The rocket can Move, and we can Load and Unload it.

A
A

Another Example - Rocket Ship

Suppose we have a rocket ship that has enough fuel for 1 trip from A to B.
It needs to transport 2 payloads G1 and G2. Both fit in the rocket together.

Literals?

Another Example - Rocket Ship

Suppose we have a rocket ship that has enough fuel for 1 trip from A to B.
It needs to transport 2 payloads G1 and G2. Both fit in the rocket together.

Literals: Rocket, G1, G2, LocA, LocB

Another Example - Rocket Ship

Suppose we have a rocket ship that has enough fuel for 1 trip from A to B.
It needs to transport 2 payloads G1 and G2.

| create literals and variables as | go

Literals: Rocket, G1, G2, LocA, LocB through the problem. In order to create

Start state: the start state and the goal state, | need
At(Rocket, LocA), Has-Fuel(), the literals defined.
Unloaded(G1,LocA), Unloaded(G2,LocA)

Goal state:

At(Rocket, LocB), Unloaded(G1,LocB), Unloaded(G2,LocB)

Another Example - Rocket Ship

Literals: Rocket, G1, G2, LocA, LocB

St i As | create my operators Move, Load,
art state: . .
At(Rocket, LocA), Has-Fuel(), and Unload, | will add variables.
Unloaded(G1,LocA), Unloaded(G2,LocA)
Goal state:

At(Rocket, LocB), Unloaded(G1,LocB), Unloaded(G2,LocB)

Move: Load: Unload:

Another Example - Rocket Ship

Literals: Rocket, G1, G2, LocA, LocB
Start state:
At(Rocket, LocA), Has-Fuel(),
Unloaded(G1,LocA), Unloaded(G2,LocA)
Goal state:
At(Rocket, LocB), Unloaded(G1,LocB), Unloaded(G2,LocB)

Move:
P:
A:
D:

Another Example - Rocket Ship

Literals: Rocket, G1, G2, LocA, LocB

The rocket starts at a location, and it
>tart state: could be either location. | need to add a
At(Rocket, LocA), Has-Fuel(), location variable. There .is only 1 rocket,
Unloaded(G1,LocA), Unloaded(G2,LocA)

so | don’t need a variable for it.
Goal state:

At(Rocket, LocB), Unloaded(G1,LocB), Unloaded(G2,LocB)
Variables: Start

Move:

P: At(Rocket,Start)
A:

D:

Another Example - Rocket Ship

Literals: Rocket, G1, G2, LocA, LocB
The rocket needs fuel.
Start state:
At(Rocket, LocA), Has-Fuel(),
Unloaded(G1,LocA), Unloaded(G2,LocA)
Goal state:

At(Rocket, LocB), Unloaded(G1,LocB), Unloaded(G2,LocB)
Variables: Start

Move:

P: At(Rocket,Start), Has-Fuel()
A:

D:

Another Example - Rocket Ship

Literals: Rocket, G1, G2, LocA, LocB

Start state: which needs to be different from the
At(Rocket, LocA), Has-Fuel(), start location. We need to define a dest

Unloaded(G1,LocA), Unloaded(G2,LocA) variable, which we will add after

Goal state: moving the rocket.
At(Rocket, LocB), Unloaded(G1,LocB), Unloaded(G2,LocB)
Variables: Start, Dest

The rocket needs to go to a destination,

Move:

P: At(Rocket,Start), Has-Fuel(), Start |=Dest
A: At(Rocket,Dest)

D:

Another Example - Rocket Ship

Literals: Rocket, G1, G2, LocA, LocB
Start state:
At(Rocket, LocA), Has-Fuel(),
Unloaded(G1,LocA), Unloaded(G2,LocA)
Goal state:

At(Rocket, LocB), Unloaded(G1,LocB), Unloaded(G2,LocB)
Variables: Start, Dest

Once the rocket has moved, it has no
more fuel and it is no longer at Start.

Move:

P: At(Rocket,Start), Has-Fuel(), Start |=Dest
A: At(Rocket,Dest)

D: Has-Fuel(),At(Rocket,Start)

Another Example - Rocket Ship

Literals: Rocket, G1, G2, LocA, LocB
Start state:
At(Rocket, LocA), Has-Fuel(),
Unloaded(G1,LocA), Unloaded(G2,LocA)
Goal state:
At(Rocket, LocB), Unloaded(G1,LocB), Unloaded(G2,LocB)
Variables: Start, Dest

Load:
P:
A:
D:

Another Example - Rocket Ship

Literals: Rocket, G1, G2, LocA, LocB
Start state:
At(Rocket, LocA), Has-Fuel(),
Unloaded(G1,LocA), Unloaded(G2,LocA)
Goal state:

The rocket needs to load a specific
package G1 or G2. The load action
doesn’t care which package it is
because both are loaded the same way.
We need a variable pkg to use, and we
need to say it starts at the starting
location unloaded from the rocket.

At(Rocket, LocB), Unloaded(G1,LocB), Unloaded(G2,LocB)

Variables: Start, Dest, Pkg

Load:

P: At(Rocket,Start), Unloaded(Pkg,Start)
A:

D:

Another Example - Rocket Ship

Literals: Rocket, G1, G2, LocA, LocB
Start state:
At(Rocket, LocA), Has-Fuel(),
Unloaded(G1,LocA), Unloaded(G2,LocA)
Goal state:
At(Rocket, LocB), Unloaded(G1,LocB), Unloaded(G2,LocB)
Variables: Start, Dest, Pkg

Load:

P: At(Rocket,Start), Unloaded(Pkg,Start)
A: Loaded(Pkg,Rocket)

D: Unloaded(Pkg,Start)

Another Example - Rocket Ship

Literals: Rocket, G1, G2, LocA, LocB

No new variables needed for unload,
Start state: which works like Load but in reverse
At(Rocket, LocA), Has-Fuel(), - '
Unloaded(G1,LocA), Unloaded(G2,LocA)
Goal state:

At(Rocket, LocB), Unloaded(G1,LocB), Unloaded(G2,LocB)
Variables: Start, Dest, Pkg

Unload:

P: At(Rocket,Dest), Loaded(Pkg,Rocket)
A: Unloaded(Pkg,Dest)

D: Loaded(Pkg,Rocket)

Rocket Ship GraphPlan Graph

Start state Action Layer 1 Predicate Layer 1
At(Rocket,LocB)
Move /
At(Rocket,LocA) . 7= At(Rocket,LocA)
Has-Fuel() hS Has-Fuell()
Load(G1) \
Unloaded(G1,LocA \ ™ Loaded(G1,Rocket)

Unloaded(G2,LocA) Load(G2) 1 Loaded(G2,Rocket)

\
\

\\\ \ Unloaded(G1,LocA)

\

\ Unloaded(G2,LocA)

Rocket Ship GraphPlan Graph

At(Rocket, LocB)
M -
At(Rocket,LocA) OVE 3 ---- At(Rocket,LocA)
Has-Fuel() Has-Fuel()
Load(G1 ;
Unloaded(G1,LocA) \\ Loaded(G1,Rocket)

\

Unloaded(G2,LocA) Logdl(G2 —‘— Loaded(G2,Rocket)

) v
\ " Unloaded(G1,LocA)

\
\

\ Unloaded(G2,LocA)

Mutex Actions
Interference:

Move deletes At which is a precondition of Load
Inconsistent:

Move deletes At but noop adds it

Move deletes Has-Fuel but noop adds it

Mutex Propositions:

- At(Rocket,LocB) and
At(Rocket,LocA) because
Move and noop are mutex

actions
- What else?

