
AI: Representation and Problem Solving

Particle Filtering

Instructors: Tuomas Sandholm and Vincent Conitzer

Slide credits: CMU AI and http://ai.berkeley.edu



Logistics

• HW10 (written, online) due Thursday April 17

• P5 due Thursday April 24

• HW11 (online, not yet released) due Thursday April 24

• TA interview scheduling coming soon for those who applied
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Hidden Markov Models

o Usually the true state is not observed 
directly

o Hidden Markov models (HMMs)
o Underlying Markov chain over states X

o You observe evidence E at each time step

o Xt is a single discrete variable; Et may be 
continuous and may consist of several variables
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Recall: HMM Queries

Filtering: P(Xt|e1:t)
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Prediction: P(Xt+k|e1:t)

Smoothing: P(Xk|e1:t), k<t Explanation: P(X1:t|e1:t)

X5



Particle Filtering



Belief States

When predicting the actual location we’re in at each time step, Xk …

… really, what we’re doing is maintaining a probability distribution 
over all possible states 

This distribution is called a belief state, it represents the belief of where 
we are

We denote the belief state for X at time 3 by b(X3) = P(X3 | e1, e2, e3)
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We need a new algorithm!

o When |X| is more than 106 or so (e.g., 3 ghosts in a 10x20 world), 
exact inference to compute the belief state becomes infeasible

o We could try to sample our Bayes net to compute b(X)

o Likelihood weighting fails completely – number of samples needed 
grows exponentially with T
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Recall: Likelihood Weighting

o Sampling distribution if z sampled and e fixed evidence

o Now, samples have weights

o Together, weighted sampling distribution is consistent
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We need a new idea!

o Idea: Sample in the first state, and then move those samples by sampling the 
transition function

o The problem: sample state trajectories go off into low-probability regions, ignoring 
the evidence; should reweight, but anyway too few “reasonable” samples

o Solution: get rid of the bad ones, make more of the good ones. This way the 
population of samples stays in the high-probability region. 

o This is called resampling or survival of the fittest

t=2 t=7



Robot Localization

o In robot localization:
o We know the map, but not the robot’s position

o Observations may be vectors of range finder 
readings

o State space and readings are typically continuous 
(works basically like a very fine grid) and so we 
cannot store B(X)

o Particle filtering is a main technique



Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi][Dieter Fox, et al.]



Particle Filtering
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▪ Represent belief state by a set of samples
▪ Samples are called particles
▪ Time per step is linear in the number of 

samples
▪ But: number needed may be large

▪ This is how robot localization works in 
practice



Representation: Particles

o Our representation of P(X) is now a list of N particles (samples)
o Generally, N << |X|

o Storing dictionary mapping from X to counts would defeat the point

o P(x) approximated by number of particles with value x
o So, many x may have P(x) = 0! 

o More particles, more accuracy

o Usually we want a low-dimensional marginal
o E.g., “Where is ghost 1?” rather than “Are ghosts 1,2,3 in {2,6], [5,6], and [8,11]?”

o For now, all particles have a weight of 1

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)



Particle Filtering: Propagate forward (“Predict”)

▪ A particle in state xt is moved by 
sampling its next position directly from 
the transition model:
▪ xt+1 ~  P(Xt+1 | xt)

▪ In this example, most samples move 
clockwise, but some move in another 
direction or stay in place

▪ This captures the passage of time
▪ With enough samples, close to exact values 

before and after (consistent)

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,3)
    (2,2)



▪ Slightly trickier:

▪ Don’t sample observation, fix it

▪ Similar to likelihood weighting, 
weight samples based on the evidence

▪ W = P(et| xt)

▪ Normalize the weights: particles that 
fit the  data better get higher weights, 
others get lower weights

Particle Filtering: Observe/Weight (“Update” part 1)

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,3)  w=.4
    (2,2)  w=.4

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)



Particle Filtering: Resample (“Update” part 2)

o Rather than tracking weighted samples, we 
resample

o We have an updated belief distribution 
based on the weighted particles

o We sample N new particles from the 
weighted belief distributions

o Now the update is complete for this time 
step; continue with the next one

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,3)  w=.4
    (2,2)  w=.4

(New) Particles:
    (3,2)
    (2,2)
    (3,2)   
    (2,3)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (3,2)



Summary: Particle Filtering

o Particles: track samples of states rather than an explicit distribution

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Propagate forward
based on transition function

Weight based on 
observation function

Resample using 
weighted particles

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,3)  w=.4
    (2,2)  w=.4

(New) 
Particles:
    (3,2)
    (2,2)
    (3,2)   
    (2,3)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (3,2)

Consistency: see proof in AIMA Ch. 14 [Demos: ghostbusters particle filtering (L15D3,4,5)]



Weighting and Resampling

o How to compute a belief distribution given weighted particles

Weight

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,3)  w=.4
    (2,2)  w=.4



Poll 1

o If we only have one particle which of these steps are unnecessary?

Select all that are unnecessary.

A. Propagate forward

B. Weight

C. Resample

D. None of the above

Propagate forward Weight Resample



Poll 1

o If we only have one particle which of these steps are unnecessary?

Select all that are unnecessary.

A. Propagate forward

B. Weight

C. Resample

D. None of the above

Propagate forward Weight Resample

Unless the weight is zero, in which case, you’ll 
want to resample from the beginning 



Particle Filter Localization (Laser)

[Video: global-floor.gif][Dieter Fox, et al.]



Robot Mapping

o SLAM: Simultaneous Localization And 
Mapping
o We do not know the map or our location

o State consists of position AND map!

o Main techniques: Kalman filtering (Gaussian 
HMMs) and particle methods

DP-SLAM, Ron Parr

[Demo: PARTICLES-SLAM-mapping1-new.avi]



Particle Filter SLAM – Video 1

[Demo: PARTICLES-SLAM-mapping1-new.avi][Sebastian Thrun, et al.]



Particle Filter SLAM – Video 2

[Demo: PARTICLES-SLAM-fastslam.avi][Dirk Haehnel, et al.]



SLAM

https://www.irobot.com/

https://www.irobot.com/


In Class Activity
o Given the following starting particles, transition model, and e1 and e2 observed at 

time 1 and time 2, what is the approximate belief state at time 2?

x

y P(Xt+1|Xt in middle row)T=0

1

2

3
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Use Python random.random() or Google to sample
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In Class Activity
o Given the following starting particles, transition model, and e1 

observed at time 1, what is the approximate belief state at time 1?
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Use random.random() or Google to sample
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In Class Activity
o Given the particles at T=1, transition model, and e2 observed at time 2, 

what is the approximate belief state at time 2?
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In Class Activity – Example Solution
o Given the following starting particles, transition model, and e1 

observed at time 1, what is the approximate belief state at time 1?
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In Class Activity – Example Solution
o Given the T=1 particles, transition model, and e2 observed at time 2, 

what is the approximate belief state at time 2?
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Use random.random() to sample
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(2,2) = 2.1/3.5 = .6

(3,2) = 1.0/3.5 = .29

(3,3) = .4/3.5 = .11

How many samples at (3,2)?
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A different type of self-locating belief: 
Sleeping Beauty problem [Piccione and Rubinstein’97, Elga’00]

o There is a participant in a study (call her 
Sleeping Beauty)

o On Sunday, she is given drugs to fall asleep
o A coin is tossed (H or T)
o If H, she is awoken on Monday, then made to 

sleep again
o If T, she is awoken Monday, made to sleep 

again, then again awoken on Tuesday
o Due to drugs she cannot remember what day it 

is or whether she has already been awoken 
once, but she remembers all the rules

o Imagine you are SB and you’ve just been 
awoken.  What is your (subjective) probability 
that the coin came up H?

H

T

Sunday Monday Tuesday

don’t do this at 
home / without 
IRB approval…
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