Al: Representation and Problem Solving

Markov Decision Processes ||

Instructors: Tuomas Sandholm and Vincent Conitzer
Slide credits: CMU Al and http://ai.berkeley.edu

Recap: Grid World

= A maze-like problem
= The agent livesin a grid
= Walls block the agent’s path

= Noisy movement: actions do not always go as
planned
= 80% of the time, the action North takes the agent North
= 10% of the time, North takes the agent West; 10% East

= |f there is a wall in the direction the agent would have
been taken, the agent stays put

= The agent receives rewards each time step
»——? Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

" |n the previous lecture we showed an algorithm for solving
MDPs: value iteration

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2yKeep being optimal

o

=

The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

V*(s) = max Q*(s, a)

The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

QR*(s,a) =) T(s,a, s {R(S, a,s) + ny*(s’)}

The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

V*(s) = max Q*(s,a)
QR*(s,a) =) T(s,a, s {R(S, a,s) + ny*(s’)])

V*i(s) = mO?XZT(s, a,s) [R(s, a,s’) + ’}/V*(S/)}

These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

MDP Notation
Standard expectimax: V(s) = mgxz P(s'|s,a)V(s"

Bellman equations: V*(s) = méz‘xz P(s'ls,a)[R(s,a,57) +yV*(s")] Vs

Value iteration: Viet1(s) = maxz P(s'ls,a)[R(s,a,s") +yVi(s)], Vs
2 K JtY

T <

Value Iteration

Bellman equations characterize the optimal values:

Vi) = Mk T [R50) 49V]

S

Value iteration computes them: «

Viet1(s) <+ mC?XZT(S, a,s) {R(s, a,s’) + ’ka(S/)}

S

Value iteration is just a fixed point solution method
= .. though the V, vectors are also interpretable as time-limited values

What are we going to do with these values??

Poll

If you need to extract a policy, would you rather have
A) Values, B) Q-values?

Policy Extraction

Computing Actions from Values

Let’s imagine we have the optimal values V*(s)

How should we act?
= |t’s not obvious!

We need to do a mini-expectimax (one step)

7 (s) = arg gnaXZT(s, a,s)[R(s,a,s’) +~vV*(s)]

S

This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

How should we act? gm
» Completely trivial to decide! M.

o= oo DR

Important lesson: actions are easier to select from g-values than values!

Let’s imagine we have the optimal Q-values:

Value Iteration Notes

Value iteration repeats the Bellman updates:

Vieg1(8) < méaxZT(s,a, s [R(s, a,s’) + ’ka(s’)}

S

Things to notice when running value iteration:
= |t’s slow — O(S2A) per iteration

-’s,a,S

,\A
A s
= The “max” at each state rarely changes

The optimal policy appears before the values converge (but we
don’t know that the policy is optimal until the values converge)

K

0

VALUES AFTER O ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

1

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

2

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

3

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

A

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

5

Cridworld Display

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

6

Gridworld Display

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

7

Cridworld Display

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

3

Cridworld Display

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

9

Cridworld Display

0.40 »| 0.47

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Cridworld Display

VALUES AFTER

10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Cridworld Display

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Cridworld Display

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

k=100

Gridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Policy Iteration

Two Methods for Solving MDPs

Value iteration + policy extraction \/\< — V\“ (

p———

= Step 1: Value iteration: calculate values for all states by running one
ply of the Bellman equations using values from previous iteration

until convergence

= Step 2: Policy extraction: compute policy by running one ply of the
Bellman equations using values from value iteration \/‘” > TV

Policy iteration

=
= Step 1: Policy evaluation: calculate values for some flxed policy (not
optimal values!) until convergence ,(» — \/ M

L Step 2: Policy improvement: update policy by running one pIy of the

Bellman equations using values from policy evaluation \/ — 1Y,
= Repeat steps until policy converges

Policy Evaluation

Fixed Policies

Do the optimal action Do what 7 says to do

-’s,a,s

/,/
A

‘\\‘
A S

Expectimax trees max over all actions to compute the optimal values

If we fixed some policy 1t(s), then the tree would be simpler
— only one action per state

= .. though the tree’s value would depend on which policy we fixed

Utilities for a Fixed Policy

Another basic operation: compute the utility of a state
s under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy m:

V™(s) = expected total discounted rewards starting in s
and following m

Recursive relation (one-step look-ahead / Bellman

equation):
Vo (s) =sz T(s,7(s),) [R(s,m(s), s') +7VHs)

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Evaluation

How do we calculate the V’s for a fixed policy ©t?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Voi(s) =0

—> Vi) 45 T(s,m(s), sHR(s, 1 (s), 8") + V()]

S

Efficiency: O(5}) per iteration

ldea 2: Without the maxes, the Bellman equations are just a linear system
= Solve with your favorite linear system solver

Policy Iteration

Policy Iteration

Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate values for some fixed policy (not
optimal values!) until convergence

= Step 2: Policy improvement: update policy by running one ply of the
Bellman equations using values from policy evaluation
= Repeat steps until policy converges QUGN AL

This is policy iteration
" |t’s still optimal!
" Can converge faster under some conditions

Policy Iteration:

Evaluation: For fixed current policy &, find values with policy evaluation:
" [terate until values converge:

E/’}il(s) «— 3" T(s,m;(s),s) [R(s, 7:(s),s) +~ v,ji(s’)}

Improvement: For fixed values, get a better policy using policy extraction
" One-step look-ahead:

% / / [/
mi4+1(s) = arg CrlnaxZT(s, a,s') [R(s, a,s’) +~V7i(s)}

S

Two Methods for Solving MDPs

Value iteration + policy extraction
= Step 1: Value iteration:
Vis1(s) = max Y. P(s'|s,a)[R(s,a,s") +yVi.(s")], Vs until convergence
= Step 2: Policy extraction:
my(s) = argmax)., P(s'|s,a)[R(s,a,s’) + yV(s')], Vs
a

Policy iteration
= Step 1: Policy evaluation:
VE1(s) =Y P(s'|s,m(s))[R(s,m(s),s") + yVi(s")], Vs until convergence
= Step 2: Policy improvement:
Tnew(S) = argmax)., P(s'|s,a)[R(s,a,s") + yVTtod(s")], Vs
a

= Repeat steps until policy converges

Comparison

Both value iteration and policy iteration compute the same thing
(all optimal values)

In value iteration:
= Every iteration updates both the values and (implicitly) the policy
= We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

= \We do several passes that update values with fixed policy (each pass is fast because we
consider only one action, not all of them; however we do many passes)

= After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
" The new policy will be better (or we’re done)

(Both are dynamic programs for solving MDPs)

Summary: MDP Algorithms

So you want to....

=" Compute optimal values: use value iteration or policy iteration

=" Compute values for a particular policy: use policy evaluation

» Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!

" They basically are — they are all variations of Bellman updates

" They all use one-step lookahead expectimax fragments

" They differ only in whether we plug in a fixed policy or max over actions

MDP Notation

Standard expectimax: V(s) = mc?xz: P(s'|s,a)V(s")
S/

Bellman equations: V*(s) = méixz P(s'|s,a)[R(s,a,s") + yV*(s")]
Value iteration: Vier1(8) = mc?:z: P(s'|s,a)[R(s,a,s") + yVi(s")], Vs
Q-iteration: Qr+1(s,a) = ESP(S’|S, a)[R(s,a,s") + y max Qr(s’,a)], Vs,a
S7
Policy extraction: my(s) = arg;naxz: P(s'|s,a)[R(s,a,s") + yV(s')], Vs
Policy evaluation: Vi 1(s) = z P(SS’IIS, (s))[R(s,m(s),s") + yVF(s")], Vs
S7

Policy improvement: Tnew(S) = argmaxz P(s'|s,a)[R(s,a,s’) + yVTold(s")], Vs
a
S/

MDP Notation

Standard expectimax: V(s) = mgxz P(s'|s,a)V(s"

Bellman equations: V*(s) = mo?xz P(s'ls,a)[R(s,a,s") + yV*(s")]
Value iteration: Vier1(8) = mc?;lz P(s'|s,a)[R(s,a,s") +yV,(s)], Vs
Q-iteration: Qr+1(s,a) = ZSP(S’IS, a)[R(s,a,s") + y max 0,(s",a)], Vs,a
57
Policy extraction: my(s) = arggnaxz P(s'|s,a)[R(s,a,s") +yV(s')], Vs
Policy evaluation: Vi 1(s) = Z P(ss’lls, w(s))[R(s,m(s),s") + yVF(s")], Vs
57

Policy improvement: Tpew () = argmaxz P(s'ls,a)[R(s,a,s") +yVToud(s")], Vs
a
S/

MDP Notation

Standard expectimax: V(s) = mc?xz: P(s'|s,a)V(s")
S/

Bellman equations: V*(s) = méixz P(s'|s,a)[R(s,a,s") + yV*(s")]
Value iteration: Vier1(8) = mc?:z: P(s'|s,a)[R(s,a,s") + yVi(s")], Vs
Q-iteration: Qr+1(s,a) = ESP(S’|S, a)[R(s,a,s") + y max Qr(s’,a)], Vs,a
S7
Policy extraction: my(s) = arg;naxz: P(s'|s,a)[R(s,a,s") + yV(s')], Vs
Policy evaluation: Vi 1(s) = z P(SS’IIS, (s))[R(s,m(s),s") + yVF(s")], Vs
S7

Policy improvement: Tnew(S) = argmaxz P(s'|s,a)[R(s,a,s’) + yVTold(s")], Vs
a
S/

MDP Notation

Standard expectimax: V(s) = mc?xz: P(s'|s,a)V(s")
S/

Bellman equations: V*(s) = maztaxz P(s'|s,a)[R(s,a,s") + yV*(s")]
Value iteration: Viiq(s) = mc?;’z: P(s'|s,a)[R(s,a,s") +yV,(s")], Vs
Q-iteration: Qr+1(s,a) = ZSP(S’IS, a)[R(s,a,s") + y max Qr(s’,a)], Vs,a
S7
Policy extraction: my(s) = arggnaxz P(s'|s,a)[R(s,a,s") + yV(s')], Vs
Policy evaluation: Vii(s) = z P(SS’IIS, n(s))[R(s,m(s),s") + yV](s")], Vs
S7

Policy improvement: e (S) = argmaxz P(s'|s,a)[R(s,a,s") +yVToud(s")], Vs
a
S/

Next Time: Reinforcement Learning!

Double Bandits

4 N

Double-Bandit MDP No discount
100 time steps
Actions: Blue, Red Both states have

States: Win, Lose 0.25 SO Kt‘he same value

Offline Planning

_ . . _ No discount
Solving MDPs is offline planning 100 time steps
" You determine all quantities through computation Both states have
" You need to know the details of the MDP the same value
N /
" You do not actually play the game!
Value
Play Red 150

Play Blue 100

_ /

Let’s Play!

S2 S2 SO0 S2 S2
S2 $2 SO0 SO SO

Online Planning

Rules changed! Red’s win chance is different.

J

?? SO

Let’s Play!

SO SO SO S2 SO
S2 SO0 SO SO SO

What Just Happened?

That wasn’t planning, it was learning!
= Specifically, reinforcement learning
" There was an MDP, but you couldn’t solve it with just computation
" You needed to actually act to figure it out

Important ideas in reinforcement learning that came up

" Exploration: you have to try unknown actions to get information

= Exploitation: eventually, you have to use what you know

= Regret: even if you learn intelligently, you make mistakes

= Sampling: because of chance, you have to try things repeatedly

= Difficulty: learning can be much harder than solving a known MDP

