Al: Representation and Problem Solving

Reinforcement Learning

Instructors: Tuomas Sandholm and Vincent Conitzer
Slide credits: CMU Al and http://ai.berkeley.edu

Overview: MDPs and Reinforcement Learning
Known MDP: Offline Solution

[Value Iteration / Policy Iteration }

Unknown MDP: Online Learning

-~

"

Estimate MDP T(s,a,s') and R(s,a,s')
from samples of environment

~

Model-Free

/Passive Reinforcement Learning \
= Direct Evaluation (simple)
= TD Learning

Active Reinforcement Learning

K. Q-Learning /

Active Reinforcement Learning
Q-learning

Active Reinforcement Learning

Full reinforcement learning: optimal policies (like value iteration)
= You don’t know the transitions T(s,a,s’)
= You don’t know the rewards R(s,a,s’)

= You choose the actions now

= Goal: learn the optimal policy / values

In this case:
= Learner makes choices!
* Fundamental tradeoff: exploration vs. exploitation

= This is NOT offline planning! You actually take actions in the world
and find out what happens...

Recall: Q-Value Iteration

Value iteration: find successive (depth-limited) values
= Start with Vo(s) = 0, which we know is right
" Given V,, calculate the depth k+1 values for all states:

Vig1(s) = max > T(s,a,8") |R(s,a,5") 4+ v V()

But Q-values are more useful, so compute them instead
= Start with Q(s,a) = 0, which we know is right
" Given Q,, calculate the depth k+1 g-values for all g-states:

Qit1(s,0) « L T(s,0,8) |R(s,a,8) + 7 maxQu(s',)

S

Q-Learning

We'd like to do Q-value updates to each Q-state:
Qit1(s,0) L T(s,0.8) [R(s,a,8) + 7 maxQu(s',)|

S
= But can’t compute this update without knowing T, R

Instead, learn Q(s,a) values as you go
= Receive a sample (s,a,s’,r)

= Consider your old estimate: Q(s,a)
= Consider your new sample estimate:

sample = R(s,a,s’) + ~ max Q(s', a")
a

* Incorporate the new estimate into a running average:
Q(s,a) — (1 —a)Q(s,a) + (a) [sample]

Q-Learning Properties

Amazing result: Q-learning converges to optimal policy -- even if you’'re
acting suboptimally!

This is called off-policy learning

Caveats:
= You have to explore enough

=You have to eventually make the learning rate
small enough

= ... but not decrease it too quickly
= Basically, in the limit, it doesn’t matter how you select actions (!)

Review: MDP/RL Notation

Standard expectimax: V(s) = m;\xz P(s'|s,a)V(s")
S7

Bellman equations: V*(s) = m&axz P(s'|s,a)[R(s,a,s") + yV*(s")]
Value iteration: Vier1(8) = mc?;z P(s'|s,a)[R(s,a,s") + yV, (s")], Vs
Q-iteration: Qr+1(s,a) = ZSII’(S’ls, a)[R(s,a,s") + y max Qx(s’,a)], Vs,a
Policy extraction: my(s) = argm:xz P(s'|s,a)[R(s,a,s") +yV(s")], Vs

a !
Policy evaluation: VEL(s) = z P(ss’ls, (s))[R(s,m(s),s") + yVF(s)], Vs

S7
Policy improvement: Tpew(S) = argcrlnaxz P(s'|s,a)[R(s,a,s") + yVTold(s")], Vs

S7

Value (TD) learning: Vi(s) = V() +alr+yVT(s") — VT(s)]

Q-learning: Q(s,a) = Q(s,a) +a[r+y max Q(s’,a") — Q(s,a)]

Exploration vs. Exploitation

How to Explore?

Several schemes for forcing exploration
= Simplest: random actions (€-greedy)
= Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability 1-€, act on current policy

= Problems with random actions?

= You do eventually explore the space, but keep
thrashing around once learning is done

= One solution: lower € over time
= Another solution: exploration functions

Poll

Exploration should be
A) Optimistic
B) Pessimistic

Exploration Functions

When to explore?
= Random actions: explore a fixed amount

» Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

Exploration function

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g.
f(u,n) =u+k/n

Regular Q-Update: Q(s,a) <+ R(s,a,s") +~ max Q(s',a")
a

Modified Q-Update: Q(s,a) <= R(s,a,s") +ymax f(Q(s',a"), N(s',a))

= Note: this propagates the “bonus” back to states that lead to unknown states as well!

Exploration Functions

When to explore?
= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

Exploration function

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g.

fun)=u+k/(n+1)
Regular Q-Update: Q(s,a) =Q(s,a) + a [r + ymax Q(s’,a") —Q(s,a)]

Modified Q-Update: Q(s,a) = Q(s,a) + a [r + ymax f(Q(s',a"),N(s",a")) —Q(s,a)]

Regret

Even if you learn the optimal policy, you
still make mistakes along the way!

Regret is a measure of your total mistake
cost: the difference between your
(expected) rewards, including youthful
suboptimality, and optimal (expected)
rewards

Minimizing regret goes beyond learning to
be optimal — it requires optimally learning
to be optimal

Example: random exploration and
exploration functions both end up optimal,
but random exploration has higher regret

Approximate Q-Learning: Generalizing Across States

Basic Q-Learning keeps a table of all Q-values

In realistic situations, we cannot possibly learn about
every single state!

» Too many states to visit them all in training
= Too many states to hold the Q-tables in memory

Instead, we want to generalize:

» Learn about some small number of training states
from experience

» Generalize that experience to new, similar situations

= (This is a fundamental idea in many types of machine
learning)

Example: Pacman

Let’s say we discover In naive Q-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

Feature-Based Representations

Solution: describe a state using a vector of
features (properties)

= Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state

= Example features:
» Distance to closest ghost
» Distance to closest dot
= Number of ghosts
= 1/ (dist to dot)?
= |s Pacman in a tunnel? (0/1)

= |s it the exact state on this slide?

= Can also describe a Q-state (s, a) with features (e.g.,
action moves closer to food)

Linear Value Functions

Using a feature representation, we can write a Q function (or value
function) for any state using a few weights:

=V (s)=w.f(s)+wf(s)+...+wf (s)
=Q (s,a)=w.f(s,a)+wf(s,a)+...+wf (s,a)
Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in
value!

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:
= Qfs,a) « Qs,a) + a- [r+ymax,Q(s,a’)-Qfs,a)]

Instead, we update the weights to try to reduce the error at s, a:
"W — w + a - [r+ymax, Q(s,a’) - Qs,a)]9Q,(s,a)/ow.
= w. + a - [r+ymax,A Q(s,a’) - Qfs,a)] f(s,a)

Last time

Quick Calculus Quiz

Error(x) = L (y — x)?
1 2 2
Error(w) = - (y — wf(x))

dError B
dx — (y x)

_ dError
What is ?

dw

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:
= Qfs,a) « Qs,a) + a- [r+ymax,Q(s,a’)-Qfs,a)]

Instead, we update the weights to try to reduce the error at s, a:

"W — w + a - [r+ymax, Q(s,a’) - Qs,a)]9Q,(s,a)/ow.
= w. + a - [r+ymax,A Q(s,a’) - Qfs,a)] f(s,a)

Qw(s,a) = wyfi(s,a) + wafa(s,a) Error(w) = %(y — wf(x))2

90 _ dE
ow, = —(y - wf)f ()

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:
= Qfs,a) « Qs,a) + a- [r+ymax,Q(s,a’)-Qfs,a)]

Instead, we update the weights to try to reduce the error at s, a:
"W — w + a - [r+ymax, Q(s,a’) - Qs,a)]9Q,(s,a)/ow.
= w. + a - [r+ymax,A Q(s,a’) - Qfs,a)] f(s,a)

Qualitative justification:
» Pleasant surprise: increase weights on +ve features, decrease on —ve ones
» Unpleasant surprise: decrease weights on +ve features, increase on —ve ones

Approximate Q-Learning

Q) = wnfi(s @) tuafa(s)t Fwnfals,a)

Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference = ['r + v max Qs ,.0)| —Ofs,a)

a

Q(s,a) «— Q(s,a) + a[difference] Exact Q’s

w; «— w; + o [difference] f;(s,a) Approximate Qs

Intuitive interpretation:

= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that
were on: disprefer all states with that state’s features

Formal justification: online least squares

Example: Q-Pacman
Q(Saa) — 4.0fDOT(8,CL) — 1°OfGST(Saa)

A -
fpor(s,NORTH) = 0.5
a = NORTH S/
r = —500
fasT(s,NORTH) = 1.0
/ _
Q(S, NORTH) = +1 Q(S,,) —0

r4+~ymaxQ(s’,a') = -500+0
a/
4.0 —501]0.5
difference = —501 y DOT T tal |
wast — —1.04+ a[-501] 1.0

Q(Sa a’) — 3°OfDOT(87 CL) — 3'OfGST(Sa CL)

Q-Learning and Least Squares

Linear Approximation: Regression

onNn PN AN ON

f1(x) °

Prediction: Prediction:

Yy = wo + wiy f1(x) y; = wo + w1 f1(x) + wo folx)

Optimization: Least Squares

total error = Z (y; — 3,77;)2 =Y
i

.

1

, Error or “residual”
Observation y

Prediction ?/J\

>
(?Ji — Z’L%fk(%;))
k

° f1(z)

Minimizing Error

Imagine we had only one point x, with features f(x), target value y, and weights w:

>
error(w) = % (y — Zwkf’f(x))
k
G, egror(w) _ (y _ Zwkfk(a:)) fm(z)
Wm, k

Wm = Wm + & (y — Z’wk:fk:(fv)> fm(x)
k
Approximate g update explained:

Wm < Wm + & [7“ + Mmax Q(S/a a’) — Q(s, (1)} fm(s,a)

“target” “prediction”

Recent Reinforcement Learning
Milestones

TDGammon

1992 by Gerald Tesauro, IBM

4-ply lookahead using V(s) trained from 1,500,000 games of self-play
3 hidden layers, ~100 units each

Input: contents of each location plus several handcrafted features
Experimental results:

» Plays approximately at parity with world champion
= Led to radical changes in the way humans play backgammon

sample = r + Y max_,
Deep Q-Networks oo A
Deep Mind, 2015 QN(s,a): Neural network

Used a deep learning network to represent Q:
* Input is last 4 images (84x84 pixel values) plus score

49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro

Convolution Convolution Fully connected Fully connected
W v B N

>

! > ol s !
= =
= =
- v a e
]! i3 ik
A
-
R . J———

M
'

(sNsNuNuNsl=dx,
[N E-NE-Jys]
1 B

OXYGEM

OpenAl Gym

2016+
Benchmark problems for learning agents
https://gym.openai.com/envs

Breakout-ram-v0
Maximize score in the game

Breakout, with RAM as input

Ant-v2 FetchPush-v0

Make a 3D four-legged robot Push a block to a goal

AT | l
walk position

Acrobot-vi
Swing up a two-link robot

\

Vi :

Episode 2

MountainCarContinuous-v0
Drive up a big hill with Humanoid-v2

continuous control Make a 3D two-legged robot

HandManipulateBlock-v0
Orient a block using a robot

hand

walk

AlphaGo, AlphaZero
Deep Mind, 2016+

eCe

+ ®+ Google DeepMind

e
Challenge Match

8 - 15 March 2016

Autonomous Vehicles?

Reinforcement Learning from Human Feedback (RLHF)

Successful applications:
* Videogame bots
e Simulated robotics

* Fine-Tuning Large Language Models (LMMs), e.g., ChatGPT, Gemini,
Claude

 Text-to-image models

