Cost-Based Search as IP

Motivation

e Many problems can be solved by search (e.g., backtracking, branch and
bound, etc.) but we haven’t seen anything on the other direction
e |P is a very expressive representation

Formulating Search as IP

Formulating Search as IP

Variables:

Formulating Search as IP

Variables: binary variable for each edge in the graph, representing
whether the edge is in the final path or not (0 means edge is not in
the final path, 1 means edge is in the final path)

Formulating Search as IP

Variables: binary variable for each edge in the graph, representing
whether the edge is in the final path or not (0 means edge is not in
the final path, 1 means edge is in the final path)

EX: x,_. is a binary variable representing whether the edge X — Y'is
in the final path

Formulating Search as IP

How to represent the path S-A—-C—-G?

Formulating Search as IP

How to represent the path S-A—-C—-G?

3 edges: {S—A, A—C, C—-G}
X4, = indicator for whether S—A is in the path, etc (same for every
path in our graph)

Formulating Search as IP

How to represent the path S-A—-C—-G?
3 edges: {S—A, A—C, C—-G}

X4, = Iindicator for whether S—Ais in the path, etc (same for every path in our

graph)

(tssa=1 zsop=0 z4,5=0 za,c=1 zp,c=0 2poeg=0 zcs=0 zesg=1 zgHc=0)

Formulating Search as IP

How to represent the path S-A—-C—-G?
3 edges: {S—A, A—C, C—-G}

X4, = Iindicator for whether S—Ais in the path, etc (same for every path in our
graph)

(tssa=1 zsop=0 z4,5=0 za,c=1 zp,c=0 2poeg=0 zcs=0 zesg=1 zgHc=0)

9-tuple: (1,0,0,1,0,0,0, 1, 0)

Order: XS—>A ’ XS—»B ’ XA—>B ! XA—»C ’ XB—>C ’ XB—»G ! XC—»S ’ XC—»G ! XG—»C

Order: XS—>A ’ XS—»B ’ XA—>B ! XA—»C ’ XB—>C ’ XB—»G ! XC—»S ’ XC—»G ! XG—»C

a) i) 9-tuple representation for S A—-B—-C—-G

Order: XS—>A ’ XS—»B ’ XA—>B ! XA—»C ’ XB—>C ’ XB—»G ! XC—»S ’ XC—»G ! XG—»C

a) i) 9-tuple representation for S A—-B—-C—-G

Order: Xg a0 X X X X X X X X

a)

A’7S—-B’ " "A-B’ A-C’"B-C’ " B-G’ " CHS’"CHG’

i) 9-tuple representation for S-A—-B—-C—-G
(1,0,1,0,1,0,0,1,0)

Order: Xg a0 X X X X X X X X

a)

A’7S—-B’ " "A-B’ A-C’"B-C’ " B-G’ " CHS’"CHG’

i) 9-tuple representation for S-A—-B—-C—-G
(1,0,1,0,1,0,0,1,0)
i) 9-tuple representation for A~ C—S—B

Order: XS—>A ’ XS—»B ’ XA—>B ! XA—»C ’ XB—>C ’ XB—»G ! XC—»S ’ XC—»G ! XG—»C

a) i) 9-tuple representation for S A—-B—-C—-G
(1,0,1,0,1,0,0,1,0)
i) 9-tuple representation for A~ C—S—B
(0,1,0,1,0,0,1,0,0)

Order: XS—>A ’ XS—»B ’ XA—>B ! XA—»C ’ XB—>C ’ XB—»G ! XC—»S ’ XC—»G ! XG—»C

a) i) 9-tuple representation for S A—-B—-C—-G
(1,0,1,0,1,0,0,1,0)
i) 9-tuple representation for A~ C—S—B
(0,1,0,1,0,0,1,0,0)
iii) Path that corresponds to (0, 0, 1,0, 1, 0, 0, O, 0)

Order: XS—>A ’ XS—»B ’ XA—>B ! XA—»C ’ XB—>C ’ XB—»G ! XC—»S ’ XC—»G ! XG—»C

a) i) 9-tuple representation for S A—-B—-C—-G
(1,0,1,0,1,0,0,1,0)
i) 9-tuple representation for A~ C—S—B
(0,1,0,1,0,0,1,0,0)
iii) Path that corresponds to (0, 0, 1,0, 1, 0, 0, O, 0)
A—B—-C

Constraints: need to make sure paths are valid

Constraints: need to make sure paths are valid
1) Ensure path starts at S

Constraints: need to make sure paths are valid
1) Ensure path starts at S
2) Ensure pathendsatG

Constraint 1: path starts at S

Constraint 1: path starts at S
Two nodes going out of S: Aand B

Constraint 1: path starts at S

Two nodes going out of S: Aand B — either x,_, or x,_ . must be 1

A S

Constraint 1: path starts at S
Two nodes going out of S: Aand B — either x|

+ =
XS-»A XS—>B 1

Oor Xg_ 5 must be 1

A S

Constraint 1: path starts at S
Two nodes going out of S: Aand B — either x,_, or x,_ . must be 1

+ =
XS—»A XS—>B 1

Inequality form: x,_, + X, o <=1and-xg , -Xs o <=-

Constraint 1: path starts at S
Two nodes going out of S: Aand B — either x|

+ =
XS-»A XS—>B 1

A OF X o must be 1

Inequality form: x;_, + X <=tTand-Xg ,-Xg p<=-

A S—B A S—B

One node going into S: C

Constraint 1: path starts at S
Two nodes going out of S: Aand B — either x|

+ =
XS-»A XS—>B 1

A OF X o must be 1

Inequality form: x;_, + X <=tTand-Xg ,-Xg p<=-

A S—B A S—B
One node going into S: C

Xo g = 0

Constraint 1: path starts at S
Two nodes going out of S: Aand B — either x,_, or x,_ . must be 1
Xsn ¥ Xg g =1

Inequality form: x,_, + X, o <=1and-xg , -Xs o <=-

One node going into S: C

Xe,s <= 0and -x. <=0

Constraint 1: path starts at S
Two nodes going out of S: Aand B — either x,_, or x,_ . must be 1
Xg_a T X5 g = 1

Inequality form: x, , +x, <=1and-xg ,-X; ;<=-1

One node going into S: C

Xe,s <=0and -x. <=0

Constraint 2: path ends at G

Constraint 2: path ends at G

Two nodes going into G: C and B — either x._ . or x;_ . must be 1

G B

+ <= - - <=-
Xe o ¥ Xg g <= 1and X -X5 o 1

Constraint 2: path ends at G
Two nodes going into G: C and B — either x._ . or x;_ . must be 1

+ <= - - <=-
XC—>G XS—»B 1 and XC—>G XB—»G 1

One node coming out of G: C — x, . mustbe 0

X <=0and-x; <=0

G—C C

Constraint 2: path ends at G
Two nodes going into G: C and B — either x._ . or x;_ . must be 1

XelG + XB_G <=1and Xeoe " Xsa <=-1

One node coming out of G: C — x, . mustbe 0

Xoc<=0and-x, <=0

G—C C

Constraints: need to make sure paths are valid
1) Ensure path starts at S - done
2) Ensure path ends at G - done

Constraints: need to make sure paths are valid
1) Ensure path starts at S - done
2) Ensure path ends at G - done

These two constraints are not enough :(

Constraints: need to make sure paths are valid
1) Ensure path starts at S - done
2) Ensure path ends at G - done

Question: 9-tuple that satisfies these constraints but does not represent a valid
path from Sto G

Constraints: need to make sure paths are valid
1) Ensure path starts at S - done
2) Ensure path ends at G - done

Question: 9-tuple that satisfies these constraints but does not represent a valid

path from Sto G
{S—A, C—-G}:(1,0,0,0,0,0,0,1,0)

More constraints: ensure all other nodes are non-terminal (not start or goal)

More constraints: ensure all other nodes are non-terminal (not start or goal)
e Path can only pass through each non-terminal node at most once

More constraints: ensure all other nodes are non-terminal (not start or goal)
e Path can only pass through each non-terminal node at most once

Constraint that node B can only appear on the path at most once:

More constraints: ensure all other nodes are non-terminal (not start or goal)
e Path can only pass through each non-terminal node at most once

Constraint that node B can only appear on the path at most once:
Two nodes going into B: S, A

More constraints: ensure all other nodes are non-terminal (not start or goal)
e Path can only pass through each non-terminal node at most once

Constraint that node B can only appear on the path at most once:
Two nodes going into B: S, A — either x,_; orx, . must be 1, but both cannot be 1

More constraints: ensure all other nodes are non-terminal (not start or goal)
e Path can only pass through each non-terminal node at most once

Constraint that node B can only appear on the path at most once:
Two nodes going into B: S, A — either x,_; orx, . must be 1, but both cannot be 1

+ <=
Xs—s " XasB 1

More constraints: ensure all other nodes are non-terminal (not start or goal)
e Path can only pass through each non-terminal node at most once

Constraint that node B can only appear on the path at most once:
Two nodes going into B: S, A — either x,_, orx, . must be 1, but both cannot be 1

X +X, <=1

S—B B

Two nodes coming out of B: C, G — either x; . or x; . must be 1, but both cannot
be 1

More constraints: ensure all other nodes are non-terminal (not start or goal)
e Path can only pass through each non-terminal node at most once

Constraint that node B can only appear on the path at most once:
Two nodes going into B: S, A — either x,_, orx, . must be 1, but both cannot be 1

X +X, <=1

S—B B

Two nodes coming out of B: C, G — either x; . or x; . must be 1, but both cannot
be 1

More constraints: If there is an edge to B, then there must be an edge out of B
(otherwise, B is either a dead end or a start)

More constraints: If there is an edge to B, then there must be an edge out of B
(otherwise, B is either a dead end or a start)
Idea: number of edges into B = number of edges out of B (we already constrained

that you can only have one of those edges)

More constraints: If there is an edge to B, then there must be an edge out of B
(otherwise, B is either a dead end or a start)

Idea: number of edges into B = number of edges out of B (we already constrained
that you can only have one of those edges)

+ = +
XS—>B XA—»B XB—>C XB—>G

More constraints: If there is an edge to B, then there must be an edge out of B

(otherwise, B is either a dead end or a start)
Idea: number of edges into B = number of edges out of B (we already constrained

that you can only have one of those edges)
Xe g ¥ Xy g <= X5 ot Xg |
X T Xag 7= Xgoc T Xa,

G
G

C
C

B
B

S—B
S—B

More constraints: If there is an edge to B, then there must be an edge out of B

(otherwise, B is either a dead end or a start)
Idea: number of edges into B = number of edges out of B (we already constrained

that you can only have one of those edges)
X T Xae " Xsc " Xgoc <=0

S—B
+ -+ <=
Xg ot X, 0

Xss " Xa_B G

Objective function:

Objective function:
|ldea: coefficient for each edge is the cost of that edge

Objective function:
|ldea: coefficient for each edge is the cost of that edge

Still not enough to ensure a valid path :(

Still not enough to ensure a valid path :(

Counterexample:

OnONO®

Still not enough to ensure a valid path :(

Counterexample:

OnONO®

Idea: anything with a loop outside the path is still allowed by our constraints

How can we fix this?

How can we fix this?
Answer: we don’t have to :)

How can we fix this?
Answer: we don’t have to :)

Idea: If we have an extra cycle, that would just increase the total path cost. Because
we are trying to minimize cost, this would only hurt us, so we wouldn'’t return such a

solution anyway.

Cost-Based Search as IP

e Now let’s put everything together, and define the following search algorithm

o First convert the search problem into the IP representation
o Then run an IP-solver (which is complete and optimal) on the representation
o Reconstruct the path from start to goal by getting all the ones in the variables

e |[s this is complete?
e s this is optimal?

Cost-Based Search as IP

e Now let’s put everything together, and define the following search algorithm

o First convert the search problem into the IP representation
o Then run an IP-solver (which is complete and optimal) on the representation
o Reconstruct the path from start to goal by getting all the ones in the variables

e |[sthisis complete? Yes
e s this is optimal?

Cost-Based Search as IP

e Now let’s put everything together, and define the following search algorithm

o First convert the search problem into the IP representation
o Then run an IP-solver (which is complete and optimal) on the representation
o Reconstruct the path from start to goal by getting all the ones in the variables

e |[sthisis complete? Yes
e |Is this is optimal? Yes

Take Home Messages

e (Cost-based search can be expressed, and solved with IP
e [P is very expressive, we can do many interesting things with it

e \Want some more?

Minimax as IP!!l (Bonus question on the course website)

