Cost-Based Search as IP



Motivation

e Many problems can be solved by search (e.g., backtracking, branch and
bound, etc.) but we haven’t seen anything on the other direction
e |P is a very expressive representation
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EX: x,_. is a binary variable representing whether the edge X — Y'is
in the final path
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Formulating Search as IP

How to represent the path S-A—-C—-G?
3 edges: {S—A, A—C, C—-G}

X4, = Iindicator for whether S—Ais in the path, etc (same for every path in our
graph)

(tssa=1 zsop=0 z4,5=0 za,c=1 zp,c=0 2poeg=0 zcs=0 zesg=1 zgHc=0)

9-tuple: (1,0,0,1,0,0,0, 1, 0)
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Order: XS—>A ’ XS—»B ’ XA—>B ! XA—»C ’ XB—>C ’ XB—»G ! XC—»S ’ XC—»G ! XG—»C

a) i) 9-tuple representation for S A—-B—-C—-G
(1,0,1,0,1,0,0,1,0)
i) 9-tuple representation for A~ C—S—B
(0,1,0,1,0,0,1,0,0)
iii) Path that corresponds to (0, 0, 1,0, 1, 0, 0, O, 0)
A—B—-C
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Constraint 1: path starts at S
Two nodes going out of S: Aand B — either x,_, or x,_ . must be 1
Xg_a T X5 g = 1

Inequality form: x, , +x, <=1and-xg ,-X; ;<=-1

One node going into S: C

Xe,s <=0and -x. <=0
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Constraint 2: path ends at G
Two nodes going into G: C and B — either x._ . or x;_ . must be 1

XelG + XB_G <=1and Xeoe " Xsa <=-1

One node coming out of G: C — x, . mustbe 0

Xoc<=0and-x, <=0

G—C C
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Constraints: need to make sure paths are valid
1) Ensure path starts at S - done
2) Ensure path ends at G - done

Question: 9-tuple that satisfies these constraints but does not represent a valid

path from Sto G
{S—A, C—-G}:(1,0,0,0,0,0,0,1,0)
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More constraints: If there is an edge to B, then there must be an edge out of B

(otherwise, B is either a dead end or a start)
Idea: number of edges into B = number of edges out of B (we already constrained
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More constraints: If there is an edge to B, then there must be an edge out of B

(otherwise, B is either a dead end or a start)
Idea: number of edges into B = number of edges out of B (we already constrained

that you can only have one of those edges)
X T Xae " Xsc " Xgoc <=0

S—B
+ -+ <=
Xg ot X, 0

Xss " Xa_B G
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Still not enough to ensure a valid path :(

Counterexample:

OnONO®

Idea: anything with a loop outside the path is still allowed by our constraints
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How can we fix this?
Answer: we don’t have to :)

Idea: If we have an extra cycle, that would just increase the total path cost. Because
we are trying to minimize cost, this would only hurt us, so we wouldn'’t return such a

solution anyway.
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Cost-Based Search as IP

e Now let’s put everything together, and define the following search algorithm

o First convert the search problem into the IP representation
o Then run an IP-solver (which is complete and optimal) on the representation
o Reconstruct the path from start to goal by getting all the ones in the variables

e |[sthisis complete? Yes
e |Is this is optimal? Yes



Take Home Messages

e (Cost-based search can be expressed, and solved with IP
e [P is very expressive, we can do many interesting things with it

e \Want some more?

Minimax as IP!!l  (Bonus question on the course website)



