Warm-up:

What is the relationship between number of constraints and number of
possible solutions?

In other words, as the number of the constraints increases,
does the number of possible solutions:

A) Increase

B) Decrease

C) Stay the same

Announcements

= Midterm 1 in one week!
= Covering content through Monday Feb 17
" Practice tests released, review Sunday 2-4pm in GHC 6115

= HW4 Online and Written due tomorrow, Thursday Feb 13
= HWS5 Online out tomorrow Thursday Feb 13, due Feb 21
" Programming 2 out now, due Feb 21

Al: Representation and Problem Solving

Propositional Logic and Logical Agents

Instructors: Tuomas Sandholm and Vincent Conitzer
Slide credits: CMU Al, http://ai.berkeley.edu

Logical Agents

Logical agents and environments

Sensors

Knowledge Base

>)
Inference

Actuators

Logical Agents

So what do we TELL our knowledge base (KB)?
= Facts (sentences)
" The grass is green
" The sky is blue
= Rules (sentences)
" Eating too much candy makes you sick
" When you’re sick you don’t go to school
* Percepts and Actions (sentences)
" Vince ate too much candy today

What happens when we ASK the agent?
" Inference — new sentences created from old
= Vince is not going to school today

Models

How do we represent possible worlds with models and knowledge bases?
How do we then do inference with these representations?

Logic Language

Natural language?

Propositional logic

= Syntax: P v (—Q A R); X, < (Raining = Sunny)

= Possible world: {P=true, Q=true, R=false, S=true} or 1101

» Semantics: a A [is true in a world iff is o true and [3 is true (etc.)

First-order logic
= Syntax: Vx dy P(x,y) A =Q(Joe,f(x)) = f(x)=f(y)

= Possible world: Objects o,, 0,, 05; P holds for <o,,0,>; Q holds for <o,>; f(o,)=0;
Joe=0,; etc.

= Semantics: ¢(o) is true in a world if 6=0,and ¢ holds for o;; etc.

Propositional Logic

Propositional Logic

Symbol:

= \ariables that can be true or false

= We’ll try to use capital letters, e.g. A, B, P, ,
= Ofteninclude True and False

Operators:

= —A:notA

= A AB:Aand B (conjunction)

= A v B:AorB(disjunction) Note: this is not an “exclusive or”
" A= B:Aimplies B (implication). If A then B
= A< B:Aifand only if B (biconditional)
Sentences

Propositional Logic Syntax

Given: a set of proposition symbols {X;, X,, ..., X, }
= (we often add True and False for convenience)

X;is a sentence

If oL is a sentence then —a is a sentence

If o and [3 are sentences then o A B is a sentence
If o and 3 are sentences then o, v 3 is a sentence
If oo and 3 are sentences then oo = [3 is a sentence

If oo and 3 are sentences then o < 3 is a sentence
And p.s. there are no other sentences!

Propositional Logical Vocab

Literal
" Atomic sentence: True, False, Symbol, —Symbol

Clause
" Disjunction of literals: AV B vV =C

Definite clause
= Disjunction of literals, exactly one is positive
m JAVB vV AC

Horn clause
" Disjunction of literals, at most one is positive
= All definite clauses are Horn clauses

Vocab Alert!

Notes on Operators

o V 3 isinclusive or, not exclusive

Truth Tables

o V @ is inclusive or, not exclusive

o s oanP
F F F
F T F
T F F
T T T

p avp
F F
T T
F T
T T

Notes on Operators

o V 3 isinclusive or, not exclusive

o = 3 is equivalentto ~a Vv 3
= Says who?

Truth Tables

o = 3 is equivalentto ~a Vv f3

o B = —Q —aV
F F T T T
F T T T T
T F F F F
T T T F T

Notes on Operators

o V 3 isinclusive or, not exclusive

o = 3 is equivalentto ~a Vv 3
= Says who?

o < Bis equivalentto (a= B) A (B = «)
= Prove it!

Truth Tables

o < Bisequivalentto(a= B) A (B = a)

a | BlaceB| a=B [B>a| (a=p) A(B>a)
F F T T T T
F T F T F F
T F F F T F
T T T T T T

Equivalence: it’s true in all models. Expressed as a logical sentence:

(a = p)e [(a=B)AB= o)

Poll 1

If we know that AV B and =B V C are true,
what do we know about AV C?

i. AV C isguaranteed to be true
ii. AV C isguaranteed to be false

iii. We don’t have enough information to say anything
definitive about AV C

Poll 1

If we know that AV B and =B V C are true, what do we know about AV C?

A B C AVB -BvC AV C
false false false false true false
false false true false true true
false true false true false false
false true true true true true
true false false true true true
true false true true true true
true true false true false true
true true true true true true

Poll 1

If we know that AV B and =B V C are true, what do we know about AV C?

A B C AVB -BvC AV C
false false false false true false
false false true false true true
false true false true false false
false true true true true true
true false false true true true
true false true true true true
true true false true false true
true true true true true true

Poll 1

If we know that AV B and =B V C are true,
what do we know about AV C?

i. AVC isguaranteed to be true

Poll 2

If we know that AV B and =B V C are true,
what do we know about A?

I. A is guaranteed to be true
ii. A isguaranteed to be false

iii. We don’t have enough information to say anything
definitive about A

Poll 2

If we know that AV B and =B V C are true, what do we know about 47

A B C AVB -BvC AV C
false false false false true false
false false true false true true
false true false true false false
false true true true true true
true false false true true true
true false true true true true
true true false true false true
true true true true true true

Poll 2

If we know that AV B and =B V C are true,
what do we know about A?

iii. We don’t have enough information to say anything
definitive about A

Logic Representation of World Models

* Knowledge Base of things we know to be true (logical sentences):
Pv (—=Q A R); X, < (Raining = Sunny)

" Possible world model (assignment of variables to values):
{P=true, Q=true, R=false, S=true} or 1101

" Semantics: o A B is true in a world iff is o true and 3 is true (etc.)

Propositional Logic

Check if sentence is true in given model
In other words, does the model satisfy the sentence?

function PL-TRUE?(a,model) returns true or false
if ot is @ symbol then return Lookup(o, model)
if Op(at) = — then return not(PL-TRUE?(Argl(o),model))
if Op(at) = A then return and(PL-TRUE?(Argl(c),model),
PL-TRUE?(Arg2(a),model))
etc.

(Sometimes called “recursion over syntax”)

Sentences as Constraints

Adding a sentence to our knowledge base constrains the

number of possible models:
Possible P Q R
Models false false false
KB: Nothing
false false true
false true false
false true true
true false false
true false true
true true false
true true true

Sentences as Constraints

Adding a sentence to our knowledge base constrains the

number of possible models:

KB: Nothing
KB:[(PA-Q)V(QA-P)]=R

Possible P Q R
Models false false | false
false false true
BRI
false true true
I L S 12— - T
true false true
true true false
true true true

Sentences as Constraints

Adding a sentence to our knowledge base constrains the

number of possible models:
P Possible P Q R
Models= Tttt t—taloo |
KB: Nothing
false false true
KB:[(PA-Q)V (QA-P)]=R
m
KB:R,[(PA-Q)V(QA-P)]=R
false true true
B B W 0 1 s 13 o g . - £~
true false true
T ——— G ——— SO |
true true true

Sherlock Entailment

“When you have eliminated the impossible, whatever remains,
however improbable, must be the truth” — Sherlock Holmes via
Sir Arthur Conan Doyle

= Knowledge base and inference
allow us to remove impossible
models, helping us to see what is
true in all of the remaining
models

Wumpus World

Logical Reasoning as a CSP
" B; =breeze felt

= §; = stench smelt

= P, =pithere

= W, =wumpus here

= G=gold

$SSS B
§Stench§ //,-—B-__@e_é_'_t?_;’
~ Bregsg —
Stench ~Pl'€eze —]
Y/ Gold |\
és‘qqcé Z Bregsg —
Stench Py
" Brogsg — ~ Bregsg 1
/’_"______/ /_"\._________/
START
1 2 3 4

http://thiagodnf.github.io/wumpus-world-simulator/

http://thiagodnf.github.io/wumpus-world-simulator/

Wumpus World
Possible Models

I:)1,2 I:)2,2 I:)3,1

= Knowledge base

" Breeze = Adjacent Pit

" Pit = Breeze in all Adjacent
= Nothingin [1,1]

= Breezein|[2,1]

Entailment

Entailment: o |= 3 (“o entails ” or “P follows from o) iff in every world
where ais true, 3 is also true

" |.e., the a-worlds are a subset of the 3-worlds [models(c.) = models([3)]

Usually, we want to know if KB |= query
" models(KB) < models(query)
" In other words
" KB removes all impossible models (any model where KB is false)
" If query is true in all of these remaining models, we conclude that query must be true

Entailment and implication are very much related

" However, entailment relates two sentences, while an implication is itself a sentence
(usually derived via inference to show entailment)

Wumpus World
Possible Models

!
" P,P,P3, /

= Knowledge base

#__._-—___-.

" Breeze = Adjacent Pit \
* Pjt = Breeze in all Adjacent \
= Nothingin [1,1]
= Breezein|[2,1]

= Query a;: Entailment: KB |= «

“KB entails a” iff in every world
= No pitin[1,2] where KB is true, « is also true

Wumpus World
Possible Models

" P,P,P3,

= Knowledge base

" Breeze = Adjacent Pit

" Pit = Breeze in all Adjacent
= Nothingin [1,1]

= Breezein [2,1]

= Query a,: Entailment: KB |= «

“KB entails a” iff in every world
= No pitin [2,2] where KB is true, « is also true

Wumpus World
Possible Models

" P,P,P3,

= Knowledge base

" Breeze = Adjacent Pit

" Pit = Breeze in all Adjacent
= Nothingin [1,1]

= Breezein [2,1]

= Query a,: Entailment: KB |= «

“KB entails a” iff in every world
= Nopitin[2,2] = UNSURE!! where KB is true, a is also true

Propositional Logic Models

All Possible Models

A o o0 O o0 1 1
1 1 0 O
C o 1 0 1 0 1

Model Symbols

o
o
o

Poll 3

Does the KB entail query C?

Model Symbols

Knowledge Base

Query

Entailment: o, |= 3

“ou entails B” iff in every world
where ais true, [is also true

All Possible Models

A 0 1 1 1 1

B 1 o o0 1 1

C 0 o 1 0 1

A 0 1 1 1 1
B=C 0 1 1 0 1
A=BvC 1 o 1 1 1
C 0 o 1 0 1

Poll 3

Does the KB entail query C?

Yes!

Model Symbols

Knowledge Base

Query

Entailment: o, |= 3

“ou entails B” iff in every world
where ais true, [is also true

All Possible Models

A 0 1 1 1 1
B 1 0 0 1 1
C 0 0 1 0 1
A 0 1 1 1 1
B=C 0 1 1 0 1

A=B\C 1 0 1 1 1
KB 0 0 /1) o [1)
C 0 o \1/ o \1)

Entailment

How do we implement a logical agent that proves entailment?

" Logic language
" Propositional logic
= First order logic

=" Knowledge Base
= Add known logical rules and facts

" Inference algorithms
" Theorem proving
= Model checking

Simple Model Checking

function TT-ENTAILS?(KB, a) returns true or false

Simple Model Checking, contd.

Same recursion as backtracking

P,=true

Pn=trueA

KB? 4

o

V]
Vv

11111..1

P,=true

P, =false

P,=false

<J<«

Simple Model Checking

function TT-ENTAILS?(KB, a) returns true or false
return TT-CHECK-ALL(KB, o, symbols(KB) U symbols(a),{})

function TT-CHECK-ALL(KB, a, symbols,model) returns true or false
if empty?(symbols) then
if PL-TRUE?(KB, model) then return PL-TRUE?(a, model)
else return true
else
P & first(symbols)
rest & rest(symbols)
return and (TT-CHECK-ALL(KB, a, rest, model U {P = true})
TT-CHECK-ALL(KB, a, rest, model U {P = false}))

Simple Model Checking, contd.

Same recursion as backtracking P,=true

I .
O(2") time, linear space P =true

Can we do better? ﬂ

P, =false

P,=false

P =true
KB? X Wi X
ar Ni

<J<«

P =false

0000...0 MlZl

Inference: Proofs

A proof is a demonstration of entailment between o and 3

Method 1: model-checking

" For every possible world, if o is true make sure that is 3 true too
= OK for propositional logic (finitely many worlds); not easy for first-order logic

Method 2: theorem-proving

= Search for a sequence of proof steps (applications of inference rules) leading from o to [3
=" E.g.,, fromP A (P = Q), infer Q by Modus Ponens

Properties

" Sound algorithm: everything it claims to prove is in fact entailed
= Complete algorithm: every sentence that is entailed can be proved

Simple Theorem Proving: Forward Chaining

Forward chaining applies Modus Ponens to generate new facts:
" Given X, A X, AL X, = Yand X, X, .., X
" Infer Y

n

Forward chaining keeps applying this rule, adding new facts, until
nothing more can be added

Requires KB to contain only definite clauses:
" (Conjunction of symbols) = symbol; or
" A single symbol (note that X is equivalent to True = X)

Forward Chaining Algorithm

function PL-FC-ENTAILS?(KB, q) returns true or false

CLAUSES
P=0Q

LAM=P
BAL=M
AAP=1L
AAB=L
A
B

Forward Chaining Algorithm

function PL-FC-ENTAILS?(KB, qg) returns true or false

count & a table, where count|c] is the number of symbols in c’s premise

inferred < a table, where inferred[s] is initially false for all s

agenda < a queue of symbols, initially symbols known to be true in KB

CLAUSES
P=0Q

LAM=P

BAL=M

AAP =L

AAB=L
Tluc = A

B

COUNT
1

O O N N NN DN

INFERRED AGENDA
A false

B false
L false
M false
P false
Q false

Forward Chaining Example: Proving Q

CLAUSES COUNT INFERRED

P=0Q 1/0 A fabsetrue
LAM=P N0 B tabsetrue
BAL= M 2o L faleetrue

AAP =L 2/ 0 M tabse true
AAB=L 7/ 0 P fadse true
A 0 Q faksetrue
B 0

AGENDA

A B ¥ K R ¥ &

Forward Chaining Algorithm

function PL-FC-ENTAILS?(KB, q) returns true or false
count < a table, where count|c] is the number of symbols in c¢’s premise
inferred < a table, where inferred[s] is initially false for all s
agenda < a queue of symbols, initially symbols known to be true in KB

while agenda is not empty do
p < Pop(agenda)
if p =g then return true
if inferred[p] = false then
inferred[p]<true
for each clause c in KB where p is in c.premise do
decrement count|c]
if count[c] = 0 then add c.conclusion to agenda
return false

Properties of forward chaining

Theorem: FC is sound and complete fdg definite-clause KBs

Soundness: follows from soundness of Modus Ponens (easy to check)
Completeness proof:

1. FC reaches a fixed point where no new atomic sentences are derived

2. Consider the final inferred table as a model m, assigning true/false to symbols
3. Every clause in the original KB is true for m

Proof: Suppose a clause a;A... Aa, = b is false for m A falsetrue
Then a A... Aa, is true in m and b is false for m B falsetrue
Therefore the algorithm has not reached a fixed point! | fatsetrue
4. Hence m is a model of KB M faiksetrue
5.1f KB |=q, qis true in every model of KB, including m P falsetrue

Q xetrue

Does forward chaining work on this example?

A=B
-A=1B

Inference Rules

Modus Ponens Notation Alert!
a=>p, «

B

Unit Resolution
avVvb, —-bVc

avc

General Resolution
a,Vv---vamVvb, -—bVcqV---Vcp

a,V---VamVciV--Vey

Resolution

Algorithm Overview
function PL-RESOLUTION?(KB,) returns true or false
We want to prove that KB entails o

In other words, we want to prove that we cannot satisfy (KB and not «)
1. Start with a set of CNF clauses, including the KB as well as =«
2. Keep resolving pairs of clauses until
A. You resolve the empty clause
Contradiction found!
KB A =« cannot be satisfied
Return true, KB entails «
B. No new clauses added
Return false, KB does not entail «

Resolution

Example trying to prove =P ,

Knowledge Base

A

IPZ’] V Bl,l

General Resolution
a,v---vamVvb, -—bvVcqiV---Vcy

aV--Va, Ve V-Vep

_'Bl,l V Pl,Z V P2,1

_IP1,2 V Bl,l

_'Bl,l _I_Ipl,z

General Resolution

Resolution ai1V--VamVbh, —bVcqVeVep

aV--Vam,VciV---Vep

Example trying to prove =P ,

Knowledge Base
A

P,V _Bl,l 1B VP, VP, -P1, VB, —1B14 P; 5

IBl,l V P1,2 V Bl,l P]’z V P2,1 V _IP2,1 _IB]_']_ V P2,1 V Bl,l P1,2 V P2’1 V _IP]_’Z _IP]_’Z

Resolution

function PL-RESOLUTION?(KB, &) returns true or false
clauses « the set of clauses in the CNF representation of KB A =«
new « { }
loop do
for each pair of clauses C;, C; in clauses do
resolvents « PL-RESOLVE(Cj, Cj)
if resolvents contains the empty clause then
return true
new < new U resolvants
if new C clauses then
return false

clauses < clauses U new

Properties

Forward Chaining is:
= Sound and complete for definite-clause KBs

= Complexity: linear time

Resolution is:
= Sound and complete for any PL KBs!
= Complexity: exponential time ®

Poll 4

The regions below visually enclose the set of models that satisfy the
respective sentence y or §. For which of the following diagrams is the
sentence y A 0 satisfiable? Select all that apply.

Poll 5

The regions below visually enclose the set of models that satisfy the
respective sentence y or §. For which of the following diagrams does
y entail 0? Select all that apply.

Satistfiability and Entailment

A sentence is satisfiable if it is true in at least one world (e.g., CSPs!)

Suppose we have a hyper-efficient SAT solver; how can we use it to test
entailment?

= Suppose o |=f3

* Then o= [istruein all worlds

" Hence —(ow = [3) is false in all worlds

" Hence a. A —[3 is false in all worlds, i.e., unsatisfiable

So, add the negated conclusion to what you know, test for
(un)satisfiability; also known as reductio ad absurdum

Efficient SAT solvers operate on conjunctive normal form

Satistfiability and Entailment

Stench

Breeze

Breeze

http://thiagodnf.github.io/wumpus-world-simulator/

http://thiagodnf.github.io/wumpus-world-simulator/

Conjunctive Normal Form (CNF)

Every sentence can be expressed\ Replace biconditional by two implications |

Replacea = 3 by —a v f3 }

Distribute v over A }

Conversion to CNF by a s dard tran
= At 1,1 0= ((Wall_0,1 = Blocked_W_0) A (Blo ~“W_0=Wall_0,1))
= -At 1,1 Ov((—Wall 0,1 vBlocked W_0) A (—Blocked W _0v Wall _0,1))

" (-At_ 1,1 0 v —=Wall 0,1 v Blocked W _0)A (—At 1,1 O v —Blocked W_0 v Wall_0,1)

Efficient SAT solvers

DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern solvers

Essentially a backtracking search over models with some extras:
" Farly termination: stop if
= all clauses are satisfied; e.g., (A v B) A (A v —C) is satisfied by {A=true}
= any clause is falsified; e.g., (A v B) A (A v —C) is falsified by {A=false, B=false}

= Pure literals: if all occurrences of a symbol in as-yet-unsatisfied clauses have the
same sign, then give the symbol that value

= E.g., Alis pure and positive in (A v B) A (A v —C) A (C v —B) so set it to true

= Unit clauses: if a clause is left with a single literal, set symbol to satisfy clause
= E.g., if A=false, (A v B) A (A v —C) becomes (false v B) A (false v —C), i.e. (B) A (—C)

= Satisfying the unit clauses often leads to further propagation, new unit clauses,
etc.

DPLL algorithm

function DPLL(clauses, symbols, model) returns true or false
if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false

P, value <FIND-PURE-SYMBOL(symbols, clauses, model)
if P is non-null then return DPLL(clauses, symbols—P, modelU{P=value})

P, value <FIND-UNIT-CLAUSE(clauses, model)
if P is non-null then return DPLL(clauses, symbols—P, modelU{P=value})

P & First(symbols)
rest <& Rest(symbols)

return or(DPLL(clauses, rest, modelU{P=true}),
DPLL(clauses, rest, modelU{P=false}))

Planning as Satistiability

Given a hyper-efficient SAT solver, can we use it to make plans?

Yes, for fully observable, deterministic case: planning problem is
solvable iff there is some satisfying assignment for actions etc.

SCORE: 0

Planning as Satistiability

Given a hyper-efficient SAT solver, can we use it to make plans?

Yes, for fully observable, deterministic case: planning problem is
solvable iff there is some satisfying assignment for actions etc.

For T =1 to infinity, set up the KB as follows and run SAT solver:

= |nitial state, domain constraints

" Transition model sentences up totime T

" Goal istrue attime T

" Precondition axioms: At 1,1 O AN 0 = —Wall 1,2 etc.

= Action exclusion axioms: =(N_ O AW _0) A—=(N_OAS 0) A .. etc.

Initial State

The agent may know its initial location:
= At 1,1 0

Or, it may not:
= At 1,1 OvAt 1,2 OvAt 1,3 Ov..vAt 3,30

We also need a domain constraint — cannot be in two places at once!
" (At 1,1 OAAt 1,2 0)A—(At_ 1,1 OAALt 1,3 O) A ..
= (At 1,1 1 AAt 1,2 1) A—(At 1,1 1 AAL 1,3 1) A...

‘ect Axioms

Fluents and E

A fluent is a state variable that changes over time

How does each state variable or fluent at each time gets its value?

Fluents for PL Pacman are Pacman_x,y ¢, e.g.,, Pacman 3,3 17

Fluents and Successor-state Axioms

A fluent is a state variable that changes over time

How does each state variable or fluent at each time gets its value?
Fluents for PL Pacman are Pacman_x,y ¢, e.g.,, Pacman 3,3 17

A state variable gets its value according to a successor-state axiom
" X, < [X,.; A =(some action, ; made it false)] v
[—X,.; A (some action, ; made it true)]

Fluents and Successor-state Axioms

Write the successor-state axiom for pacman’s location

SCORE: 153

Planning as Satistiability

For T =1 to infinity, set up the KB as follows and run SAT solver:
= |nitial state, domain constraints

" Transition model sentences up totime T

" Goalistrue attime T

Why?
If | can find a satisfying set of variables that meet the constraints, then |
have also found a plan as the set of action variables.

EXTRA SLIDES

Logical Agent Vocab

Model
= Complete assighnment of symbols to True/False

Sentence
" Logical statement
=" Composition of logic symbols and operators

KB

= Collection of sentences representing facts and rules
we know about the world

Query
= Sentence we want to know if it is provably True,
provably False, or unsure.

Entailment
Does the knowledge base entail my query?
= Queryl: = P[1,2]
= Query2: = P|2,2]

Provably True, Provably False, or Unsure

http://thiagodnf.github.io/wumpus-world-simulator/

http://thiagodnf.github.io/wumpus-world-simulator/

Logical Agent Vocab

Entailment

" |nput: sentencel, sentence?2

» Each model that satisfies sentencel must also satisfy sentence?2
= "If | know 1 holds, then | know 2 holds"

= (ASK), TT-ENTAILS, FC-ENTAILS, RESOLUTION-ENTAILS

Satisfy

" [nput: model, sentence

" |s this sentence true in this model?

" Does this model satisfy this sentence

" "Does this particular state of the world work?’
= PL-TRUE

Logical Agent Vocab

Satisfiable

" |nput: sentence

= Can find at least one model that satisfies this sentence
= (We often want to know what that model is)

= "Is it possible to make this sentence true?"
= DPLL

Valid
=" Input: sentence
" sentence is true in all possible models

	Slide 1: Warm-up:
	Slide 2: Announcements
	Slide 3: AI: Representation and Problem Solving
	Slide 4: Logical Agents
	Slide 5: Logical Agents
	Slide 6: Models
	Slide 7: Logic Language
	Slide 8: Propositional Logic
	Slide 9: Propositional Logic
	Slide 10: Propositional Logic Syntax
	Slide 11: Propositional Logical Vocab
	Slide 12: Notes on Operators
	Slide 13: Truth Tables
	Slide 14: Notes on Operators
	Slide 15: Truth Tables
	Slide 16: Notes on Operators
	Slide 17: Truth Tables
	Slide 18: Poll 1
	Slide 19: Poll 1
	Slide 20: Poll 1
	Slide 21: Poll 1
	Slide 22: Poll 2
	Slide 23: Poll 2
	Slide 24: Poll 2
	Slide 25: Logic Representation of World Models
	Slide 26: Propositional Logic
	Slide 29: Sentences as Constraints
	Slide 30: Sentences as Constraints
	Slide 31: Sentences as Constraints
	Slide 32: Sherlock Entailment
	Slide 33: Wumpus World
	Slide 34: Wumpus World
	Slide 35: Entailment
	Slide 36: Wumpus World
	Slide 37: Wumpus World
	Slide 38: Wumpus World
	Slide 39: Propositional Logic Models
	Slide 40: Poll 3
	Slide 41: Poll 3
	Slide 42: Entailment
	Slide 43: Simple Model Checking
	Slide 44: Simple Model Checking, contd.
	Slide 45: Simple Model Checking
	Slide 46: Simple Model Checking, contd.
	Slide 47: Inference: Proofs
	Slide 48: Simple Theorem Proving: Forward Chaining
	Slide 49: Forward Chaining Algorithm
	Slide 50: Forward Chaining Algorithm
	Slide 51: Forward Chaining Example: Proving Q
	Slide 52: Forward Chaining Algorithm
	Slide 53: Properties of forward chaining
	Slide 54: Does forward chaining work on this example?
	Slide 55: Inference Rules
	Slide 56: Resolution
	Slide 57: Resolution
	Slide 58: Resolution
	Slide 59: Resolution
	Slide 60: Properties
	Slide 61: Poll 4
	Slide 62: Poll 5
	Slide 63: Satisfiability and Entailment
	Slide 64: Satisfiability and Entailment
	Slide 65: Conjunctive Normal Form (CNF)
	Slide 66: Efficient SAT solvers
	Slide 67: DPLL algorithm
	Slide 68: Planning as Satisfiability
	Slide 69
	Slide 70: Planning as Satisfiability
	Slide 71: Initial State
	Slide 72: Fluents and Effect Axioms
	Slide 73: Fluents and Successor-state Axioms
	Slide 74: Fluents and Successor-state Axioms
	Slide 75: Planning as Satisfiability
	Slide 76: EXTRA SLIDES
	Slide 77: Logical Agent Vocab
	Slide 78: Entailment
	Slide 79: Provably True, Provably False, or Unsure
	Slide 80: Logical Agent Vocab
	Slide 81: Logical Agent Vocab

