
CMU 15-281 Spring 2024: Machine Learning Lecture Notes

Nihar B. Shah and Tuomas Sandholm

Machine learning is a part of AI where machines learn primarily via examples (as opposed to primarily
learning via human-specified rules) in a manner that can generalize to previously unseen situations.

1 Some examples

We will consider what is perhaps the most canonical form of machine learning – supervised binary classifi-
cation. Let us look at some examples of it and then we’ll parse through what this means:

• Given an email, an email provider would like to mark it as spam or not spam.

• Any company that has users conducting financial transactions would develop methods to identify
fraudulent (vs. non-fraudulent) transactions.

• Camera companies want to design algorithms such that given an image, it can figure out whether it
contains a human face or not. (If there is a human face in the view of the lens then the camera should
automatically shout “cheese.” This would look silly if there was no person in front of the camera.)

• Given an image of a set of cells from the body, researchers are trying to design methods that can tell
whether the cells are cancerous.

• Companies’ hiring departments are trying to design methods which, given a candidate’s CV, would
output whether this candidate should be interviewed or not.

In each of these examples, the output takes two possible values (e.g., spam vs. not spam). Hence the term
“binary.” The objective is to classify the input into one of these two values (“classes”), and hence the term
“classification.”

2 General recipe

In the description below, we will simplify certain aspects of machine learning to enable presentation in the
class.

For simplicity, we will assume that the input (the email or the image etc.) can be written as a vector of
real numbers (say, of length d). This can be done, for instance in the case of grayscale images, by taking the
pixels and putting them in one long vector. The two possible classes are denoted as -1 and 1.

The goal then is to figure out a function, which we will denote as f : Rd → {−1, 1}. This function will
take the email/image/... as input and then output its predicted class. The key question is: how do we figure
out what this function should be?

To design this function, we assume we have access to (lots of) prior data. For instance in the case of spam
detection, we have access to lots of emails that were previously marked by humans as spam or not spam.
This prior data is used to supervise these methods, and hence the term “supervised” in supervised binary
classification. This data is called “training data” and the process of using this training data to come up with
a function f is called “training.” Let us formalize this in terms of some notation. Suppose we have access to
n such emails. Recall that we are converting all inputs to a vector of length d. Let us denote these n emails as
x1, x2, . . . , xn ∈ Rd. For each email xi, we also have an associated “label” yi ∈ {−1, 1} where 1 may represent

1



spam and -1 may represent not spam. Hence the training data comprises (x1, y1), (x2, y2), . . . , (xn, yn). The
labels may not be perfect (may have some errors) but are still assumed to be reasonably accurate.

Now suppose we have access to this training data. How do we come up with a function f : Rd → {−1, 1}
that can take as input a new email you just received and output whether the email is spam or not? The
general recipe is as follows:

• Assume that f takes a certain form.

• Among all possible functions f that take this form, choose the f which makes the least amount of
mistakes on the training data.

• Output this f .

3 Linear classifiers

Let us make this concrete via one specific form for function f . Let us suppose that f takes a linear combi-
nation of the coordinate values of its input vector. Then if the result is positive, it outputs 1 otherwise it
outputs −1. More formally, any such function f is associated with a vector w ∈ Rd and a value b ∈ R. Then
f(x) = sign(wTx+ b).1 Such a function is called a “linear classifier.” Why? Suppose d = 2. Consider some
w ∈ R2 and b ∈ R, say w = [1, 0.5] and b = 0. Now consider a graph where you have the first coordinate of
x ∈ R2 on the x axis and the second coordinate on the y axis. Can you plot f on this graph?2

For a general dimension d, any such function f operates similarly. The values w specify what is called a
hyperplane (which is simply a generalization of a line). If the input x falls on one side of the hyperplane, it
will output 1 and on the other side it will output −1.

The next natural question you should ask is – suppose we have chosen the form of f . Then how do we
decide what exactly this function f should be. For instance, suppose we have decided that we want a linear
classifier, then what should be the values of (w, b)?

As mentioned earlier, to answer this question we will rely on the training data. We need to design an
algorithm such that given the training data (x1, y1), (x2, y2), . . . , (xn, yn), it finds the values of (w, b) such
that the number of training data points i ∈ {1, 2, ..., n} such that sign(wTxi+ b) = yi is as large as possible.

How do you find such (w, b)? There are various algorithms. Two of the most famous ones are as follows.

3.1 Perceptron Algorithm

This was invented by Rosenblatt in the 1950s. It assumes that there does exist some (w, b) such that it
perfectly classifies the training data. The question it addressed was: how do we find this (w, b)?

The algorithm is simple to describe. It is an iterative algorithm:

1. Initialize w = 0 and b = 0.

2. If sign(wTxi + b) = yi for all i ∈ {1, 2, ..., n} then return this w and b.

3. Pick any arbitrary i ∈ {1, 2, ..., n} such that sign(wTxi + b) ̸= yi; let’s call it i0.

4. Update w ← w + yi0xi0 and b← b+ yi0 .

5. Go to step 2.

If there truly exists some (w, b) that correctly classifies the entire training data, then the algorithm is
guaranteed to stop in a finite time and output a (w, b) which correctly classifies all training data. (However,
there doesn’t exist any such (w, b) then this algorithm will keep running forever.)

1You can assume sign(0)=1.
2The term “linear” has occurred previously in this course. Recall linear constraints from linear programming, which also

had the term “linear.” Try to establish a connection between the two places we have seen “linear” so far in the course.

2



I encourage you to implement and try out this algorithm! Choose some (w, b) and some x1, . . . , xd;
generate yi = sign(wTxi + b) for every i; then run this algorithm on the training data you have generated.
Does this output a (w, b) which correctly classifies all training data? Is it always the same (w, b) that you
had initially chosen?

3.2 Support Vector Machines (SVMs)

While the perceptron tries to find some (w, b) which correctly classifies all training data, SVMs try to find
the “best” (w, b) among all possible choices which can correctly classify all training data. The notion of best
is in terms of how far is the separating line from the nearest training point. The algorithm extensively relies
on optimization-based techniques.

4 First AI winter

After the invention of the perceptron algorithm, there was a huge excitement about AI. In fact, the New
York Times carried an article which quoted the navy saying that that “it expects [the algorithms] will be
able to walk, talk, see, write, reproduce itself and be conscious of its existence.” There was huge hype.

And then came a bust. People started reporting negative results. Here is a simple one. Suppose d = 2.
Suppose you just want to learn an XOR function, that is, suppose you have x1 = [−1,−1], y1 = −1,
x2 = [1,−1], y2 = 1, x3 = [−1, 1], y3 = 1 and x4 = [1, 1], y4 = −1. Then is there any (w, b) that correctly
classifies all of the training data? No. The perceptron algorithm on this data will keep running forever. So
if the perceptron cannot even learn such a simple function, how can it be expected to do far more complex
things like reading, writing, etc.?!

Researchers then had also started working on early incarnations of deep learning (discussed below) but
they did not have enough computation nor enough data to succeed.

5 Deep learning

In subsequent years, people said that the perceptron still seemed a bit useful, but the form of f that it
assumed was very restrictive. So...why not put many such perceptrons together to create a more complex
form of f which can capture the XOR function and much more?! And this is precisely what are called deep
neural networks or deep learning.

Let us go into more detail. Here is how you construct a more complex form of f . The function f takes
as input x. Now, instead of having just one perceptron, the input x is fed in parallel to many perceptrons.
Each of them is called a “neuron.”3 Each of these perceptrons can have different values of (w, b). Let us
suppose we used k1 such neurons. We collect the outputs of these neurons to form a k1-length vector. This
vector is now fed as input to k2 other neurons, which can have its own values of (w, b). The outputs are
then collected as a vector, and this is again fed as input to k3 other neurons. And so on. The resulting f
can now capture XOR functions and other far more complex items.

This entire function f is called a neural network. Each time you have a set of neurons to which the same
input is fed, this is called a “layer.” The number of layers is called the “depth.” The number of neurons
in any layer is called the “width” of the layer. The width of the widest layer in a neural network is called
the width of the neural network. The original perception we had studied earlier was a single layer neural
network. If you have more than one layer, you call it deep learning or deep neural networks.

Now given training data (x1, y1), (x2, y2), . . . , (xn, yn), one finds the function f of this form (that is, one
finds values of the parameters for all the perceptrons) such that it correctly classifies as much of the training
data as possible. This is done through optimization algorithms like “graadient descent” and its variants.

3In practice, you use a slight generalization of a perceptron, where the sign is replaced by other functions (called “activation
functions”). This distinction is beyond the scope of this lecture.

3


