
AI: Representation and Problem Solving

Reinforcement Learning II

Instructors: Tuomas Sandholm and Vincent Conitzer
Slide credits: CMU AI and http://ai.berkeley.edu

Overview: MDPs and Reinforcement Learning
Known MDP: Offline Solution

Value Iteration / Policy Iteration

Model-Free

Estimate MDP T(s,a,s') and R(s,a,s')
from samples of environment

Passive Reinforcement Learning
▪ Direct Evaluation (simple)
▪ TD Learning

Active Reinforcement Learning
▪ Q-Learning

Unknown MDP: Online Learning

Online Learning
Model-free Learning
Active Reinforcement Learning
Q-learning

Active Reinforcement Learning

Full reinforcement learning: optimal policies (like value iteration)
▪ You don’t know the transitions T(s,a,s’)
▪ You don’t know the rewards R(s,a,s’)
▪ You choose the actions now
▪Goal: learn the optimal policy / values

In this case:
▪ Learner makes choices!
▪ Fundamental tradeoff: exploration vs. exploitation
▪ This is NOT offline planning! You actually take actions in the world

and find out what happens…

Recall: Q-Value Iteration

Value iteration: find successive (depth-limited) values
▪ Start with V

0
(s) = 0, which we know is right

▪ Given V
k
, calculate the depth k+1 values for all states:

But Q-values are more useful, so compute them instead
▪ Start with Q

0
(s,a) = 0, which we know is right

▪ Given Q
k
, calculate the depth k+1 q-values for all q-states:

Q-Learning

We’d like to do Q-value updates to each Q-state:

▪ But can’t compute this update without knowing T, R

Instead, learn Q(s,a) values as you go
▪Receive a sample (s,a,s’,r)
▪Consider your old estimate:
▪Consider your new sample estimate:

▪ Incorporate the new estimate into a running average:

Q-Learning Properties

Amazing result: Q-learning converges to optimal policy -- even if you’re
acting suboptimally!

This is called off-policy learning

Caveats:
▪ You have to explore enough
▪ You have to eventually make the learning rate

small enough
▪… but not decrease it too quickly
▪Basically, in the limit, it doesn’t matter how you select actions (!)

Review: MDP/RL Notation

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Standard expectimax:

Q-learning:

Value (TD) learning:

Exploration vs. Exploitation

How to Explore?

Several schemes for forcing exploration
▪ Simplest: random actions (ε-greedy)
▪ Every time step, flip a coin
▪With (small) probability ε, act randomly
▪With (large) probability 1-ε, act on current policy

▪Problems with random actions?
▪ You do eventually explore the space, but keep

thrashing around once learning is done
▪One solution: lower ε over time
▪Another solution: exploration functions

Poll

Exploration should be

A) Optimistic

B) Pessimistic

Exploration Functions

When to explore?
▪ Random actions: explore a fixed amount
▪ Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

Exploration function
▪ Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

▪ Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-Update:

Regular Q-Update:

Exploration Functions

Regret

Even if you learn the optimal policy, you
still make mistakes along the way!

Regret is a measure of your total mistake
cost: the difference between your
(expected) rewards, including youthful
suboptimality, and optimal (expected)
rewards

Minimizing regret goes beyond learning to
be optimal – it requires optimally learning
to be optimal

Example: random exploration and
exploration functions both end up optimal,
but random exploration has higher regret

Approximate Q-Learning: Generalizing Across States

Basic Q-Learning keeps a table of all Q-values

In realistic situations, we cannot possibly learn about
every single state!
▪ Too many states to visit them all in training
▪ Too many states to hold the Q-tables in memory

Instead, we want to generalize:
▪ Learn about some small number of training states

from experience
▪ Generalize that experience to new, similar situations
▪ (This is a fundamental idea in many types of machine

learning)

Example: Pacman

Let’s say we discover
through experience

that this state is bad:

In naïve Q-learning,
we know nothing
about this state:

Or even this one!

Feature-Based Representations
Solution: describe a state using a vector of
features (properties)
▪ Features are functions from states to real numbers

(often 0/1) that capture important properties of the
state
▪ Example features:
▪ Distance to closest ghost
▪ Distance to closest dot
▪ Number of ghosts
▪ 1 / (dist to dot)2

▪ Is Pacman in a tunnel? (0/1)
▪…… etc.
▪ Is it the exact state on this slide?
▪ Can also describe a Q-state (s, a) with features (e.g.,

action moves closer to food)

Linear Value Functions

Using a feature representation, we can write a Q function (or value
function) for any state using a few weights:

▪ V
w

(s) = w
1
f

1
(s) + w

2
f

2
(s) + … + w

n
f

n
(s)

▪ Q
w

(s,a) = w
1
f

1
(s,a) + w

2
f

2
(s,a) + … + w

n
f

n
(s,a)

Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in
value!

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:
▪ Q(s,a) ← Q(s,a) + α ⋅ [r + γ max

a’
 Q (s’,a’) - Q(s,a)]

Instead, we update the weights to try to reduce the error at s, a:
▪ w

i
 ← w

i
 + α ⋅ [r + γ max

a’
 Q (s’,a’) - Q(s,a)] ∂Q

w
(s,a)/∂w

i

 = w
i
 + α ⋅ [r + γ max

a’
 Q (s’,a’) - Q(s,a)] f

i
(s,a)

Quick Calculus Quiz

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:
▪ Q(s,a) ← Q(s,a) + α ⋅ [r + γ max

a’
 Q (s’,a’) - Q(s,a)]

Instead, we update the weights to try to reduce the error at s, a:
▪ w

i
 ← w

i
 + α ⋅ [r + γ max

a’
 Q (s’,a’) - Q(s,a)] ∂Q

w
(s,a)/∂w

i

 = w
i
 + α ⋅ [r + γ max

a’
 Q (s’,a’) - Q(s,a)] f

i
(s,a)

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:
▪ Q(s,a) ← Q(s,a) + α ⋅ [r + γ max

a’
 Q (s’,a’) - Q(s,a)]

Instead, we update the weights to try to reduce the error at s, a:
▪ w

i
 ← w

i
 + α ⋅ [r + γ max

a’
 Q (s’,a’) - Q(s,a)] ∂Q

w
(s,a)/∂w

i

 = w
i
 + α ⋅ [r + γ max

a’
 Q (s’,a’) - Q(s,a)] f

i
(s,a)

Qualitative justification:
▪Pleasant surprise: increase weights on +ve features, decrease on –ve ones
▪Unpleasant surprise: decrease weights on +ve features, increase on –ve ones

Approximate Q-Learning

Q-learning with linear Q-functions:

Intuitive interpretation:
▪ Adjust weights of active features
▪ E.g., if something unexpectedly bad happens, blame the features that

were on: disprefer all states with that state’s features

Formal justification: online least squares

Exact Q’s

Approximate Q’s

Example: Q-Pacman

Q-Learning and Least Squares

0 2
0

0

2
0

4
0

0
1
0

2
0

3
0

4
0

0

1
0

2
0

3
0

2
0

2
2

2
4

2
6

Linear Approximation: Regression

Prediction: Prediction:

Optimization: Least Squares

0 2
0

0

Error or “residual”

Prediction

Observation

Minimizing Error

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”

Recent Reinforcement Learning
Milestones

TDGammon
1992 by Gerald Tesauro, IBM

4-ply lookahead using V(s) trained from 1,500,000 games of self-play

3 hidden layers, ~100 units each

Input: contents of each location plus several handcrafted features

Experimental results:
▪ Plays approximately at parity with world champion
▪ Led to radical changes in the way humans play backgammon

Deep Q-Networks
Deep Mind, 2015

Used a deep learning network to represent Q:
▪ Input is last 4 images (84x84 pixel values) plus score

49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro

31
Image: Deep Mind

sample = r + γ max
a’

 Q
w

(s’,a’)
Q

w
(s,a): Neural network

32

Im
ag

es
: O

p
en

 A
I,

A
ta

ri

OpenAI Gym
2016+

Benchmark problems for learning agents

https://gym.openai.com/envs

Images: Open AI

AlphaGo, AlphaZero
Deep Mind, 2016+

Autonomous Vehicles?

Reinforcement Learning from Human Feedback (RLHF)

Successful applications:

• Videogame bots

• Simulated robotics

• Fine-Tuning Large Language Models (LMMs), e.g., ChatGPT, Gemini,

Claude

• Text-to-image models

