
AI: Representation and Problem Solving
Markov Decision Processes II

Instructors: Tuomas Sandholm and Vincent Conitzer
Slide credits: CMU AI and http://ai.berkeley.edu

Recap: Grid World
§ A maze-like problem

§ The agent lives in a grid
§ Walls block the agent’s path

§ Noisy movement: actions do not always go as
planned
§ 80% of the time, the action North takes the agent North
§ 10% of the time, North takes the agent West; 10% East
§ If there is a wall in the direction the agent would have

been taken, the agent stays put

§ The agent receives rewards each time step
§ Small “living” reward each step (can be negative)
§ Big rewards come at the end (good or bad)

§ In the previous lecture we showed an algorithm for solving
MDPs: value iteration

The Bellman Equations

How to be optimal:

 Step 1: Take correct first action

 Step 2: Keep being optimal

The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

a

s

s, a

s,a,sʼ
sʼ

The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

a

s

s, a

s,a,sʼ
sʼ

The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

a

s

s, a

s,a,sʼ
sʼ

The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

a

s

s, a

s,a,sʼ
sʼ

MDP Notation

𝑉 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎)𝑉(𝑠#)

𝑉∗ 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉∗ 𝑠#

𝑉%&' 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉% 𝑠# , ∀	𝑠

Bellman equations:

Value iteration:

Standard expectimax:

Value Iteration

Bellman equations characterize the optimal values:

Value iteration computes them:

Value iteration is just a fixed point solution method
§ … though the Vk vectors are also interpretable as time-limited values

a

s

s, a

s,a,sʼ

Solved MDP! Now what?
What are we going to do with these values??

𝑉∗ 𝑠 𝑄∗ 𝑠, 𝑎

Poll
If you need to extract a policy, would you rather have
A) Values, B) Q-values?

Poll
If you need to extract a policy, would you rather have
A) Values, B) Q-values ?

Policy Extraction

Computing Actions from Values
Let’s imagine we have the optimal values V*(s)

How should we act?
§ It’s not obvious!

We need to do a mini-expectimax (one step)

This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values
Let’s imagine we have the optimal Q-values:

How should we act?
§ Completely trivial to decide!

Important lesson: actions are easier to select from q-values than values!

Value Iteration Notes
Value iteration repeats the Bellman updates:

Things to notice when running value iteration:
§ It’s slow – O(S2A) per iteration
§ The “max” at each state rarely changes
§ The optimal policy appears before the values converge (but we

don’t know that the policy is optimal until the values converge)

a

s

s, a

s,a,sʼ
sʼ

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Policy Iteration

Two Methods for Solving MDPs
Value iteration + policy extraction
§ Step 1: Value iteration: calculate values for all states by running one

ply of the Bellman equations using values from previous iteration
until convergence

§ Step 2: Policy extraction: compute policy by running one ply of the
Bellman equations using values from value iteration

Policy iteration
§ Step 1: Policy evaluation: calculate values for some fixed policy (not

optimal values!) until convergence
§ Step 2: Policy improvement: update policy by running one ply of the

Bellman equations using values from policy evaluation
§ Repeat steps until policy converges

Policy Evaluation

Fixed Policies

Expectimax trees max over all actions to compute the optimal values

If we fixed some policy p(s), then the tree would be simpler
– only one action per state
§ … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,sʼ
sʼ

p(s)

s

s, p(s)

s, p(s),sʼ
sʼ

Do the optimal action Do what p says to do

Utilities for a Fixed Policy

Another basic operation: compute the utility of a state
s under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy p:
Vp(s) = expected total discounted rewards starting in s

and following p

Recursive relation (one-step look-ahead / Bellman
equation):

p(s)

s

s, p(s)

s, p(s),sʼ
sʼ

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Evaluation
How do we calculate the V’s for a fixed policy p?

Idea 1: Turn recursive Bellman equations into updates
 (like value iteration)

Efficiency: O(S2) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
§ Solve with your favorite linear system solver

p(s)

s

s, p(s)

s, p(s),sʼ
sʼ

Policy Iteration

Policy Iteration
Alternative approach for optimal values:
§ Step 1: Policy evaluation: calculate values for some fixed policy (not

optimal values!) until convergence
§ Step 2: Policy improvement: update policy by running one ply of the

Bellman equations using values from policy evaluation
§ Repeat steps until policy converges

This is policy iteration
§ It’s still optimal!
§ Can converge faster under some conditions

Policy Iteration:

Evaluation: For fixed current policy p, find values with policy evaluation:
§ Iterate until values converge:

Improvement: For fixed values, get a better policy using policy extraction
§ One-step look-ahead:

Two Methods for Solving MDPs
Value iteration + policy extraction
§ Step 1: Value iteration:
𝑉!"# 𝑠 = max

$
∑%&𝑃 𝑠& 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠& + 𝛾𝑉! 𝑠& , ∀	𝑠	 until convergence

§ Step 2: Policy extraction:
𝜋' 𝑠 = argmax

$
∑%&𝑃 𝑠& 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠& + 𝛾𝑉 𝑠&] , ∀	𝑠

Policy iteration
§ Step 1: Policy evaluation:
𝑉!"#(𝑠 = ∑%&𝑃 𝑠& 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠& + 𝛾𝑉!(𝑠&] , ∀	𝑠 until convergence
§ Step 2: Policy improvement:
𝜋)*+ 𝑠 = argmax

$
∑%&𝑃 𝑠& 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠& + 𝛾𝑉(!"# 𝑠& , ∀	𝑠

§ Repeat steps until policy converges

Comparison
Both value iteration and policy iteration compute the same thing
(all optimal values)

In value iteration:
§ Every iteration updates both the values and (implicitly) the policy
§ We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:
§ We do several passes that update values with fixed policy (each pass is fast because we

consider only one action, not all of them; however we do many passes)
§ After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
§ The new policy will be better (or we’re done)

(Both are dynamic programs for solving MDPs)

Summary: MDP Algorithms
So you want to….
§ Compute optimal values: use value iteration or policy iteration
§ Compute values for a particular policy: use policy evaluation
§ Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!
§ They basically are – they are all variations of Bellman updates
§ They all use one-step lookahead expectimax fragments
§ They differ only in whether we plug in a fixed policy or max over actions

MDP Notation

𝑉 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎)𝑉(𝑠#)

𝑉∗ 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉∗ 𝑠#

𝑉%&' 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉% 𝑠# , ∀	𝑠

𝑄%&' 𝑠, 𝑎 ='
"#

𝑃 𝑠# 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠# + 𝛾max
!!

𝑄%(𝑠#, 𝑎#)] , 	 ∀	𝑠, 𝑎

𝜋(𝑠 = argmax
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉 𝑠#] , ∀	𝑠

𝑉%&') 𝑠 ='
"#

𝑃 𝑠# 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠# + 𝛾𝑉%) 𝑠#] , ∀	𝑠

𝜋*+, 𝑠 = argmax
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉)"#$ 𝑠# , ∀	𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Standard expectimax:

MDP Notation

𝑉 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎)𝑉(𝑠#)

𝑉∗ 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉∗ 𝑠#

𝑉%&' 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉% 𝑠# , ∀	𝑠

𝑄%&' 𝑠, 𝑎 ='
"#

𝑃 𝑠# 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠# + 𝛾max
!!

𝑄%(𝑠#, 𝑎#)] , 	 ∀	𝑠, 𝑎

𝜋(𝑠 = argmax
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉 𝑠#] , ∀	𝑠

𝑉%&') 𝑠 ='
"#

𝑃 𝑠# 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠# + 𝛾𝑉%) 𝑠#] , ∀	𝑠

𝜋*+, 𝑠 = argmax
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉)"#$ 𝑠# , ∀	𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Standard expectimax:

MDP Notation

𝑉 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎)𝑉(𝑠#)

𝑉∗ 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉∗ 𝑠#

𝑉%&' 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉% 𝑠# , ∀	𝑠

𝑄%&' 𝑠, 𝑎 ='
"#

𝑃 𝑠# 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠# + 𝛾max
!!

𝑄%(𝑠#, 𝑎#)] , 	 ∀	𝑠, 𝑎

𝜋(𝑠 = argmax
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉 𝑠#] , ∀	𝑠

𝑉%&') 𝑠 ='
"#

𝑃 𝑠# 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠# + 𝛾𝑉%) 𝑠#] , ∀	𝑠

𝜋*+, 𝑠 = argmax
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉)"#$ 𝑠# , ∀	𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Standard expectimax:

MDP Notation

Standard expectimax: 𝑉 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎)𝑉(𝑠#)

𝑉∗ 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉∗ 𝑠#

𝑉%&' 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉% 𝑠# , ∀	𝑠

𝑄%&' 𝑠, 𝑎 ='
"#

𝑃 𝑠# 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠# + 𝛾max
!!

𝑄%(𝑠#, 𝑎#)] , 	 ∀	𝑠, 𝑎

𝜋(𝑠 = argmax
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉 𝑠#] , ∀	𝑠

𝑉%&') 𝑠 ='
"#

𝑃 𝑠# 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠# + 𝛾𝑉%) 𝑠#] , ∀	𝑠

𝜋*+, 𝑠 = argmax
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉)"#$ 𝑠# , ∀	𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy evaluation:

Policy improvement:

Next Time: Reinforcement Learning!

Double Bandits

Slide: ai.berkeley.edu

Double-Bandit MDP

Actions: Blue, Red
States: Win, Lose

W L
$1

1.0

$1

1.0

0.25 $0

0.75
$2

0.75 $2

0.25
$0

No discount
100 time steps

Both states have
the same value

Slide: ai.berkeley.edu

Offline Planning

Solving MDPs is offline planning
§ You determine all quantities through computation
§ You need to know the details of the MDP
§ You do not actually play the game!

Play Red

Play Blue

Value

No discount
100 time steps

Both states have
the same value

150

100

W L
$1

1.0

$1

1.0

0.25 $0

0.75
$2

0.75 $2

0.25
$0

Slide: ai.berkeley.edu

Let’s Play!

$2 $2 $0 $2 $2
$2 $2 $0 $0 $0

Slide: ai.berkeley.edu

Online Planning
Rules changed! Red’s win chance is different.

W L
$1

1.0

$1

1.0

?? $0

??
$2

?? $2

??
$0

Slide: ai.berkeley.edu

Let’s Play!

$0 $0 $0 $2 $0
$2 $0 $0 $0 $0

Slide: ai.berkeley.edu

What Just Happened?

That wasn’t planning, it was learning!
§ Specifically, reinforcement learning
§ There was an MDP, but you couldn’t solve it with just computation
§ You needed to actually act to figure it out

Important ideas in reinforcement learning that came up
§ Exploration: you have to try unknown actions to get information
§ Exploitation: eventually, you have to use what you know
§ Regret: even if you learn intelligently, you make mistakes
§ Sampling: because of chance, you have to try things repeatedly
§ Difficulty: learning can be much harder than solving a known MDP

Slide: ai.berkeley.edu

