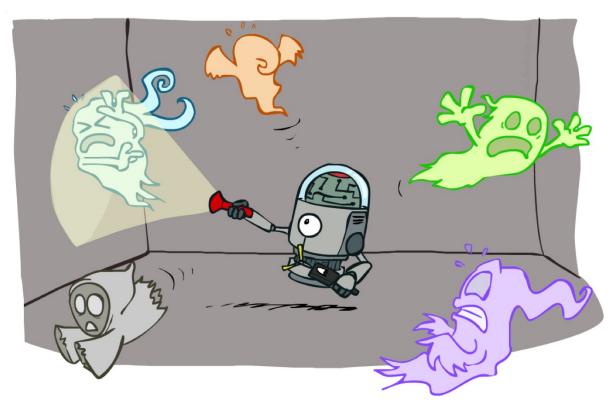
AI: Representation and Problem Solving Particle Filtering



Instructors: Tuomas Sandholm and Vincent Conitzer

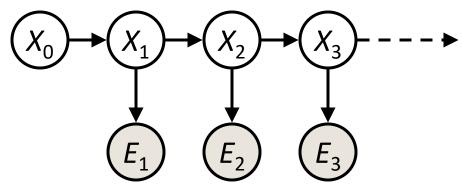
Slide credits: CMU AI and http://ai.berkeley.edu

Logistics

- HW10 (written, online) due Thursday April 17
- P5 due Thursday April 24
- HW11 (online, not yet released) due Thursday April 24
- TA interview scheduling coming soon for those who applied

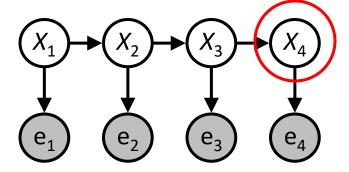
Hidden Markov Models

- Usually the true state is not observed directly
- Hidden Markov models (HMMs)
 - o Underlying Markov chain over states *X*
 - o You observe evidence *E* at each time step
 - o X_t is a single discrete variable; E_t may be continuous and may consist of several variables

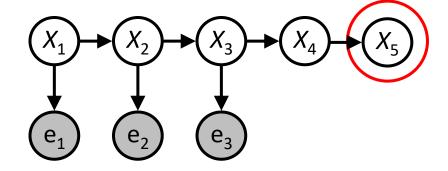


Recall: HMM Queries

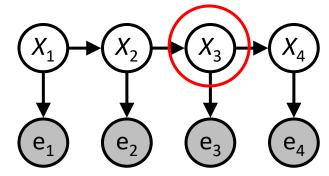
Filtering: $P(X_t | e_{1:t})$



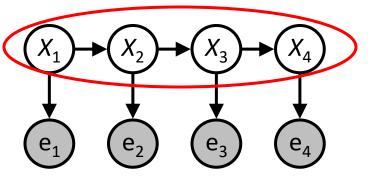
Prediction: $P(X_{t+k}|e_{1:t})$



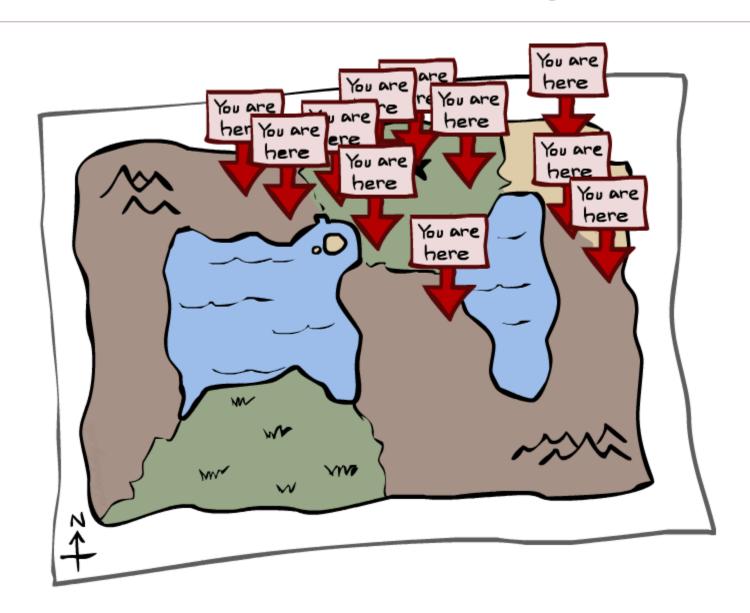
Smoothing: $P(X_k | e_{1:t})$, k < t



Explanation: $P(X_{1:t}|e_{1:t})$



Particle Filtering

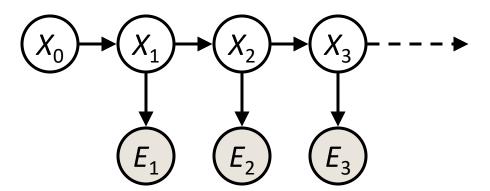


Belief States

When predicting the actual location we're in at each time step, $X_{k...}$... really, what we're doing is maintaining a **probability distribution** over all possible states

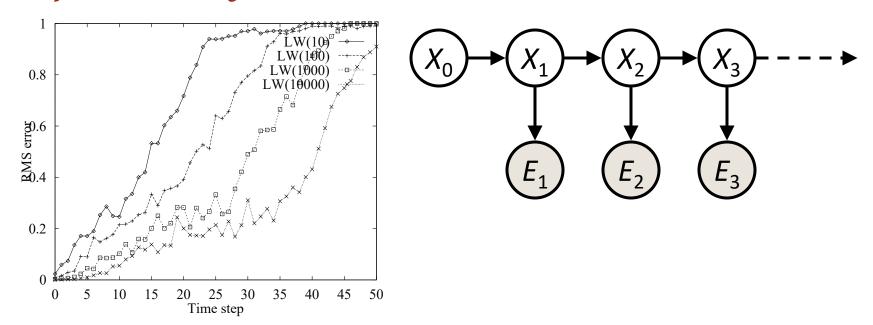
This distribution is called a **belief state**, it represents the belief of where we are

We denote the belief state for X at time 3 by $b(X_3) = P(X_3 \mid e_1, e_2, e_3)$



We need a new algorithm!

- When |X| is more than 10^6 or so (e.g., 3 ghosts in a 10x20 world), exact inference to compute the belief state becomes infeasible
- \circ We could try to sample our Bayes net to compute b(X)
- Likelihood weighting fails completely number of samples needed grows *exponentially* with *T*



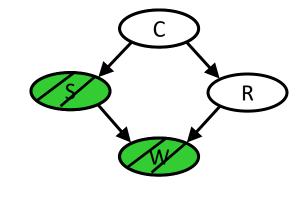
Recall: Likelihood Weighting

Sampling distribution if z sampled and e fixed evidence

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | \mathsf{Parents}(Z_i))$$

Now, samples have weights

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | \mathsf{Parents}(E_i))$$

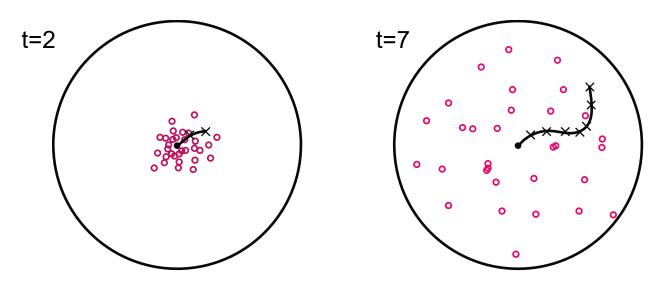


Together, weighted sampling distribution is consistent

$$S_{\text{WS}}(z, e) \cdot w(z, e) = \prod_{i=1}^{l} P(z_i | \text{Parents}(z_i)) \prod_{i=1}^{m} P(e_i | \text{Parents}(e_i))$$

= $P(\mathbf{z}, \mathbf{e})$

We need a new idea!

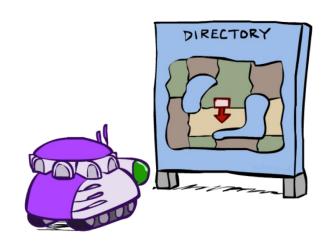


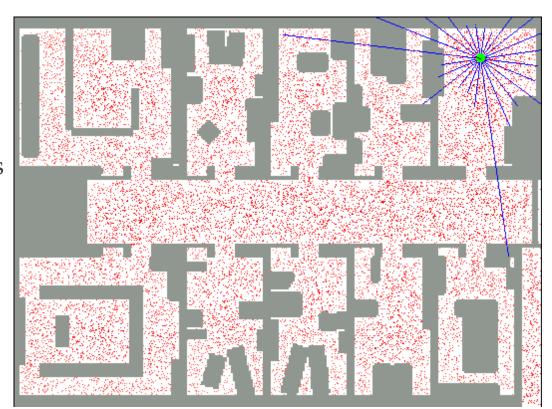
- Idea: Sample in the first state, and then move those samples by sampling the transition function
- The problem: sample state trajectories go off into low-probability regions, ignoring the evidence; should reweight, but anyway too few "reasonable" samples
- Solution: get rid of the bad ones, make more of the good ones. This way the population of samples stays in the high-probability region.
- This is called resampling or survival of the fittest

Robot Localization

In robot localization:

- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- o Particle filtering is a main technique





Particle Filter Localization (Sonar)

[Dieter Fox, et al.]

[Video: global-sonar-uw-annotated.avi]

Particle Filtering

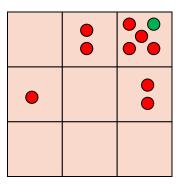
- Represent belief state by a set of samples
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
- This is how robot localization works in practice

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

	•

Representation: Particles

- \circ Our representation of P(X) is now a list of N particles (samples)
 - o Generally, $N \ll |X|$
 - o Storing dictionary mapping from X to counts would defeat the point
- \circ P(x) approximated by number of particles with value x
 - o So, many x may have P(x) = 0!
 - o More particles, more accuracy
 - o Usually we want a low-dimensional marginal
 - o E.g., "Where is ghost 1?" rather than "Are ghosts 1,2,3 in {2,6], [5,6], and [8,11]?"
- o For now, all particles have a weight of 1



Particles:

(3,3)

(2,3)

(3,3)

(3,2)

(3,3)

(3,2)

(1,2)

(3,3)

(3,3)

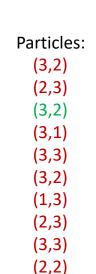
(2,3)

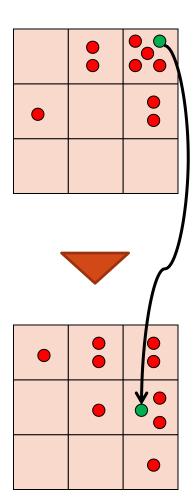
Particle Filtering: Propagate forward ("Predict")

- A particle in state x_t is moved by sampling its next position directly from the transition model:
 - $x_{t+1} \sim P(X_{t+1} \mid x_t)$
 - In this example, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - With enough samples, close to exact values before and after (consistent)

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)

(2,3)



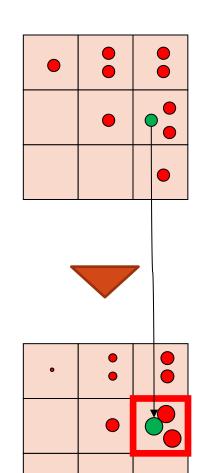


Particle Filtering: Observe/Weight ("Update" part 1)

Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, weight samples based on the evidence
 - $\blacksquare W = P(e_t | x_t)$
- Normalize the weights: particles that fit the data better get higher weights, others get lower weights

Particles: (3,2) (2,3) (3,2) (3,1) (3,3) (3,2) (1,3) (2,3) (3,2) (2,2)



Particles:

(3,2)) w=.9
-------	--------

$$(2,3)$$
 w=.2

$$(3,2)$$
 w=.9

$$(3,1)$$
 w=.4

$$(3,3)$$
 w=.4

$$(3,2)$$
 w=.9

$$(1,3)$$
 w=.1

$$(2,3)$$
 w=.2

$$(3,3)$$
 w=.4

$$(2,2)$$
 w=.4

Particle Filtering: Resample ("Update" part 2)

- Rather than tracking weighted samples, we resample
- We have an updated belief distribution based on the weighted particles
- We sample N new particles from the weighted belief distributions
- Now the update is complete for this time step; continue with the next one

Particles:

(3,2) w=.9

(2,3) w=.2

(3,2) w=.9

(3,1) w=.4

(3,3) w=.4

(3,2) w=.9

(1,3) w=.1

(2,3) w=.2

(3,3) w=.4

(2,2) w=.4

(New) Particles:

(3,2)

(2,2)

(3,2)

(2,3)

(3,3)

(3,2)

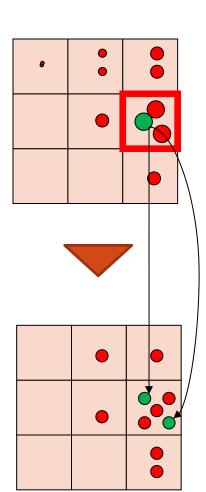
(1,3)

(1,3)

(2,3)

(3,2)

(3,2)



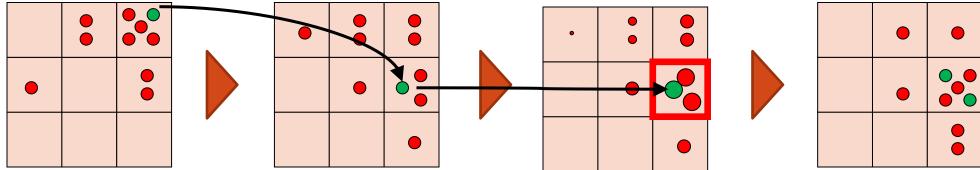
Summary: Particle Filtering

o Particles: track samples of states rather than an explicit distribution

Propagate forward based on transition function observation function

Weight based on

Resample using weighted particles



Particles:	
(3,3)	
(2,3)	
(3,3)	
(3,2)	
(3,3)	
(3,2)	
(1,2)	

D - ...(! -1 - -

(3,3)(3,3)(2,3)

Particles:	
(3,2)	
(2,3)	
(3,2)	
(3,1)	
(3,3)	
(3,2)	
(1,3)	
(2,3)	
(3,2)	
(2,2)	

icles:
w=.9
w=.2
w=.9
w=.4
w=.4
w=.9
w=.1
w=.2
w=.4
w=.4

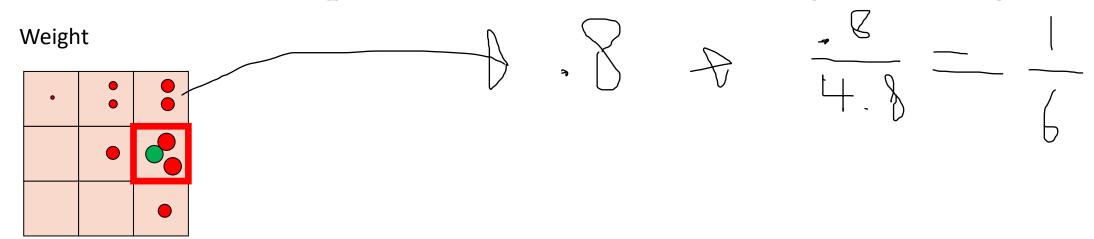
(Ne)	ew)	
Par	ticles:	
(3,2)	
Ì	2,2)	
`	3,2)	
•	2,3)	
`	3,3)	
`	3,2)	
`	1,3)	
`	2,3)	
`	2 ,3)	
(~ <i>,</i> — <i>)</i>	

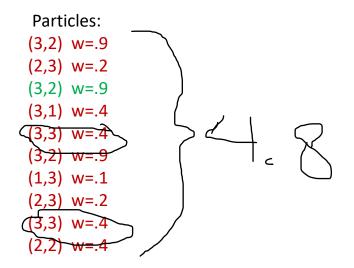
Consistency: see proof in AIMA Ch. 14

(3,2)[Demos: ghostbusters particle filtering (L15D3,4,5)]

Weighting and Resampling

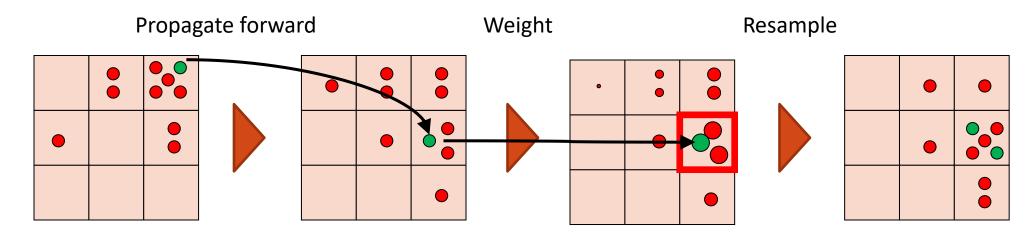
How to compute a belief distribution given weighted particles





Poll 1

o If we only have one particle which of these steps are unnecessary?

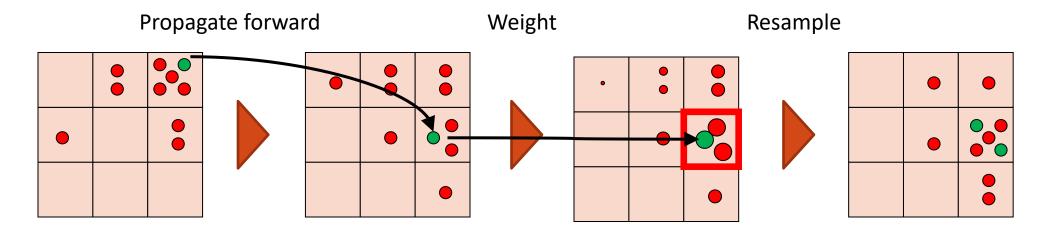


Select all that are unnecessary.

- A. Propagate forward
- B. Weight
- C. Resample
- D. None of the above

Poll 1

o If we only have one particle which of these steps are unnecessary?

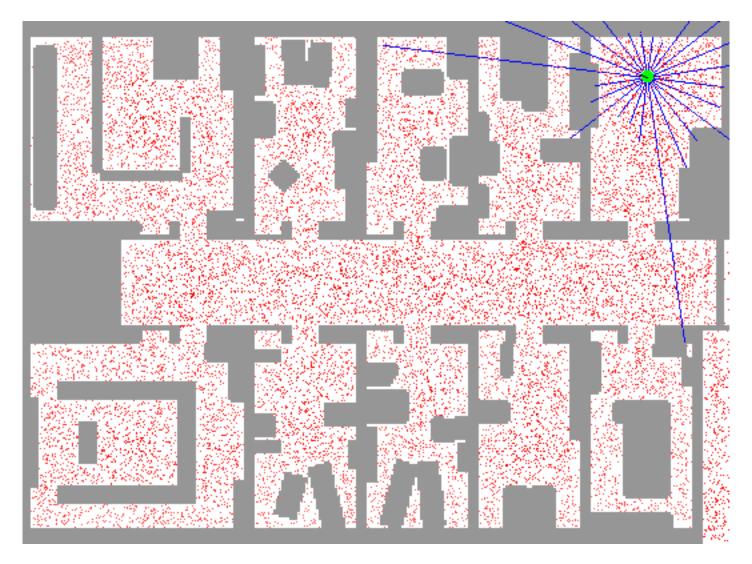


Select all that are unnecessary.

- A. Propagate forward
- B. Weight
- C. Resample
- D. None of the above

Unless the weight is zero, in which case, you'll want to resample from the beginning ⁽²⁾

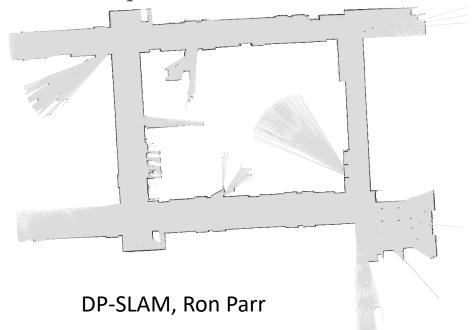
Particle Filter Localization (Laser)

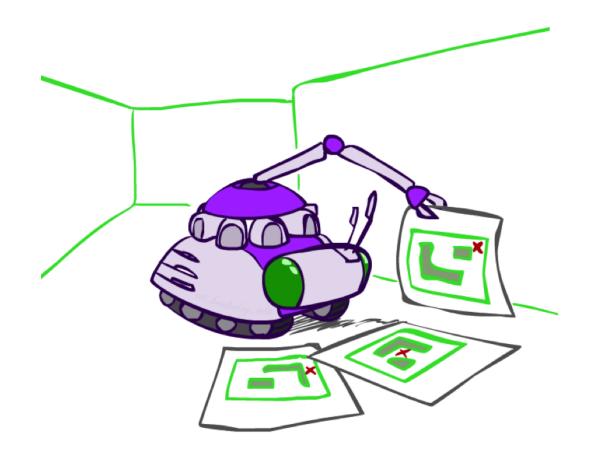


[Dieter Fox, et al.] [Video: global-floor.gif]

Robot Mapping

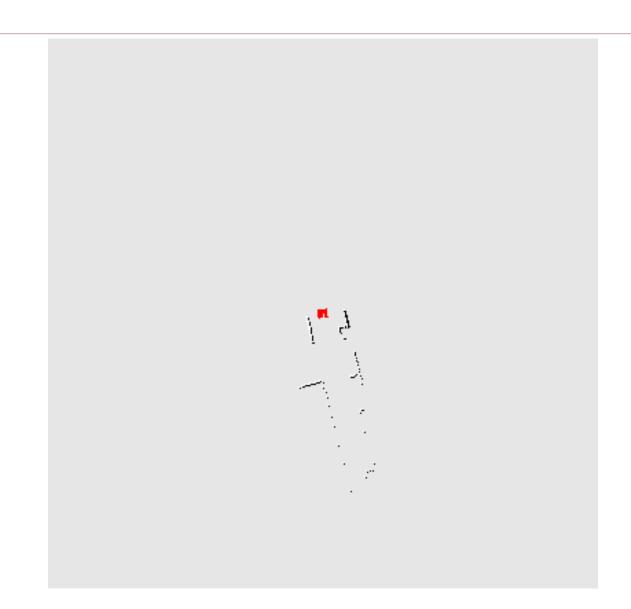
- SLAM: Simultaneous Localization And Mapping
 - We do not know the map or our location
 - o State consists of position AND map!
 - Main techniques: Kalman filtering (Gaussian HMMs) and particle methods



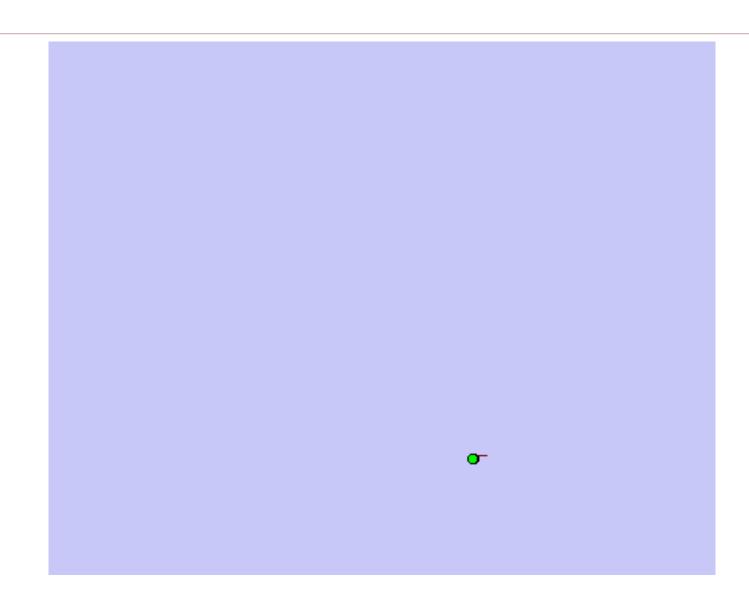


[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM – Video 1

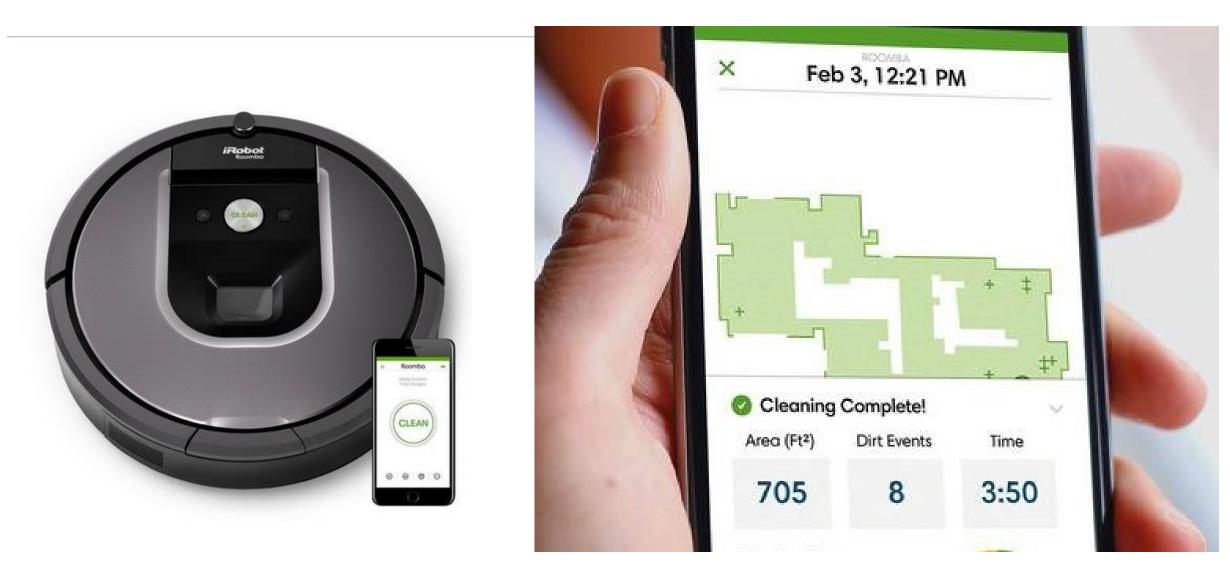


Particle Filter SLAM – Video 2



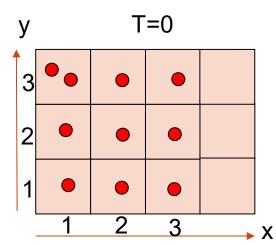
[Dirk Haehnel, et al.]

SLAM

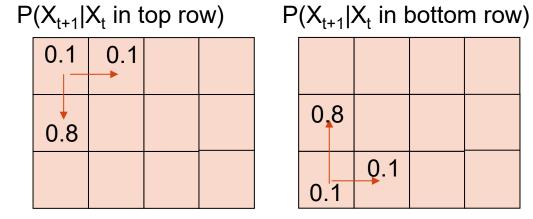


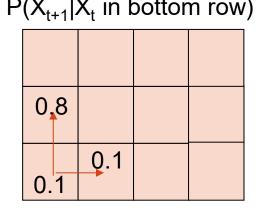
In Class Activity

o Given the following starting particles, transition model, and e₁ and e₂ observed at time 1 and time 2, what is the approximate belief state at time 2?









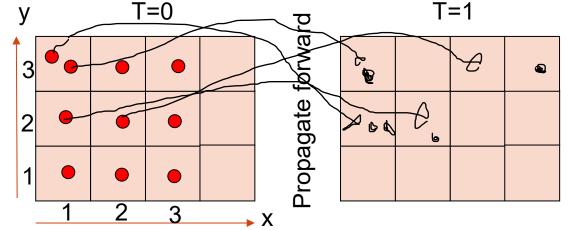
$P(e_1 X)$	1)	
.3	.5	
.5	.5	
.2	.5	

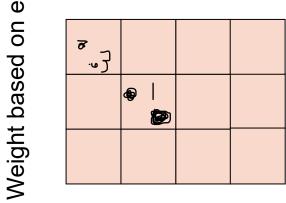
$P(e_2 X$	₂)		
	.05	.4	
	.3	.5	
	.05	.2	

In Class Activity Use random.random() or Google to sample

Resample

• Given the following starting particles, transition model, and e₁ observed at time 1, what is the approximate belief state at time 1?



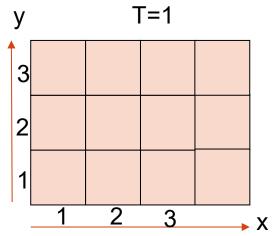


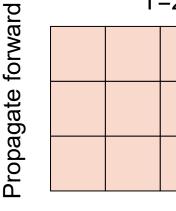
15-		
	7) 4	

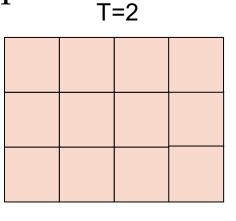
$P(e_1 X_1)$			
.3	.5		
.5	.5		
.2	.5		

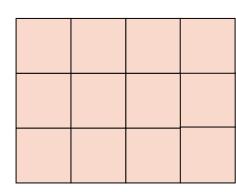
In Class Activity

• Given the particles at T=1, transition model, and e₂ observed at time 2, what is the approximate belief state at time 2?

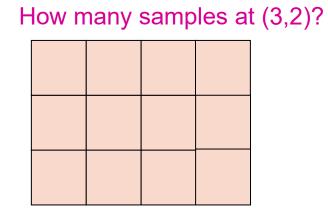








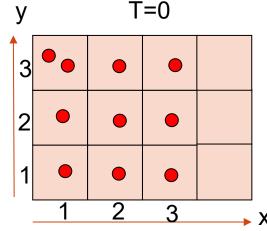
Resample

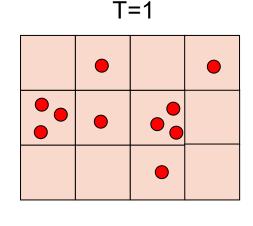


$P(e_2 X_2)$					
	.05	.4			
	.3	.5			
	.05	.2			

In Class Activity – Example Solution

• Given the following starting particles, transition model, and e₁ observed at time 1, what is the approximate belief state at time 1?





Propagate forward

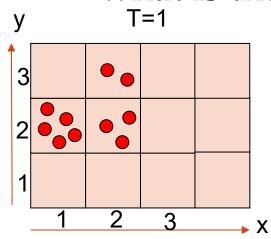
ע			
	0	.5	
	1.5	.5	
	0	0	
5			

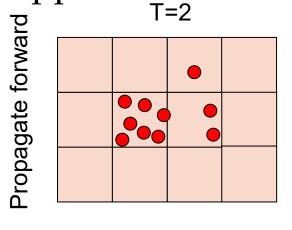
••	
•	

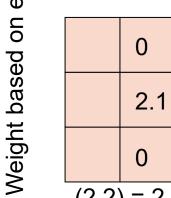
P(e ₁ X	.5	
.5	.5	
.2	.5	

In Class Activity – Example Solution

• Given the T=1 particles, transition model, and e₂ observed at time 2, what is the approximate belief state at time 2?







(2,2)) = 2.	1/3.5	= .6
(3,2)) = 1.0	0/3.5	= .29
` ,		/3.5 =	

.4

1.0

$$P(e_2|X_2)$$

1 1	$(C_2 X_2)$		
	.05	.4	
	.3	.5	
	.05	.2	

How many samples at (3,2)?

Resample

	•	

A different type of self-locating belief:

Sleeping Beauty problem [Piccione and Rubinstein'97, Elga'00]

- There is a participant in a study (call her Sleeping Beauty)
- On Sunday, she is given drugs to fall asleep
- A coin is tossed (H or T)
- If H, she is awoken on Monday, then made to sleep again
- o If T, she is awoken Monday, made to sleep again, then **again** awoken on Tuesday
- Due to drugs she cannot remember what day it is or whether she has already been awoken once, but she remembers all the rules
- o Imagine **you** are SB and you've just been awoken. What is your (subjective) probability that the coin came up H?

Sunday Monday Tuesday

H

don't do this at home / without IRB approval...