Cost-Based Search as IP

Motivation

- Many problems can be solved by search (e.g., backtracking, branch and bound, etc.) but we haven't seen anything on the other direction
- IP is a very expressive representation

Variables:

Variables: binary variable for each edge in the graph, representing whether the edge is in the final path or not (0 means edge is not in the final path, 1 means edge is in the final path)

Variables: binary variable for each edge in the graph, representing whether the edge is in the final path or not (0 means edge is not in the final path, 1 means edge is in the final path)

Ex: $x_{X \to Y}$ is a binary variable representing whether the edge $X \to Y$ is in the final path

How to represent the path $S \rightarrow A \rightarrow C \rightarrow G$?

How to represent the path $S \rightarrow A \rightarrow C \rightarrow G$?

3 edges: $\{S \rightarrow A, A \rightarrow C, C \rightarrow G\}$

 $x_{S\rightarrow A}$ = indicator for whether S \rightarrow A is in the path, etc (same for every path in our graph)

How to represent the path $S \rightarrow A \rightarrow C \rightarrow G$?

3 edges: $\{S \rightarrow A, A \rightarrow C, C \rightarrow G\}$

 $x_{S \to A}$ = indicator for whether S \to A is in the path, etc (same for every path in our graph)

$$(x_{S \to A} = 1 \quad x_{S \to B} = 0 \quad x_{A \to B} = 0 \quad x_{A \to C} = 1 \quad x_{B \to C} = 0 \quad x_{B \to G} = 0 \quad x_{C \to S} = 0 \quad x_{C \to G} = 1 \quad x_{G \to C} = 0)$$

How to represent the path $S \rightarrow A \rightarrow C \rightarrow G$?

3 edges: $\{S \rightarrow A, A \rightarrow C, C \rightarrow G\}$

 $x_{S\rightarrow A}$ = indicator for whether S \rightarrow A is in the path, etc (same for every path in our graph)

 $(x_{S \to A} = 1 \quad x_{S \to B} = 0 \quad x_{A \to B} = 0 \quad x_{A \to C} = 1 \quad x_{B \to C} = 0 \quad x_{B \to G} = 0 \quad x_{C \to S} = 0 \quad x_{C \to G} = 1 \quad x_{G \to C} = 0)$

9-tuple: (1, 0, 0, 1, 0, 0, 0, 1, 0)

a) i) 9-tuple representation for $S \rightarrow A \rightarrow B \rightarrow C \rightarrow G$

a) i) 9-tuple representation for $S \rightarrow A \rightarrow B \rightarrow C \rightarrow G$

a) i) 9-tuple representation for S→A→B→C→G
 (1, 0, 1, 0, 1, 0, 0, 1, 0)

- a) i) 9-tuple representation for $S \rightarrow A \rightarrow B \rightarrow C \rightarrow G$ (1, 0, 1, 0, 1, 0, 0, 1, 0)
 - ii) 9-tuple representation for $A \rightarrow C \rightarrow S \rightarrow B$

- i) 9-tuple representation for S→A→B→C→G
 (1, 0, 1, 0, 1, 0, 0, 1, 0)
 ii) 9-tuple representation for A→C→S→B
 - (0, 1, 0, 1, 0, 0, 1, 0, 0)

Order:
$$x_{S \to A}$$
 , $x_{S \to B}$, $x_{A \to B}$, $x_{A \to C}$, $x_{B \to C}$, $x_{B \to G}$, $x_{C \to S}$, $x_{C \to G}$, $x_{G \to C}$

- i) 9-tuple representation for S→A→B→C→G

 (1, 0, 1, 0, 1, 0, 0, 1, 0)
 ii) 9-tuple representation for A→C→S→B
 (0, 1, 0, 1, 0, 0, 1, 0, 0)
 - iii) Path that corresponds to (0, 0, 1, 0, 1, 0, 0, 0, 0)

Order:
$$x_{S \to A}$$
 , $x_{S \to B}$, $x_{A \to B}$, $x_{A \to C}$, $x_{B \to C}$, $x_{B \to G}$, $x_{C \to S}$, $x_{C \to G}$, $x_{G \to C}$

a) i) 9-tuple representation for
$$S \rightarrow A \rightarrow B \rightarrow C \rightarrow G$$

(1, 0, 1, 0, 1, 0, 0, 1, 0)
ii) 9-tuple representation for $A \rightarrow C \rightarrow S \rightarrow B$
(0, 1, 0, 1, 0, 0, 1, 0, 0)

iii) Path that corresponds to (0, 0, 1, 0, 1, 0, 0, 0, 0)

$$A{\rightarrow}B{\rightarrow}C$$

Constraints:

1) Ensure path starts at S

- 1) Ensure path starts at S
- 2) Ensure path ends at G

Constraint 1: path starts at S

Constraint 1: path starts at S Two nodes going out of S: A and B

Constraint 1: path starts at S Two nodes going out of S: A and B \rightarrow either $x_{S\rightarrow A}$ or $x_{S\rightarrow B}$ must be 1

Two nodes going out of S: A and B \rightarrow either $x_{S\rightarrow A}$ or $x_{S\rightarrow B}$ must be 1 $x_{S\rightarrow A}$ + $x_{S\rightarrow B}$ = 1

Two nodes going out of S: A and B \rightarrow either $x_{S\rightarrow A}$ or $x_{S\rightarrow B}$ must be 1 $x_{S\rightarrow A}$ + $x_{S\rightarrow B}$ = 1

Inequality form: $x_{S\rightarrow A} + x_{S\rightarrow B} \le 1$ and $-x_{S\rightarrow A} - x_{S\rightarrow B} \le -1$

Two nodes going out of S: A and B \to either $x_{S\to A}$ or $x_{S\to B}$ must be 1 $x_{S\to A}$ + $x_{S\to B}$ = 1

Inequality form: $x_{S\rightarrow A} + x_{S\rightarrow B} \le 1$ and $-x_{S\rightarrow A} - x_{S\rightarrow B} \le -1$

One node going into S: C

Two nodes going out of S: A and B \rightarrow either $x_{S\rightarrow A}$ or $x_{S\rightarrow B}$ must be 1 $x_{S\rightarrow A}$ + $x_{S\rightarrow B}$ = 1

Inequality form: $x_{S\rightarrow A} + x_{S\rightarrow B} \le 1$ and $-x_{S\rightarrow A} - x_{S\rightarrow B} \le -1$

One node going into S: C $x_{C\rightarrow S} = 0$

Two nodes going out of S: A and B \rightarrow either $x_{S\rightarrow A}$ or $x_{S\rightarrow B}$ must be 1 $x_{S\rightarrow A}$ + $x_{S\rightarrow B}$ = 1

Inequality form: $x_{S\rightarrow A} + x_{S\rightarrow B} \le 1$ and $-x_{S\rightarrow A} - x_{S\rightarrow B} \le -1$

One node going into S: C

$$x_{C\rightarrow S} \le 0$$
 and $-x_{C\rightarrow S} \le 0$

Two nodes going out of S: A and B \rightarrow either $x_{S\rightarrow A}$ or $x_{S\rightarrow B}$ must be 1 $x_{S\rightarrow A}$ + $x_{S\rightarrow B}$ = 1

Inequality form: $x_{S\rightarrow A} + x_{S\rightarrow B} \le 1$ and $-x_{S\rightarrow A} - x_{S\rightarrow B} \le -1$

One node going into S: C

$$x_{C\rightarrow S} \le 0$$
 and $-x_{C\rightarrow S} \le 0$

Constraint 2: path ends at G

Constraint 2: path ends at G

Two nodes going into G: C and B \rightarrow either $x_{C \rightarrow G}$ or $x_{B \rightarrow G}$ must be 1

$$x_{C\rightarrow G} + x_{B\rightarrow G} \le 1$$
 and $-x_{C\rightarrow G} - x_{B\rightarrow G} \le -1$

Constraint 2: path ends at G

Two nodes going into G: C and B \rightarrow either $x_{C \rightarrow G}$ or $x_{B \rightarrow G}$ must be 1

$$x_{C\rightarrow G} + x_{S\rightarrow B} \le 1$$
 and $-x_{C\rightarrow G} - x_{B\rightarrow G} \le -1$

One node coming out of G: $C \rightarrow x_{G \rightarrow C}$ must be 0

$$x_{G\rightarrow C} \le 0$$
 and $-x_{G\rightarrow C} \le 0$

Constraint 2: path ends at G

Two nodes going into G: C and B \rightarrow either $x_{C \rightarrow G}$ or $x_{B \rightarrow G}$ must be 1

$$x_{C\rightarrow G}$$
 + $x_{B\rightarrow G}$ <= 1 and - $x_{C\rightarrow G}$ - $x_{B\rightarrow G}$ <= -1

One node coming out of G: $C \rightarrow x_{G \rightarrow C}$ must be 0

$$x_{G\rightarrow C} \le 0$$
 and $-x_{G\rightarrow C} \le 0$

- 1) Ensure path starts at S done
- 2) Ensure path ends at G done

Constraints: need to make sure paths are valid

- 1) Ensure path starts at S done
- 2) Ensure path ends at G done

These two constraints are not enough:(

Constraints: need to make sure paths are valid

- 1) Ensure path starts at S done
- 2) Ensure path ends at G done

Question: 9-tuple that satisfies these constraints but does **not** represent a valid path from S to G

Constraints: need to make sure paths are valid

- 1) Ensure path starts at S done
- 2) Ensure path ends at G done

Question: 9-tuple that satisfies these constraints but does **not** represent a valid path from S to G

 ${S \rightarrow A, C \rightarrow G}: (1, 0, 0, 0, 0, 0, 0, 1, 0)$

Path can only pass through each non-terminal node at most once

Path can only pass through each non-terminal node at most once

Constraint that node B can only appear on the path at most once:

Path can only pass through each non-terminal node at most once

Constraint that node B can only appear on the path at most once: Two nodes going into B: S, A

Path can only pass through each non-terminal node at most once

Constraint that node B can only appear on the path at most once: Two nodes going into B: S, A \rightarrow either $x_{S\rightarrow B}$ or $x_{A\rightarrow B}$ must be 1, but both cannot be 1

Path can only pass through each non-terminal node at most once

Constraint that node B can only appear on the path at most once: Two nodes going into B: S, A \rightarrow either $x_{S\rightarrow B}$ or $x_{A\rightarrow B}$ must be 1, but both cannot be 1

$$\chi_{S\rightarrow B} + \chi_{A\rightarrow B} <= 1$$

Path can only pass through each non-terminal node at most once

Constraint that node B can only appear on the path at most once: Two nodes going into B: S, A \rightarrow either $x_{S\rightarrow B}$ or $x_{A\rightarrow B}$ must be 1, but both cannot be 1 $x_{S\rightarrow B}$ + $x_{A\rightarrow B}$ <= 1

Two nodes coming out of B: C, G \rightarrow either $x_{B\rightarrow C}$ or $x_{B\rightarrow G}$ must be 1, but both cannot be 1

Path can only pass through each non-terminal node at most once

Constraint that node B can only appear on the path at most once: Two nodes going into B: S, A \rightarrow either $x_{S\rightarrow B}$ or $x_{A\rightarrow B}$ must be 1, but both cannot be 1 $x_{S\rightarrow B}$ + $x_{A\rightarrow B}$ <= 1

Two nodes coming out of B: C, G \rightarrow either $x_{B \rightarrow C}$ or $x_{B \rightarrow G}$ must be 1, but both cannot be 1

$$\chi_{B\rightarrow C} + \chi_{B\rightarrow G} <= 1$$

More constraints: If there is an edge to B, then there must be an edge out of B (otherwise, B is either a dead end or a start) **Idea:** number of edges into B = number of edges out of B (we already constrained that you can only have one of those edges)

Idea: number of edges into B = number of edges out of B (we already constrained that you can only have one of those edges)

$$\chi_{S\rightarrow B} + \chi_{A\rightarrow B} = \chi_{B\rightarrow C} + \chi_{B\rightarrow G}$$

Idea: number of edges into B = number of edges out of B (we already constrained that you can only have one of those edges)

$$\mathbf{x}_{\mathsf{S} \to \mathsf{B}} + \mathbf{x}_{\mathsf{A} \to \mathsf{B}} <= \mathbf{x}_{\mathsf{B} \to \mathsf{C}} + \mathbf{x}_{\mathsf{B} \to \mathsf{G}}$$
 $\mathbf{x}_{\mathsf{S} \to \mathsf{B}} + \mathbf{x}_{\mathsf{A} \to \mathsf{B}} >= \mathbf{x}_{\mathsf{B} \to \mathsf{C}} + \mathbf{x}_{\mathsf{B} \to \mathsf{G}}$

Idea: number of edges into B = number of edges out of B (we already constrained that you can only have one of those edges)

$$\begin{array}{l} x_{S\rightarrow B} + x_{A\rightarrow B} - x_{B\rightarrow C} - x_{B\rightarrow G} <= 0 \\ -x_{S\rightarrow B} - x_{A\rightarrow B} + x_{B\rightarrow C} + x_{B\rightarrow G} <= 0 \end{array}$$

Objective function:

Objective function:

Idea: coefficient for each edge is the cost of that edge

Objective function:

Idea: coefficient for each edge is the cost of that edge

$$3x_{S\rightarrow A} + 7x_{S\rightarrow B} + 5x_{A\rightarrow B} + 4x_{A\rightarrow C} + 2x_{B\rightarrow C} + 1x_{B\rightarrow G} + 1x_{C\rightarrow S} + 6x_{C\rightarrow G} + 6x_{G\rightarrow C}$$

Still not enough to ensure a valid path :(

Still not enough to ensure a valid path :(

Counterexample:

Still not enough to ensure a valid path :(

Counterexample:

Idea: anything with a loop outside the path is still allowed by our constraints

How can we fix this?

How can we fix this?

Answer: we don't have to:)

How can we fix this?

Answer: we don't have to:)

Idea: If we have an extra cycle, that would just increase the total path cost. Because we are trying to minimize cost, this would only hurt us, so we wouldn't return such a solution anyway.

Cost-Based Search as IP

- Now let's put everything together, and define the following search algorithm
 - First convert the search problem into the IP representation
 - Then run an IP-solver (which is complete and optimal) on the representation
 - Reconstruct the path from start to goal by getting all the ones in the variables

- Is this is complete?
- Is this is optimal?

Cost-Based Search as IP

- Now let's put everything together, and define the following search algorithm
 - First convert the search problem into the IP representation
 - Then run an IP-solver (which is complete and optimal) on the representation
 - Reconstruct the path from start to goal by getting all the ones in the variables

- Is this is complete? Yes
- Is this is optimal?

Cost-Based Search as IP

- Now let's put everything together, and define the following search algorithm
 - First convert the search problem into the IP representation
 - Then run an IP-solver (which is complete and optimal) on the representation
 - Reconstruct the path from start to goal by getting all the ones in the variables

- Is this is complete? Yes
- Is this is optimal? Yes

Take Home Messages

- Cost-based search can be expressed, and solved with IP
- IP is very expressive, we can do many interesting things with it

Want some more?

Minimax as IP!!! (Bonus question on the course website)