
Warm-up:
What is the relationship between number of constraints and number of 
possible solutions?

In other words, as the number of the constraints increases,

does the number of possible solutions:

A) Increase

B) Decrease

C) Stay the same



Announcements
▪ Midterm 1 in one week!

▪ Covering content through Monday Feb 17

▪ Practice tests released, review Sunday 2-4pm in GHC 6115

▪ HW4 Online and Written due tomorrow, Thursday Feb 13

▪ HW5 Online out tomorrow Thursday Feb 13, due Feb 21

▪ Programming 2 out now, due Feb 21



AI: Representation and Problem Solving

Propositional Logic and Logical Agents

Instructors: Tuomas Sandholm and Vincent Conitzer

Slide credits: CMU AI, http://ai.berkeley.edu



Logical Agents
Logical agents and environments

Agent

Percepts

Actions

Environment

Sensors

Actuators

?
Knowledge Base

Inference



Logical Agents
So what do we TELL our knowledge base (KB)?
▪ Facts (sentences)

▪ The grass is green

▪ The sky is blue

▪ Rules (sentences)

▪ Eating too much candy makes you sick

▪ When you’re sick you don’t go to school

▪ Percepts and Actions (sentences)

▪ Vince ate too much candy today

What happens when we ASK the agent?
▪ Inference – new sentences created from old

▪ Vince is not going to school today



Models

How do we represent possible worlds with models and knowledge bases?

How do we then do inference with these representations?



Logic Language
Natural language?

Propositional logic
▪ Syntax: P  (Q  R);        X1  (Raining  Sunny)

▪ Possible world: {P=true, Q=true, R=false, S=true} or 1101

▪ Semantics:    is true in a world iff is  true and  is true (etc.)

First-order logic
▪ Syntax: x y P(x,y)  Q(Joe,f(x))   f(x)=f(y)

▪ Possible world: Objects o1, o2, o3; P holds for <o1,o2>; Q holds for <o3>; f(o1)=o1; 
Joe=o3; etc.

▪ Semantics: () is true in a world if =oj and  holds for oj; etc.



Propositional Logic



Propositional Logic
Symbol:

▪ Variables that can be true or false

▪ We’ll try to use capital letters, e.g. A, B, P1,2

▪ Often include True and False

Operators:

▪  A: not A

▪ A  B: A and B (conjunction)

▪ A  B: A or B (disjunction) Note: this is not an “exclusive or”

▪ A  B: A implies B (implication). If A then B 

▪ A  B: A if and only if B (biconditional)

Sentences



Propositional Logic Syntax
Given: a set of proposition symbols {X1, X2, …, Xn} 

▪ (we often add True and False for convenience)

Xi is a sentence

If  is a sentence then  is a sentence

If  and  are sentences then    is a sentence

If  and  are sentences then    is a sentence

If  and  are sentences then    is a sentence

If  and  are sentences then    is a sentence

And p.s. there are no other sentences!



Propositional Logical Vocab
Literal

▪ Atomic sentence: True, False, Symbol, Symbol

Clause

▪ Disjunction of literals: 𝐴 ∨ 𝐵 ∨  ¬𝐶

Definite clause

▪ Disjunction of literals, exactly one is positive

▪¬𝐴 ∨ 𝐵 ∨ ¬𝐶

Horn clause

▪ Disjunction of literals, at most one is positive

▪ All definite clauses are Horn clauses

Vocab Alert!



𝛂 ∨ 𝛃  is inclusive or, not exclusive

Notes on Operators



Truth Tables
𝛂 ∨ 𝛃  is inclusive or, not exclusive

𝛂 𝛃 𝛂  𝛃

F F F

F T F

T F F

T T T

𝛂 𝛃 𝛂  𝛃 

F F F

F T T

T F T

T T T



𝛂 ∨ 𝛃  is inclusive or, not exclusive

𝛂 ⇒ 𝛃  is equivalent to  ¬𝛂 ∨ 𝛃

▪ Says who?

Notes on Operators



Truth Tables
𝛂 ⇒ 𝛃  is equivalent to  ¬𝛂 ∨ 𝛃

𝛂 𝛃 𝛂 ⇒ 𝛃 ¬𝛂 ¬𝛂 ∨ 𝛃

F F T T T

F T T T T

T F F F F

T T T F T



𝛂 ∨ 𝛃  is inclusive or, not exclusive

𝛂 ⇒ 𝛃  is equivalent to  ¬𝛂 ∨ 𝛃

▪ Says who?

𝛂 ⇔ 𝛃 is equivalent to (𝛂 ⇒ 𝛃) ∧ (𝛃 ⇒ 𝛂)

▪ Prove it!

Notes on Operators



Truth Tables
𝛂 ⇔ 𝛃 is equivalent to (𝛂 ⇒ 𝛃) ∧ (𝛃 ⇒ 𝛂)

𝛂 𝛃 𝛂 ⇔ 𝛃 𝛂 ⇒ 𝛃 𝛃 ⇒ 𝛂 (𝛂⇒𝛃) ∧ (𝛃⇒𝛂)

F F T T T T

F T F T F F

T F F F T F

T T T T T T

Equivalence: it’s true in all models. Expressed as a logical sentence:

(𝛂 ⇔ 𝛃) ⇔ [(𝛂 ⇒ 𝛃) ∧ (𝛃 ⇒ 𝛂)]



Poll 1
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true,

what do we know about 𝐴 ∨ 𝐶?

i.  𝐴 ∨ 𝐶 is guaranteed to be true

ii.  𝐴 ∨ 𝐶 is guaranteed to be false

iii.  We don’t have enough information to say anything 
definitive about 𝐴 ∨ 𝐶



Poll 1
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true, what do we know about 𝐴 ∨ 𝐶?

𝐴 𝐵 𝐶 𝐴 ∨ 𝐵 ¬𝐵 ∨ 𝐶 𝐴 ∨ 𝐶 

false false false false true false

false false true false true true

false true false true false false

false true true true true true

true false false true true true

true false true true true true

true true false true false true

true true true true true true



Poll 1
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true, what do we know about 𝐴 ∨ 𝐶?

𝐴 𝐵 𝐶 𝐴 ∨ 𝐵 ¬𝐵 ∨ 𝐶 𝐴 ∨ 𝐶 

false false false false true false

false false true false true true

false true false true false false

false true true true true true

true false false true true true

true false true true true true

true true false true false true

true true true true true true



Poll 1
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true,

what do we know about 𝐴 ∨ 𝐶?

i.  𝐴 ∨ 𝐶 is guaranteed to be true

ii.  𝐴 ∨ 𝐶 is guaranteed to be false

iii.  We don’t have enough information to say anything 
definitive about 𝐴 ∨ 𝐶



Poll 2
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true,

what do we know about 𝐴?

i.  𝐴 is guaranteed to be true

ii.  𝐴 is guaranteed to be false

iii.  We don’t have enough information to say anything 
definitive about 𝐴



Poll 2
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true, what do we know about 𝐴?

𝐴 𝐵 𝐶 𝐴 ∨ 𝐵 ¬𝐵 ∨ 𝐶 𝐴 ∨ 𝐶 

false false false false true false

false false true false true true

false true false true false false

false true true true true true

true false false true true true

true false true true true true

true true false true false true

true true true true true true



Poll 2
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true,

what do we know about 𝐴?

i.  𝐴 is guaranteed to be true

ii.  𝐴 is guaranteed to be false

iii.  We don’t have enough information to say anything 
definitive about 𝐴



Logic Representation of World Models 

▪ Knowledge Base of things we know to be true (logical sentences): 

  P  (Q  R);        X1  (Raining  Sunny)

▪ Possible world model (assignment of variables to values): 

  {P=true, Q=true, R=false, S=true} or 1101

▪ Semantics:    is true in a world iff is  true and  is true (etc.)



Propositional Logic

function PL-TRUE?(,model) returns true or false

    if  is a symbol then return Lookup(, model)

    if Op() =  then return not(PL-TRUE?(Arg1(),model))

    if Op() =  then return and(PL-TRUE?(Arg1(),model), 

                                                          PL-TRUE?(Arg2(),model))

    etc.

(Sometimes called “recursion over syntax”)

Check if sentence is true in given model

In other words, does the model satisfy the sentence?



Sentences as Constraints
Adding a sentence to our knowledge base constrains the

number of possible models:

KB: Nothing

P Q R

false false false

false false true

false true false

false true true

true false false

true false true

true true false

true true true

Possible
Models



Sentences as Constraints
Adding a sentence to our knowledge base constrains the

number of possible models:

KB: Nothing

KB: [(P ∧ ¬Q) ∨ (Q ∧ ¬P)] ⇒ R

P Q R

false false false

false false true

false true false

false true true

true false false

true false true

true true false

true true true

Possible
Models



Sentences as Constraints
Adding a sentence to our knowledge base constrains the

number of possible models:

KB: Nothing

KB: [(P ∧ ¬Q) ∨ (Q ∧ ¬P)] ⇒ R

KB: R, [(P ∧ ¬Q) ∨ (Q ∧ ¬P)] ⇒ R

P Q R

false false false

false false true

false true false

false true true

true false false

true false true

true true false

true true true

Possible
Models



Sherlock Entailment
“When you have eliminated the impossible, whatever remains, 
however improbable, must be the truth” – Sherlock Holmes via 
Sir Arthur Conan Doyle

▪ Knowledge base and inference 
allow us to remove impossible 
models, helping us to see what is 
true in all of the remaining 
models



Wumpus World
Logical Reasoning as a CSP

▪ Bij = breeze felt

▪ Sij = stench smelt

▪ Pij = pit here

▪ Wij = wumpus here

▪ G = gold

http://thiagodnf.github.io/wumpus-world-simulator/

http://thiagodnf.github.io/wumpus-world-simulator/


Wumpus World
Possible Models

▪ P1,2 P2,2 P3,1 

▪ Knowledge base

▪ Breeze ⇒ Adjacent Pit
▪ Pit ⇒ Breeze in all Adjacent
▪ Nothing in [1,1]
▪ Breeze in [2,1]



Entailment

Entailment:  |=  (“ entails ” or “ follows from ”) iff in every world 
where  is true,  is also true

▪ I.e., the  -worlds are a subset of the -worlds [models()  models()]

Usually, we want to know if KB |= query
▪ models(KB)  models(query)

▪ In other words

▪ KB removes all impossible models (any model where KB is false)

▪ If query is true in all of these remaining models, we conclude that query must be true

Entailment and implication are very much related
▪ However, entailment relates two sentences, while an implication is itself a sentence 

(usually derived via inference to show entailment)



Wumpus World
Possible Models

▪ P1,2 P2,2 P3,1 

▪ Knowledge base

▪ Breeze ⇒ Adjacent Pit
▪ Pit ⇒ Breeze in all Adjacent
▪ Nothing in [1,1]
▪ Breeze in [2,1]

▪ Query 𝛼1:

▪ No pit in [1,2]

Entailment: KB |= 𝛼

“KB entails 𝛼” iff in every world 
where KB is true, 𝛼 is also true



Wumpus World
Possible Models

▪ P1,2 P2,2 P3,1 

▪ Knowledge base

▪ Breeze ⇒ Adjacent Pit
▪ Pit ⇒ Breeze in all Adjacent
▪ Nothing in [1,1]
▪ Breeze in [2,1]

▪ Query 𝛼2:

▪ No pit in [2,2]

Entailment: KB |= 𝛼

“KB entails 𝛼” iff in every world 
where KB is true, 𝛼 is also true



Wumpus World
Possible Models

▪ P1,2 P2,2 P3,1 

▪ Knowledge base

▪ Breeze ⇒ Adjacent Pit
▪ Pit ⇒ Breeze in all Adjacent
▪ Nothing in [1,1]
▪ Breeze in [2,1]

▪ Query 𝛼2:

▪ No pit in [2,2] – UNSURE!!

Entailment: KB |= 𝛼

“KB entails 𝛼” iff in every world 
where KB is true, 𝛼 is also true



Propositional Logic Models

A 0 0 0 0 1 1 1 1
B 0 0 1 1 0 0 1 1
C 0 1 0 1 0 1 0 1

All Possible Models

Model Symbols



Poll 3
Does the KB entail query C?

A 0 0 0 0 1 1 1 1
B 0 0 1 1 0 0 1 1
C 0 1 0 1 0 1 0 1

A 0 0 0 0 1 1 1 1

BC 1 1 0 1 1 1 0 1

ABC 1 1 1 1 0 1 1 1

C 0 1 0 1 0 1 0 1

All Possible Models

Model Symbols

Knowledge Base

Query

Entailment:  |= 

“ entails ” iff in every world 
where  is true,  is also true



Poll 3
Does the KB entail query C?

Yes!

A 0 0 0 0 1 1 1 1
B 0 0 1 1 0 0 1 1
C 0 1 0 1 0 1 0 1

A 0 0 0 0 1 1 1 1

BC 1 1 0 1 1 1 0 1

ABC 1 1 1 1 0 1 1 1
KB 0 0 0 0 0 1 0 1
C 0 1 0 1 0 1 0 1

All Possible Models

Model Symbols

Knowledge Base

Query

Entailment:  |= 

“ entails ” iff in every world 
where  is true,  is also true



Entailment
How do we implement a logical agent that proves entailment?

▪ Logic language

▪ Propositional logic

▪ First order logic

▪ Knowledge Base

▪ Add known logical rules and facts

▪ Inference algorithms

▪ Theorem proving

▪Model checking



Simple Model Checking
function TT-ENTAILS?(KB, α) returns true or false



Simple Model Checking, contd.

Same recursion as backtracking P1=true P1=false

P2=true P2=false

Pn=falsePn=true

1
1

1
1

1
…

1

0
0

0
0

…
0

KB?
α?



Simple Model Checking
function TT-ENTAILS?(KB, α) returns true or false

    return TT-CHECK-ALL(KB, α, symbols(KB) U symbols(α),{}) 

function TT-CHECK-ALL(KB, α, symbols,model) returns true or false 

    if empty?(symbols) then 

            if PL-TRUE?(KB, model) then return PL-TRUE?(α, model) 

            else return true

    else

            P ← first(symbols)

            rest ← rest(symbols)

            return  and (TT-CHECK-ALL(KB, α, rest, model ∪ {P = true}) 

                         TT-CHECK-ALL(KB, α, rest, model ∪ {P = false})) 



Simple Model Checking, contd.

Same recursion as backtracking

O(2n) time, linear space

Can we do better?

P1=true P1=false

P2=true P2=false

Pn=falsePn=true

1
1

1
1

1
…

1

0
0

0
0

…
0

KB?
α?



Inference: Proofs
A proof is a demonstration of entailment between  and  

Method 1: model-checking
▪ For every possible world, if  is true make sure that is  true too

▪ OK for propositional logic (finitely many worlds); not easy for first-order logic

Method 2: theorem-proving
▪ Search for a sequence of proof steps (applications of inference rules) leading from  to  

▪ E.g., from P  (P  Q), infer Q by Modus Ponens

Properties

▪ Sound algorithm: everything it claims to prove is in fact entailed

▪ Complete algorithm: every sentence that is entailed can be proved



Simple Theorem Proving: Forward Chaining

Forward chaining applies Modus Ponens to generate new facts:
▪ Given X1  X2  … Xn   Y and X1, X2, …, Xn 

▪ Infer Y

Forward chaining keeps applying this rule, adding new facts, until 
nothing more can be added

Requires KB to contain only definite clauses: 
▪ (Conjunction of symbols)  symbol; or

▪ A single symbol (note that X is equivalent to True   X)



Forward Chaining Algorithm
function PL-FC-ENTAILS?(KB, q) returns true or false

    

P  Q

L  M  P

B  L  M

A  P  L

A  B  L

A

B 

CLAUSES



Forward Chaining Algorithm
function PL-FC-ENTAILS?(KB, q) returns true or false

    count ← a table, where count[c] is the number of symbols in c’s premise

    inferred ← a table, where inferred[s] is initially false for all s 

    agenda ← a queue of symbols, initially symbols known to be true in KB 

P  Q

L  M  P

B  L  M

A  P  L

A  B  L

A

B 

1

2

2

2

2

0

0 

CLAUSES AGENDACOUNT

A  false

B  false

L   false

M false

P  false

Q  false

 

INFERRED



Q

P

M

L

BA

Forward Chaining Example: Proving Q

P  Q

L  M  P

B  L  M

A  P  L

A  B  L

A

B 

1

2

2

2

2

0

0 

A  false

B  false

L   false

M false

P  false

Q  false

 

CLAUSES

AGENDA

A   B

INFERREDCOUNT

Lx   

xxxx  true

// 1

// 1

x   

xxxx  true

// 1

// 0

x   

xxxx  true

// 1

// 0

Mx   

xxxx  true

// 0

Px   

xxxx  true

// 0

// 0

L Qx   x   

xxxx  true



Forward Chaining Algorithm
function PL-FC-ENTAILS?(KB, q) returns true or false

    count ← a table, where count[c] is the number of symbols in c’s premise

    inferred ← a table, where inferred[s] is initially false for all s 

    agenda ← a queue of symbols, initially symbols known to be true in KB 

    while agenda is not empty do 

            p ← Pop(agenda)

            if p = q then return true 

            if inferred[p] = false then 

                    inferred[p]←true

                    for each clause c in KB where p is in c.premise do 

                            decrement count[c] 

                            if count[c] = 0 then add c.conclusion to agenda 

    return false



Properties of forward chaining

Theorem: FC is sound and complete for definite-clause KBs

Soundness: follows from soundness of Modus Ponens (easy to check)

Completeness proof:

 1. FC reaches a fixed point where no new atomic sentences are derived 

 2. Consider the final inferred table as a model m, assigning true/false to symbols 

 3. Every clause in the original KB is true for m

  Proof: Suppose a clause a1... ak  b is false for m 
  Then a1... ak is true in m and b is false for m 
  Therefore the algorithm has not reached a fixed point! 

 4. Hence m is a model of KB

 5. If KB |= q, q is true in every model of KB, including m

A  false

B  false

L   false

M false

P  false

Q  false

xxxx  true

xxxx  true

xxxx  true

xxxx  true

xxxx  true

xxxx  true



Does forward chaining work on this example?

A ⇒ B

¬A ⇒ B



Inference Rules 
Modus Ponens

𝛼⇒𝛽, 𝛼

𝛽

Unit Resolution

𝑎∨𝑏, ¬𝑏∨𝑐

𝑎∨𝑐

General Resolution

𝑎1∨⋯∨𝑎𝑚∨𝑏, ¬𝑏∨𝑐1∨⋯∨𝑐𝑛

𝑎1∨⋯∨𝑎𝑚∨𝑐1∨⋯∨𝑐𝑛

Notation Alert!



Resolution
Algorithm Overview

function PL-RESOLUTION?(KB, ) returns true or false

    We want to prove that KB entails 

    In other words, we want to prove that we cannot satisfy (KB and not )

1. Start with a set of CNF clauses, including the KB as well as ¬
2. Keep resolving pairs of clauses until

A. You resolve the empty clause

 Contradiction found!

 KB ٿ ¬𝛼 cannot be satisfied

 Return true, KB entails 
B. No new clauses added

 Return false, KB does not entail 



Resolution
Example trying to prove ¬𝑃1,2

¬𝑃2,1 ∨ 𝐵1,1 ¬𝐵1,1 ∨ 𝑃1,2 ∨ 𝑃2,1 ¬𝑃1,2 ∨ 𝐵1,1 ¬𝐵1,1 ¬¬𝑃1,2

Knowledge Base

General Resolution
𝑎1∨⋯∨𝑎𝑚∨𝑏, ¬𝑏∨𝑐1∨⋯∨𝑐𝑛

𝑎1∨⋯∨𝑎𝑚∨𝑐1∨⋯∨𝑐𝑛



Resolution
Example trying to prove ¬𝑃1,2

¬𝑃2,1 ∨ 𝐵1,1 ¬𝐵1,1 ∨ 𝑃1,2 ∨ 𝑃2,1 ¬𝑃1,2 ∨ 𝐵1,1 ¬𝐵1,1 𝑃1,2

Knowledge Base

General Resolution
𝑎1∨⋯∨𝑎𝑚∨𝑏, ¬𝑏∨𝑐1∨⋯∨𝑐𝑛

𝑎1∨⋯∨𝑎𝑚∨𝑐1∨⋯∨𝑐𝑛

¬𝐵1,1 ∨ 𝑃1,2 ∨ 𝐵1,1 𝑃1,2 ∨ 𝑃2,1 ∨ ¬𝑃2,1 ¬𝐵1,1 ∨ 𝑃2,1 ∨ 𝐵1,1 𝑃1,2 ∨ 𝑃2,1 ∨ ¬𝑃1,2 ¬𝑃2,1 ¬𝑃1,2



Resolution
function PL-RESOLUTION?(KB, ) returns true or false

    clauses ← the set of clauses in the CNF representation of KB ٿ ¬𝛼

    new ← { }

    loop do

        for each pair of clauses 𝐶𝑖 , 𝐶𝑗  in clauses do

            resolvents ← PL-RESOLVE(𝐶𝑖 , 𝐶𝑗)

            if resolvents contains the empty clause then

                return true

            new ← new ∪ resolvants

        if new ⊆ clauses then

            return false

        clauses ← clauses ∪ new



Properties
Forward Chaining is:

▪ Sound and complete for definite-clause KBs

▪ Complexity: linear time 

Resolution is:

▪ Sound and complete for any PL KBs!

▪ Complexity: exponential time 



Poll 4
The regions below visually enclose the set of models that satisfy the 
respective sentence 𝛾 or 𝛿. For which of the following diagrams is the 
sentence 𝛾  𝛿 satisfiable? Select all that apply.

γ δ γ δ δγ

γ

δ

δ

γ

A) B) C)

D) E)



Poll 5
The regions below visually enclose the set of models that satisfy the 
respective sentence 𝛾 or 𝛿. For which of the following diagrams does 
𝛾 entail 𝛿? Select all that apply.

γ δ γ δ δγ

γ

δ

δ

γ

A) B) C)

D) E)



Satisfiability and Entailment
A sentence is satisfiable if it is true in at least one world (e.g., CSPs!)

Suppose we have a hyper-efficient SAT solver; how can we use it to test 
entailment?
▪ Suppose   |=  

▪ Then     is true in all worlds

▪ Hence (  ) is false in all worlds

▪ Hence    is false in all worlds, i.e., unsatisfiable

So, add the negated conclusion to what you know, test for 
(un)satisfiability; also known as reductio ad absurdum

Efficient SAT solvers operate on conjunctive normal form



Satisfiability and Entailment

http://thiagodnf.github.io/wumpus-world-simulator/

http://thiagodnf.github.io/wumpus-world-simulator/


Conjunctive Normal Form (CNF)

Every sentence can be expressed as a conjunction of clauses

Each clause is a disjunction of literals

Each literal is a symbol or a negated symbol

Conversion to CNF by a sequence of standard transformations:

▪ At_1,1_0  (Wall_0,1  Blocked_W_0)

▪ At_1,1_0  ((Wall_0,1  Blocked_W_0)  (Blocked_W_0 Wall_0,1)) 

▪ At_1,1_0 v ((Wall_0,1 v Blocked_W_0)  (Blocked_W_0 v Wall_0,1)) 

▪ (At_1,1_0  v  Wall_0,1   v   Blocked_W_0)  (At_1,1_0   v  Blocked_W_0   v  Wall_0,1)

Replace biconditional by two implications

Replace     by  v  

Distribute v over  



Efficient SAT solvers

DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern solvers

Essentially a backtracking search over models with some extras:
▪ Early termination: stop if 

▪ all clauses are satisfied; e.g., (A  B)  (A  C) is satisfied by {A=true}

▪ any clause is falsified; e.g., (A  B)  (A  C) is falsified by {A=false, B=false}

▪ Pure literals: if all occurrences of a symbol in as-yet-unsatisfied clauses have the 
same sign, then give the symbol that value

▪ E.g., A is pure and positive in (A  B)  (A  C)  (C  B) so set it to true

▪ Unit clauses: if a clause is left with a single literal, set symbol to satisfy clause

▪ E.g., if A=false, (A  B)  (A  C) becomes (false  B)  (false  C), i.e. (B)  (C)

▪ Satisfying the unit clauses often leads to further propagation, new unit clauses, 
etc.



DPLL algorithm
function DPLL(clauses, symbols, model) returns true or false 
    if every clause in clauses is true in model then return true
    if some clause in clauses is false in model then return false
    
    P, value ←FIND-PURE-SYMBOL(symbols, clauses, model)
    if P is non-null then return DPLL(clauses, symbols–P, model∪{P=value}) 
    
    P, value ←FIND-UNIT-CLAUSE(clauses, model)
    if P is non-null then return DPLL(clauses, symbols–P, model∪{P=value}) 
    
    P ← First(symbols)
    rest ← Rest(symbols)

    return or(DPLL(clauses, rest, model∪{P=true}),
                      DPLL(clauses, rest, model∪{P=false}))



Planning as Satisfiability
Given a hyper-efficient SAT solver, can we use it to make plans?

Yes, for fully observable, deterministic case: planning problem is 
solvable iff there is some satisfying assignment for actions etc.





Planning as Satisfiability
Given a hyper-efficient SAT solver, can we use it to make plans?

Yes, for fully observable, deterministic case: planning problem is 
solvable iff there is some satisfying assignment for actions etc.

For T = 1 to infinity, set up the KB as follows and run SAT solver:

▪ Initial state, domain constraints

▪ Transition model sentences up to time T

▪ Goal is true at time T

▪ Precondition axioms: At_1,1_0  N_0    Wall_1,2 etc.

▪ Action exclusion axioms: (N_0  W_0)  (N_0  S_0)  .. etc.



Initial State

The agent may know its initial location:
▪ At_1,1_0

Or, it may not:
▪ At_1,1_0 v At_1,2_0 v At_1,3_0 v … v At_3,3_0

We also need a domain constraint – cannot be in two places at once!
▪ (At_1,1_0  At_1,2_0)  (At_1,1_0  At_1,3_0)  …

▪ (At_1,1_1  At_1,2_1)  (At_1,1_1  At_1,3_1)  …

▪ …



Fluents and Effect Axioms

A fluent is a state variable that changes over time

How does each state variable or fluent at each time gets its value?

Fluents for PL Pacman are Pacman_x,y_t , e.g., Pacman _3,3_17



Fluents and Successor-state Axioms

A fluent is a state variable that changes over time

How does each state variable or fluent at each time gets its value?

Fluents for PL Pacman are Pacman_x,y_t , e.g., Pacman _3,3_17

A state variable gets its value according to a successor-state axiom
▪ Xt  [Xt-1  (some actiont-1 made it false)] v

              [Xt-1  (some actiont-1 made it true)]



Fluents and Successor-state Axioms

Write the successor-state axiom for pacman’s location



Planning as Satisfiability
For T = 1 to infinity, set up the KB as follows and run SAT solver:

▪ Initial state, domain constraints

▪ Transition model sentences up to time T

▪ Goal is true at time T

Why? 

If I can find a satisfying set of variables that meet the constraints, then I 
have also found a plan as the set of action variables. 



EXTRA SLIDES



Logical Agent Vocab
Model

▪ Complete assignment of symbols to True/False

Sentence

▪ Logical statement

▪ Composition of logic symbols and operators

KB

▪ Collection of sentences representing facts and rules 
we know about the world

Query

▪ Sentence we want to know if it is provably True, 
provably False, or unsure.



Entailment
Does the knowledge base entail my query?

▪ Query 1: ¬ 𝑃[1,2]

▪ Query 2: ¬ 𝑃[2,2]



Provably True, Provably False, or Unsure

http://thiagodnf.github.io/wumpus-world-simulator/

http://thiagodnf.github.io/wumpus-world-simulator/


Logical Agent Vocab
Entailment

▪ Input: sentence1, sentence2

▪ Each model that satisfies sentence1 must also satisfy sentence2

▪ "If I know 1 holds, then I know 2 holds"

▪ (ASK), TT-ENTAILS, FC-ENTAILS, RESOLUTION-ENTAILS 

Satisfy

▪ Input: model, sentence

▪ Is this sentence true in this model?

▪ Does this model satisfy this sentence

▪ "Does this particular state of the world work?’

▪ PL-TRUE



Logical Agent Vocab
Satisfiable

▪ Input: sentence

▪ Can find at least one model that satisfies this sentence

▪ (We often want to know what that model is)

▪ "Is it possible to make this sentence true?"

▪ DPLL

Valid

▪ Input: sentence

▪ sentence is true in all possible models
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