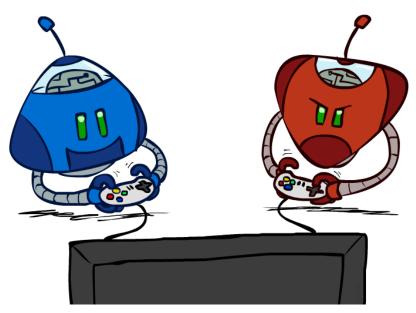
AI: Representation and Problem Solving

Adversarial Search



Instructors: Tuomas Sandholm and Nihar Shah

Slide credits: CMU AI, http://ai.berkeley.edu

Outline

History / Overview

Zero-Sum Games (Minimax)

Evaluation Functions

Search Efficiency (α - β Pruning)

Games of Chance (Expectimax)

Game Playing State-of-the-Art

Checkers:

- 1950: First computer player
- 1959: Samuel's self-taught program
- 1994: First computer world champion: Chinook ended 40-year-reign of human champion Marion Tinsley using complete 8-piece endgame
- 2007: Checkers solved! Endgame database of 39 trillion states

Chess:

- 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon, McCarthy
- 1960s onward: gradual improvement under "standard model"
- 1997: special-purpose chess machine Deep Blue defeats human champion Gary Kasparov in a six-game match. Deep Blue examined 200M positions per second and extended some lines of search up to 40 ply. Current programs running on a PC rate > 3200 (vs 2870 for Magnus Carlsen)

Go:

- 1968: Zobrist's program plays legal Go, barely (b>300!)
- 2005-2014: Monte Carlo tree search enables rapid advances: current programs beat strong amateurs, and professionals with a 3-4 stone handicap
- 2015: AlphaGo from DeepMind beats best player Lee Sedol

Poker:

- 1921: Borel introduces poker as the game theory benchmark
- 1950s: 3-card-deck tiny variant (Kuhn poker) solved by Kuhn, Nash, etc.
- 1950s-1970s: rule-based Als; not strong
- 1990s: ML-based Als; not strong
- 2000s-present: Game-theory-based Als
 - 2008: Superhuman play in 2-player limit Texas hold'em [Bowling et al.]
 - 2015: Near-optimal play in 2-player limit Texas hold'em [Bowling et al.]
 - 2017: Superhuman Al Libratus for 2-player no-limit Texas hold'em [Brown & Sandholm]
 - 2019: Superhuman AI Pluribus for 2-player no-limit Texas hold'em [Brown & Sandholm]

Types of Games

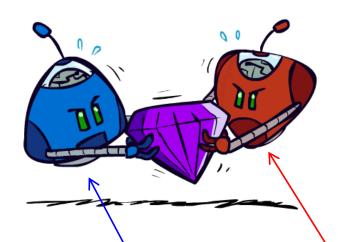
Many different types of game!

Axes:

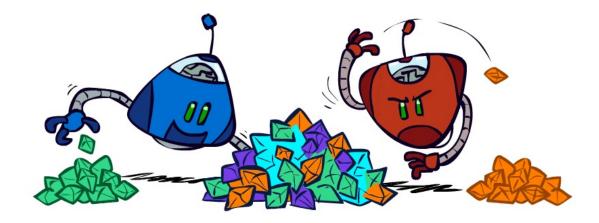
- Deterministic or stochastic?
- Perfect information (fully observable)?
- One, two, or more players?
- Turn-taking or simultaneous?
- Zero sum?

Want algorithms for calculating a *contingent plan* (a.k.a. strategy or policy) which recommends a move for every possible eventuality

Zero-Sum Games



- Two-Player Żero-Sum Games
 - Agents have opposite utilities
 - Pure competition:
 - One maximizes, the other minimizes



- General Games
 - Agents have independent utilities
 - Cooperation, indifference, competition, shifting alliances, and more are all possible

"Standard" Games

Standard games are deterministic, observable, two-player, turn-taking, zero-sum

Game formulation:

■ Initial state: s₀

Players: Player(s) indicates whose move it is

Actions: Actions(s) for player on move

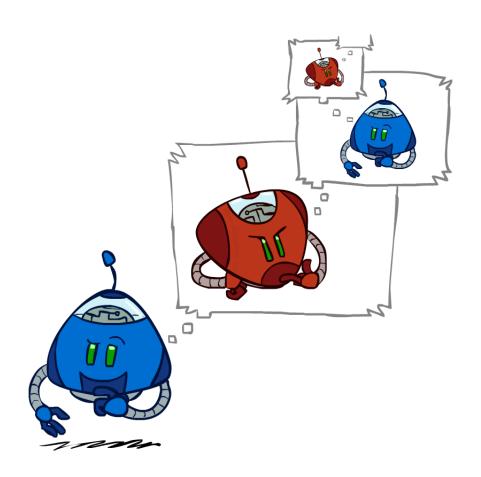
Transition model: Result(s,a)

Terminal test: Terminal-Test(s)

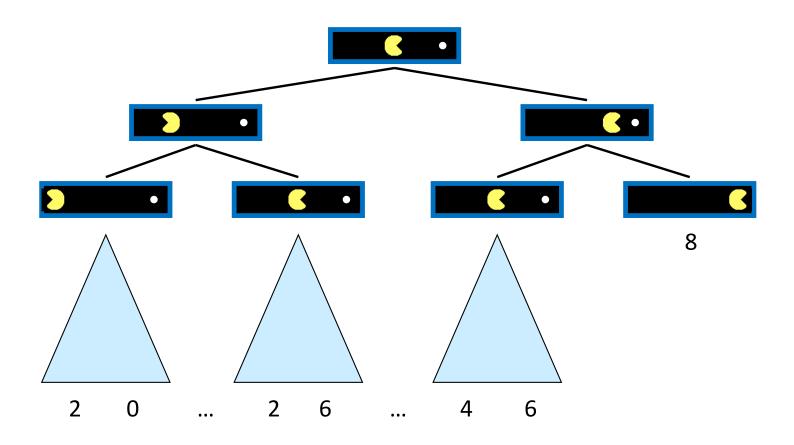
Terminal values: Utility(s,p) for player p

Or just Utility(s) for player making the decision at root

Adversarial Search



Single-Agent Trees

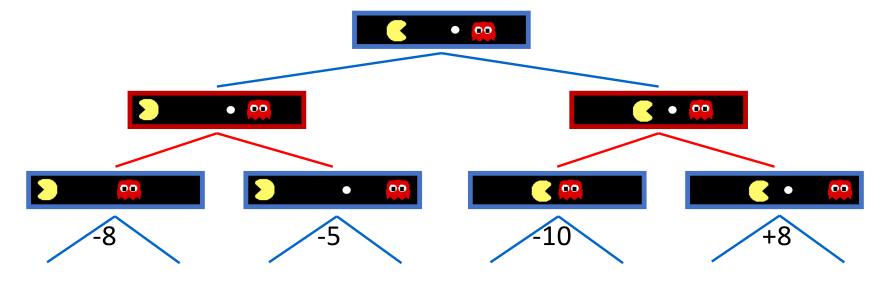


Minimax

States

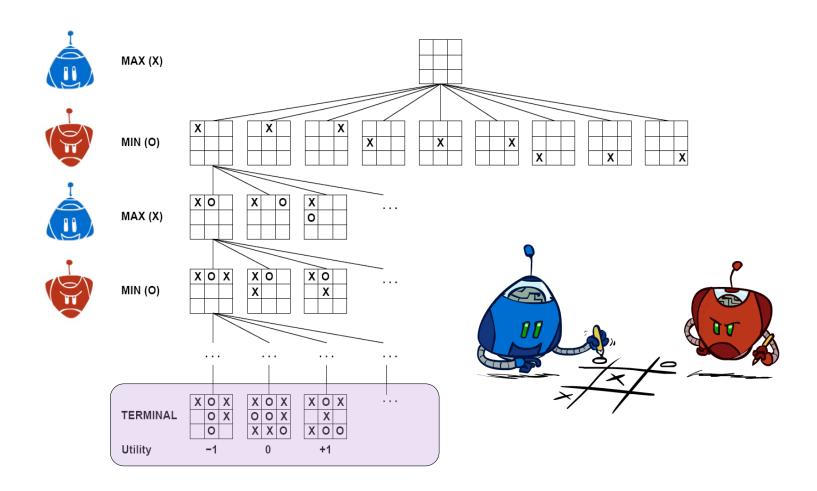
Actions

Values



Minimax

States Actions Values

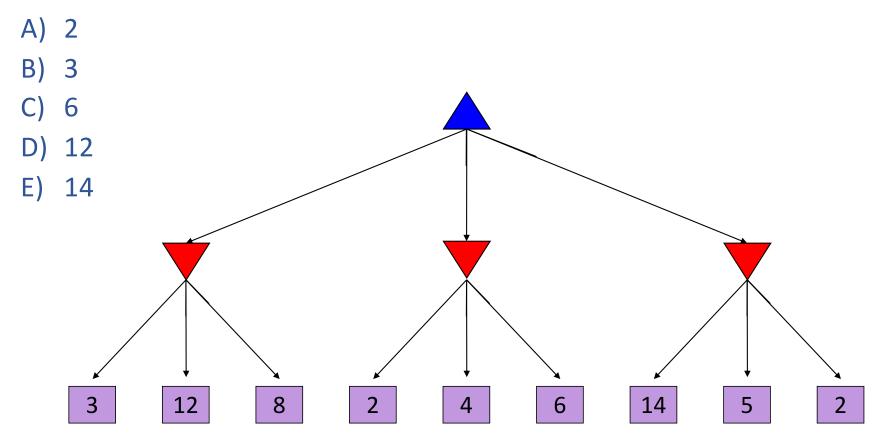


Minimax Code

```
def max_value(state):
    if state.is leaf:
        return state.value
    # TODO Also handle depth limit
    best_value = -10000000
    for action in state.actions:
        next_state = state.result(action)
        next_value = min_value(next_state)
        if next_value > best_value:
            best_value = next_value
    return best_value
def min value(state):
```

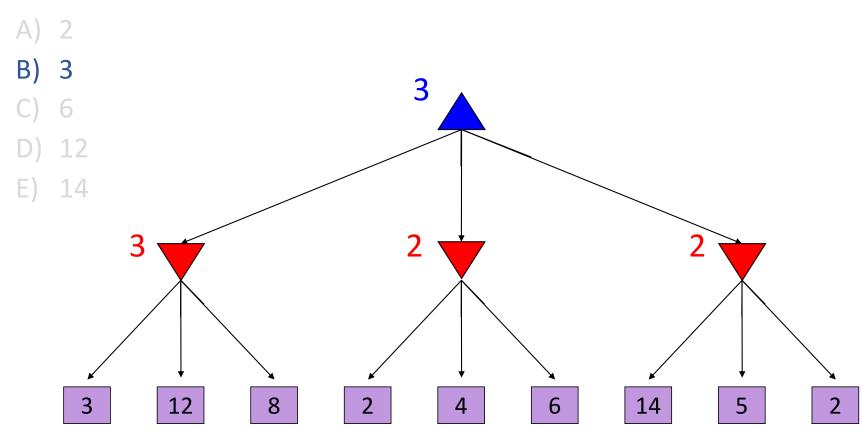
Poll 1 (+ worksheet Poll 2 and 3 for Q1a/b)

What is the minimax value at the root?



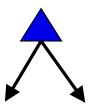
Poll 1

What is the minimax value at the root?



Minimax Notation

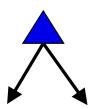
```
def max_value(state):
    if state.is leaf:
        return state.value
    # TODO Also handle depth limit
    best value = -10000000
    for action in state.actions:
        next_state = state.result(action)
        next_value = min_value(next_state)
        if next_value > best_value:
            best_value = next_value
    return best_value
def min value(state):
```



$$V(s) = \max_{a} V(s'),$$

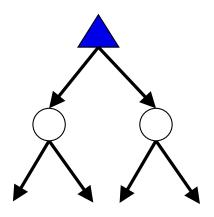
where $s' = result(s, a)$

Minimax Notation



$$V(s) = \max_{a} V(s'),$$

where $s' = result(s, a)$



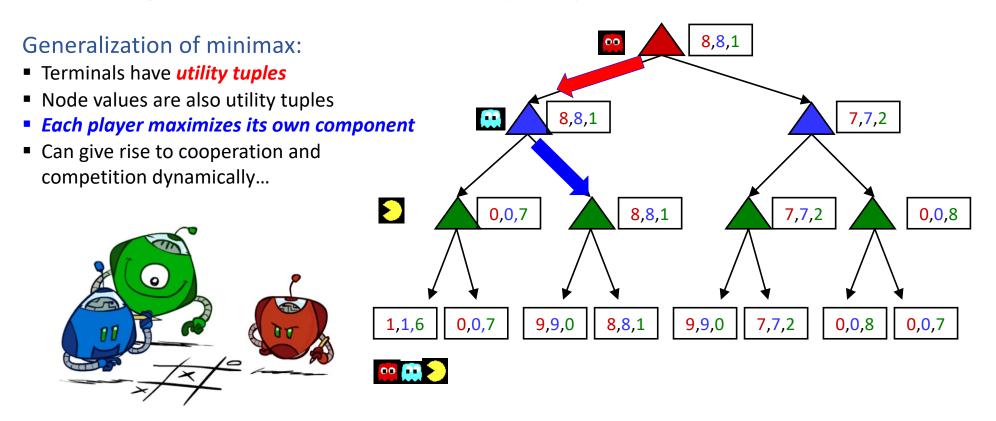
$$\hat{a} = \underset{a}{\operatorname{argmax}} V(s'),$$
where $s' = result(s, a)$

Generic Game Tree Pseudocode

```
function minimax_decision( state )
   return argmax a in state.actions value( state.result(a) )
function value( state )
   if state.is_leaf
      return state.value
   if state.player is MAX
      return max a in state.actions value( state.result(a) )
   if state.player is MIN
      return min a in state.actions value( state.result(a) )
```

Generalized minimax (better name: backward induction)

What if the game is not zero-sum, or has multiple players?



Minimax Efficiency

How efficient is minimax?

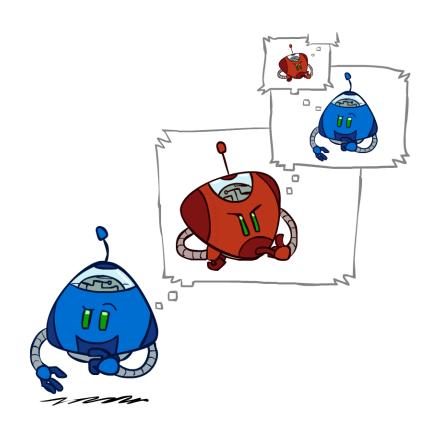
Just like (exhaustive) DFS

■ Time: O(b^m)

■ Space: O(bm)

Example: For chess, $b \approx 35$, $m \approx 100$

- Exact solution is completely infeasible
- Humans can't do this either, so how do we play chess?
- Bounded rationality Herbert Simon



Resource Limits

Resource Limits

Problem: In realistic games, cannot search to leaves!

Solution 1: Bounded lookahead

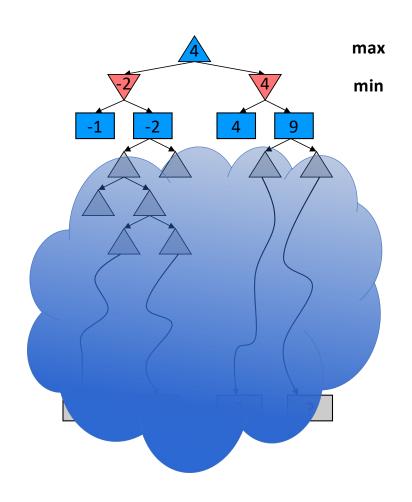
- Search only to a preset depth limit or horizon
- Use an evaluation function for non-terminal positions

Guarantee of optimal play is gone

More plies make a BIG difference

Example:

- Suppose we have 100 seconds, can explore 10K nodes / sec
- So can check 1M nodes per move
- For chess, b=~35 so reaches about depth 4 not so good



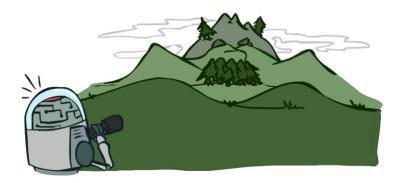
Depth Matters

Evaluation functions are always imperfect

Deeper search => better play (usually)

Or, deeper search gives same quality of play with a less accurate evaluation function

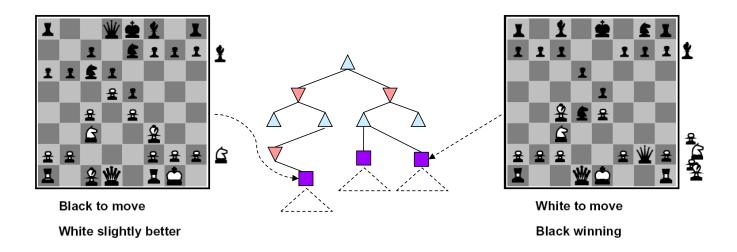
An important example of the tradeoff between complexity of features and complexity of computation



Evaluation Functions

Evaluation Functions

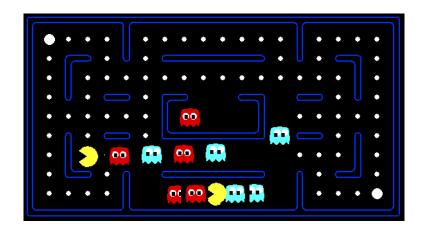
Evaluation functions score non-terminals in depth-limited search



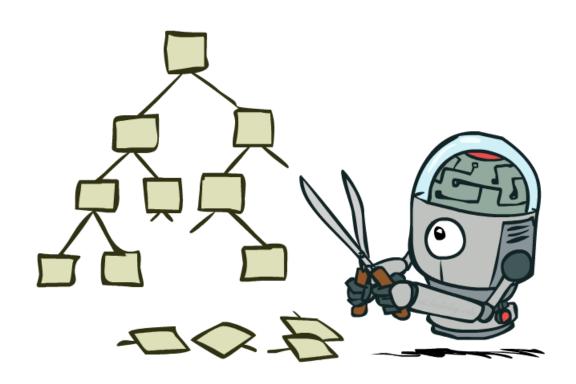
Ideal function: returns the actual minimax value of the position In practice: typically weighted linear sum of features:

- EVAL(s) = $w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$
- E.g., w_1 = 9, $f_1(s)$ = (num white queens num black queens), etc.

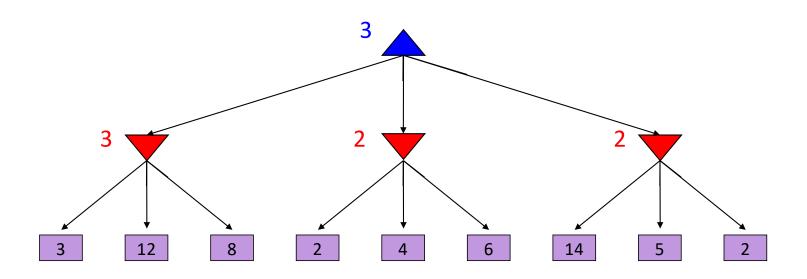
Evaluation for Pacman



Game Tree Pruning

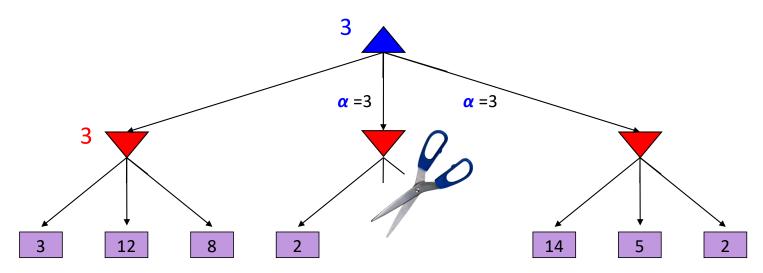


Minimax Example



Alpha-Beta Example

 α = best option so far from any MAX node on this path



The order of generation matters: more pruning is possible if good moves come first

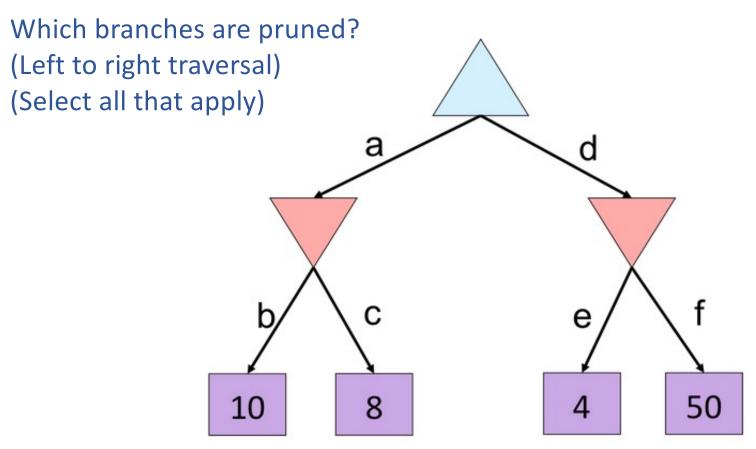
Alpha-Beta Implementation

```
\alpha: MAX's best option on path to root \beta: MIN's best option on path to root
```

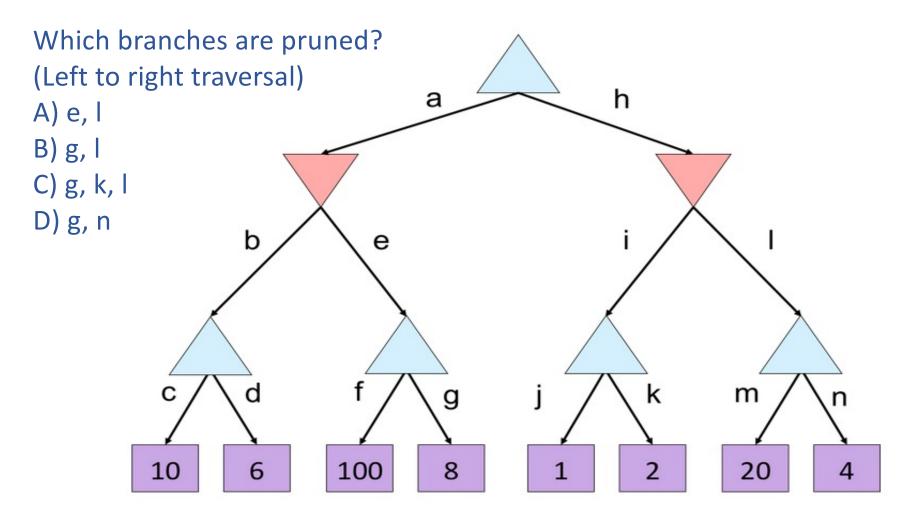
```
\begin{aligned} &\text{def max-value(state, } \alpha, \beta): \\ &\text{initialize } v = -\infty \\ &\text{for each successor of state:} \\ &v = \max(v, \text{value(successor, } \alpha, \beta)) \\ &\text{if } v \geq \beta \\ &\text{return } v \\ &\alpha = \max(\alpha, v) \\ &\text{return } v \end{aligned}
```

```
\label{eq:def-min-value} \begin{split} & \text{def min-value}(\text{state }, \alpha, \beta): \\ & \text{initialize } v = +\infty \\ & \text{for each successor of state:} \\ & v = \min(v, \text{value}(\text{successor}, \alpha, \beta)) \\ & \text{if } v \leq \alpha \\ & \text{return } v \\ & \beta = \min(\beta, v) \\ & \text{return } v \end{split}
```

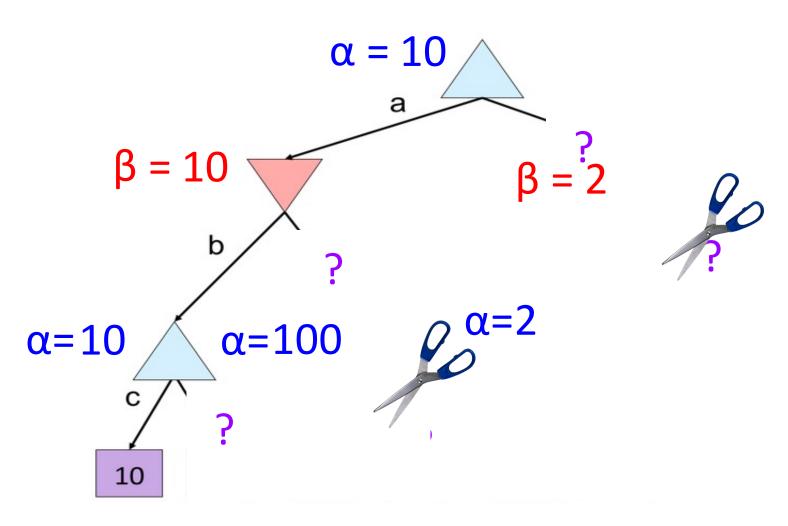
On your own



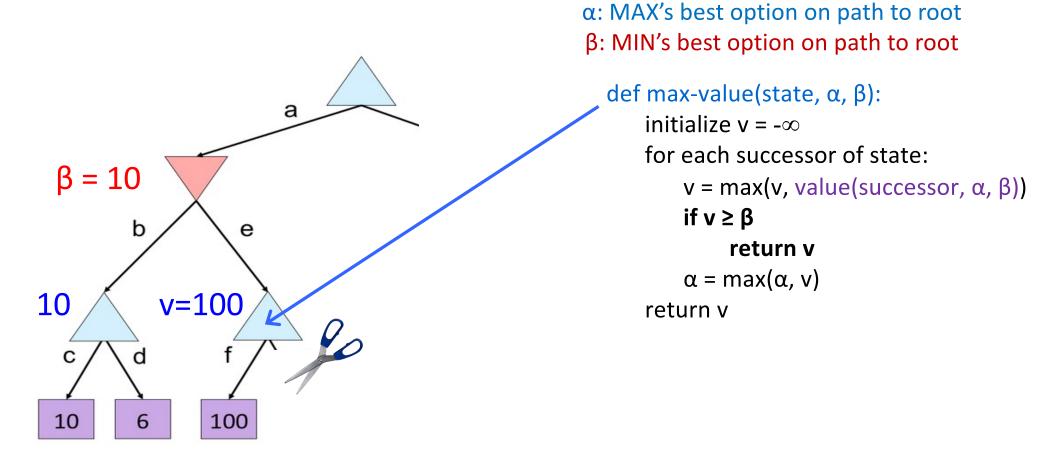
Poll 4



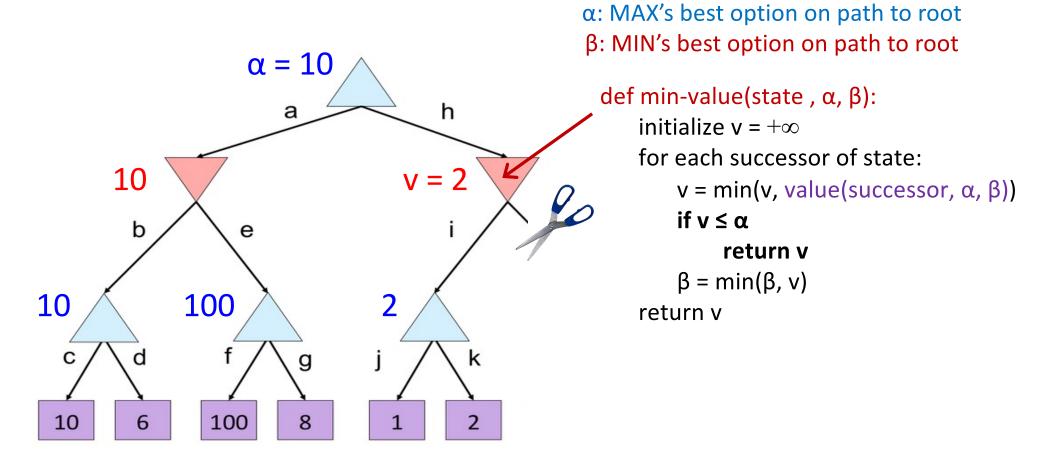
Poll 4



Alpha-Beta Code



Alpha-Beta Code



Alpha-Beta Pruning Properties

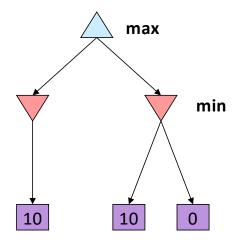
Theorem: This pruning has *no effect* on minimax value computed for the root!

Good child ordering improves effectiveness of pruning

Iterative deepening helps with this

With "perfect ordering":

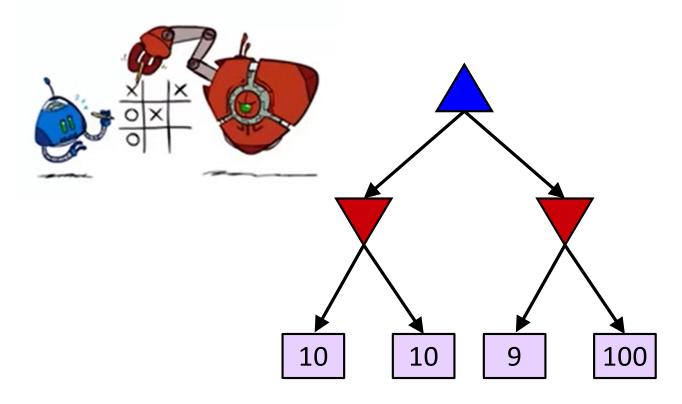
- Time complexity drops to O(b^{m/2})
- Doubles solvable depth!
- 1M nodes/move => depth=8, respectable



This is a simple example of metareasoning (computing about what to compute)

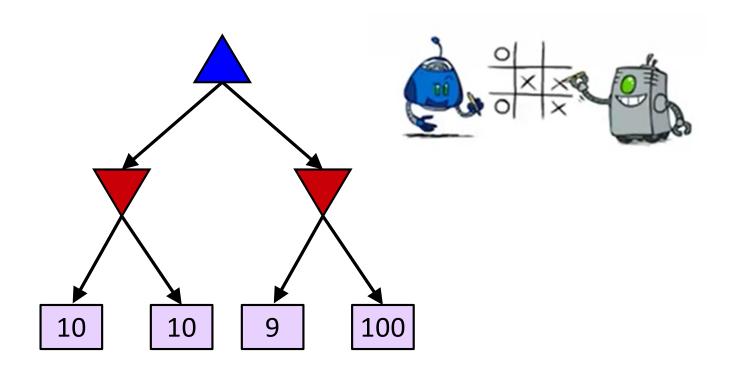
Modeling Assumptions

Know your opponent



Modeling Assumptions

Know your opponent

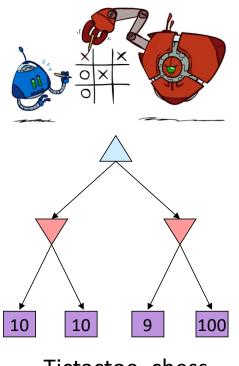


Modeling Assumptions

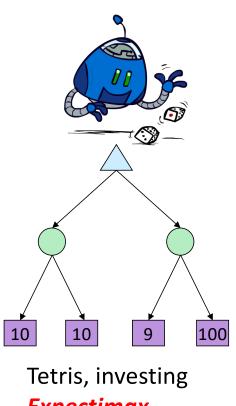
Dangerous Pessimism Assuming the worst case when it's not likely

Dangerous Optimism

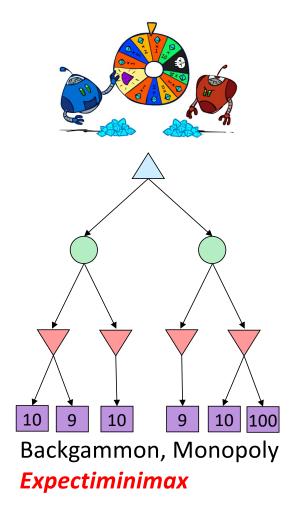
Chance outcomes in trees



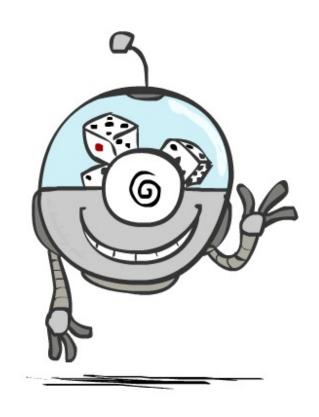
Tictactoe, chess **Minimax**



Expectimax



Probabilities



Probabilities

A random variable represents an event whose outcome is unknown

A probability distribution is an assignment of weights to outcomes

Example: Traffic on freeway

- Random variable: T = whether there's traffic
- Outcomes: T in {none, light, heavy}
- Distribution:

P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

Probabilities over all possible outcomes sum to one

0.25

0.50

0.25

Expected Value

Expected value of a function of a random variable:

Average the values of each outcome, weighted by the probability of that outcome

Example: How long to get to the airport?

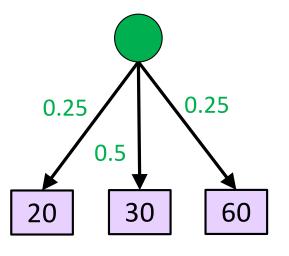
Time: 20 min 30 min

20 min 30 min 60 min x + x + x

Probability: 0.25 0.50 0.25

35 min

Expectations



Max node notation

$$V(s) = \max_{a} V(s'),$$

where $s' = result(s, a)$

Chance node notation

$$V(s) =$$

Expectations

Time:

Probability:

0.25

+

+

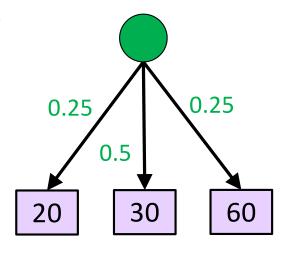
60 min

Χ

0.50

•

0.25



Max node notation

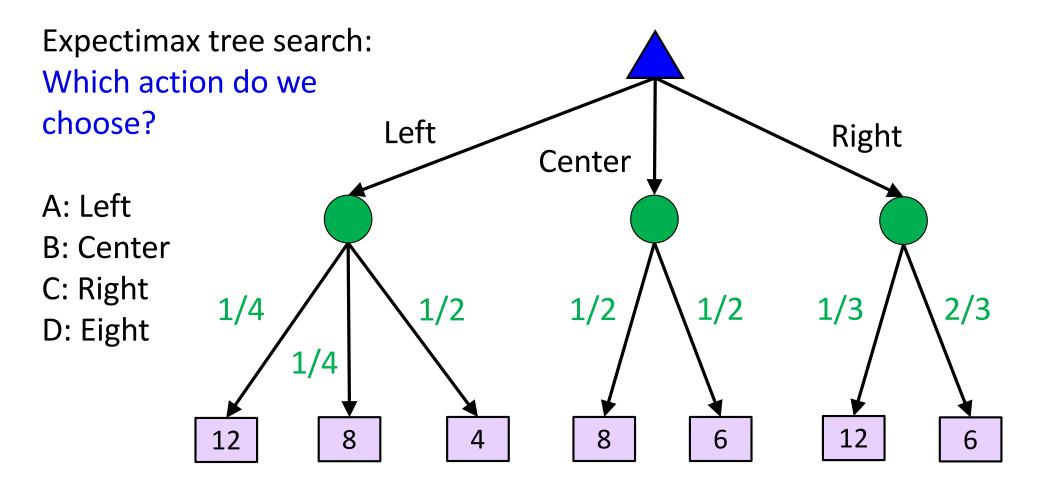
$$V(s) = \max_{a} V(s'),$$

where $s' = result(s, a)$

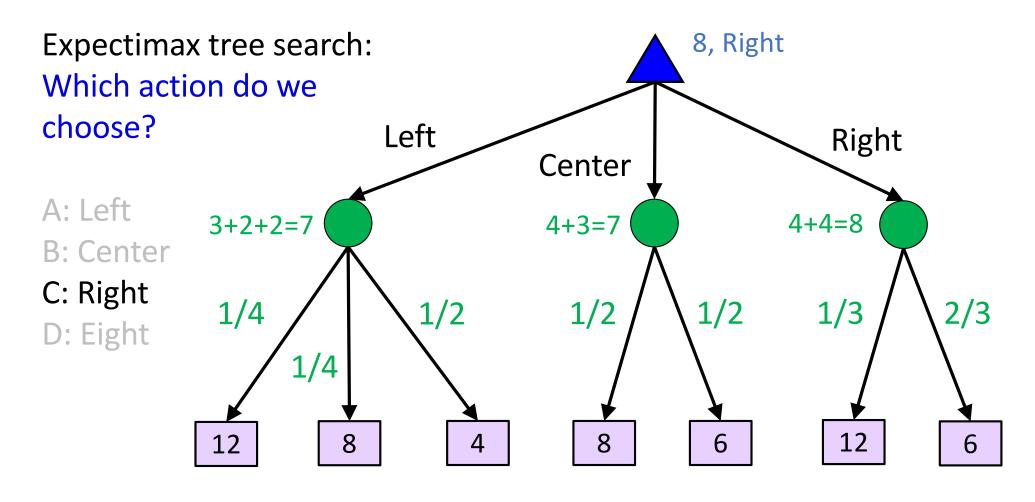
Chance node notation

$$V(s) = \sum_{s'} P(s') V(s')$$

On your own...



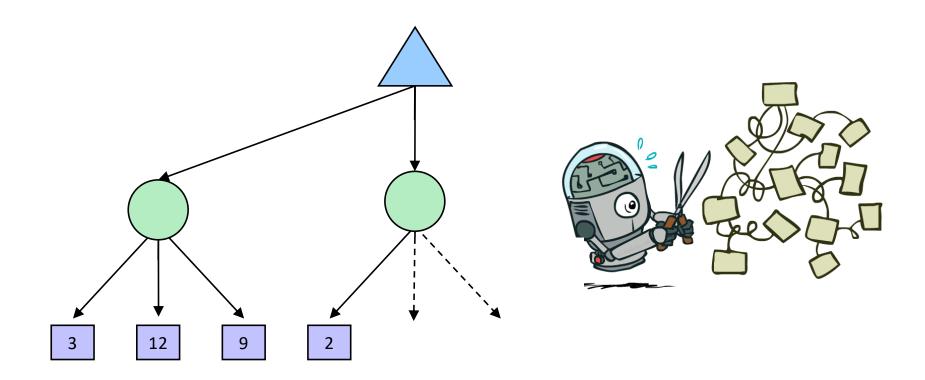
On your own...



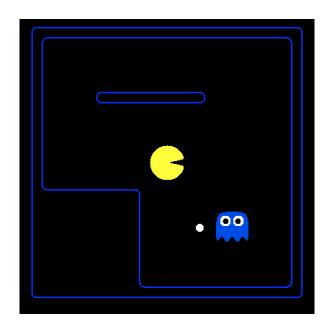
Expectimax Code

```
function value( state )
   if state.is_leaf
      return state.value
   if state.player is MAX
      return max a in state.actions value( state.result(a) )
   if state.player is MIN
      return min a in state.actions value( state.result(a) )
   if state.player is CHANCE
      return sum s in state.next states P(s) * value(s)
```

Expectimax Pruning?



Modeling Assumptions



	Minimax Ghost	Random Ghost
Minimax Pacman	,	
Expectimax Pacman		

Results from playing 5 games

Summary

Games require decisions when optimality is impossible

Bounded-depth search and approximate evaluation functions

Games force efficient use of computation

■ E.g., alpha-beta pruning

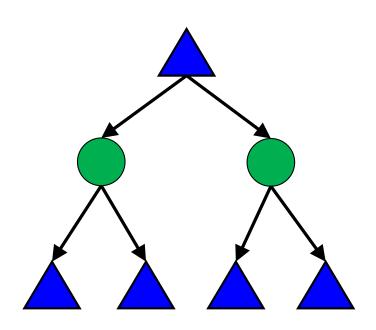
Game playing has produced important research ideas

- Reinforcement learning (checkers)
- Iterative deepening (chess)
- Monte Carlo tree search (Go)
- Solution methods for partial-information games, e.g., in economics (poker)

Lots to do!

- E.g., video games present greater challenges: $b = 10^{500}$, $|S| = 10^{4000}$, m = 10,000
- See Prof. Sandholm course CS 15-888 Computational Game Solving

Preview: MDP/Reinforcement Learning Notation



$$V(s) = \max_{a} \sum_{s'} P(s') V(s')$$

Preview: MDP/Reinforcement Learning Notation

Standard expectimax:
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a)V(s')$$

Bellman equations:
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')]$$

Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s$$

Q-iteration:
$$Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s,a$$

Policy extraction:
$$\pi_V(s) = \operatorname*{argmax}_a \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')], \quad \forall \, s$$

Policy evaluation:
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$$

Policy improvement:
$$\pi_{new}(s) = \operatorname*{argmax}_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall \, s$$

Preview: MDP/Reinforcement Learning Notation

Standard expectimax:
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a)V(s')$$

Bellman equations:
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')]$$

Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s$$

Q-iteration:
$$Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall s, a$$

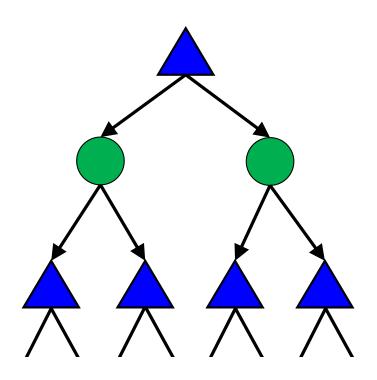
Policy extraction:
$$\pi_V(s) = \operatorname*{argmax}_a \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')], \quad \forall \, s'$$

Policy evaluation:
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$$

Policy improvement:
$$\pi_{new}(s) = \operatorname*{argmax}_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall \, s'$$

Why Expectimax?

Pretty great model for an agent in the world Choose the action that has the: highest expected value



Bonus Question

Let's say you know that your opponent is actually running a depth 1 minimax, using the result 80% of the time, and moving randomly otherwise

Question: What tree search should you use?

A: Minimax

B: Expectimax

C: Something completely different