Al: Representation and Problem Solving Sequential Data and Hidden Markov Models

Instructors: Nihar B. Shah and Tuomas Sandholm

Slide credits: CMU AI and ai.berkeley.edu

Sequential data

- Finance
- Speech recognition
- Robot localization
- User attention
- Medical monitoring

Need to introduce time (or space) into our models

Today

- Two popular models for sequential data
- Markov chains and hidden Markov models (HMMs)
- Used widely in many applications
- Also form building blocks for more complex models

Markov Chains

- Let X denote the quantity of interest (e.g., stock price)
- Consider discrete time (e.g., days)
- Let X_t denote random variable for the value of X (stock price) at time t (i.e., day t)
- Possible values of X at a given time are called the states
- Initial state probabilities: Probability distribution of X₁
- Transition probabilities or dynamics: $P(X_t|X_{t-1})$ specify how the state evolves over time
- Stationarity assumption: transition probabilities same at all times, i.e., $P(X_t | X_{t-1}) = P(X_{t'} | X_{t'-1})$
- Same as MDP transition model, but no choice of action, no rewards

Conditional Independence

- Past and future independent given the present
- Each time step only depends on the previous
- This is called the (first order) Markov property

Note that the chain is just a (growable) Bayes net

Example: Markov Chain Weather

States: X = {rain, sun}

Initial distribution: 1.0 sun

• CPT $P(X_t | X_{t-1})$:

X _{t-1}	X _t	P(X _t X _{t-1})
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Two new ways of representing the same CPT

Example: Markov Chain Weather

Initial distribution: $P(X_1 = sun) = 1.0$

What is the probability distribution after one step?

$$P(X_2 = sun) = ?$$

Example: Markov Chain Weather

Initial distribution: $P(X_1 = sun) = 1.0$

What is the probability distribution after one step?

$$P(X_2 = sun) = ?$$

$$P(X_2 = sun) = \sum_{x_1} P(X_1 = x_1, X_2 = sun)$$

$$= \sum_{x_1} P(X_2 = sun \mid X_1 = x_1) P(X_1 = x_1)$$

$$= P(X_2 = sun \mid X_1 = sun) P(X_1 = sun) +$$

$$P(X_2 = sun \mid X_1 = rain) P(X_1 = rain)$$

$$= 0.9 \cdot 1.0 + 0.3 \cdot 0.0 = 0.9$$

Question

Initial distribution: $P(X_2 = sun) = 0.9$

What is the probability distribution after the next step?

$$P(X_3 = sun) = ?$$

- A) 0.81
- B) 0.84
- C) 0.9
- D) 1.0
- E) 1.2

Question

Initial distribution: $P(X_2 = sun) = 0.9$

What is the probability distribution after the next step?

$$P(X_3 = sun) = ?$$

$$P(X_3 = sun) = \sum_{x_2} P(X_3 = sun, X_2 = x_2)$$

$$= \sum_{x_3} P(X_3 = sun | X_2 = x_3) P(X_2 = x_2)$$

$$= 0.9 \cdot 0.9 + 0.3 \cdot 0.1$$

$$= 0.81 + 0.03 = 0.84$$

Markov Chain Inference

If you know the transition probabilities, $P(X_t \mid X_{t-1})$, and you know $P(X_4)$, write an equation to compute $P(X_5)$.

Markov Chain Inference

If you know the transition probabilities, $P(X_t \mid X_{t-1})$, and you know $P(X_4)$, write an equation to compute $P(X_5)$.

$$P(X_5) = \sum_{x_4} P(x_4, X_5)$$

= $\sum_{x_4} P(X_5 \mid x_4) P(x_4)$

More generally

What is the state at time *t*?

Transition model

 $P(X_t) = \sum_{x_{t-1}} P(X_{t-1} = x_{t-1}, X_t)$ $= \sum_{x_{t-1}} P(X_t | X_{t-1} = x_{t-1}) P(X_{t-1} = x_{t-1})$

Probability from previous iteration

Iterate this update starting at *t*=1

Hidden Markov Models

Hidden Markov Models

In many applications, the true state is not observed directly. Instead, you observe some possibly noisy information.

Robot tracking:

- Observations are range readings (continuous)
- States are positions on a map (continuous)

Speech recognition HMMs:

- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:

- Observations are words (tens of thousands)
- States are translation options

Molecular biology:

- Observations are nucleotides ACGT
- States are coding/non-coding/start/stop/splice-site etc.

Hidden Markov Models

In many applications, the true state is not observed directly. Instead, you observe some possibly noisy information.

- Underlying Markov chain over states X
- You observe evidence E_t at each time step

An HMM is defined by:

■ Initial distribution: $P(X_1)$

■ Transition model: $P(X_t \mid X_{t-1})$

■ Sensor model: $P(E_t \mid X_t)$

Example: Weather HMM

X _{t-1}	P(X _t X _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

HMM as Probability Model

Joint distribution for Markov model:

$$P(X_0,...,X_T) = P(X_0) \prod_{t=1,...,T} P(X_t \mid X_{t-1})$$

Joint distribution for hidden Markov model:

$$P(X_0, X_1, E_1, ..., X_T, E_T) = P(X_0) \prod_{t=1,...,T} P(X_t \mid X_{t-1}) P(E_t \mid X_t)$$

- Future states are independent of the past given the present
- Current evidence is independent of everything else given the current state
- Exercise: Are evidence variables independent of each other?

Some useful stuff

Notation: $X_{a:b} = (X_a, X_{a+1}, ..., X_b)$

For example: $P(X_{1:2} \mid e_{1:3}) = P(X_1, X_2, | e_1, e_2, e_3)$

Probability: Consider a random variable B taking three possible values b_1, b_2, b_3 . Suppose you know that $P(b_1)=2\alpha$, $P(b_2)=1.25\alpha$, $P(b_3)=0.75\alpha$, for some $\alpha>0$. Then what is $P(b_1)$?

Key takeaway: If you know P(B=b) for all b up to a constant, then you can recover P(B) by normalizing.

HMM Queries

Smoothing: $P(X_k | e_{1:t})$, k < t

Prediction: $P(X_{t+k}|e_{1:t})$

Explanation: $P(X_{1:t}|e_{1:t})$

Filtering

What is the current state, given all of the current and past evidence ? That is, what is $P(X_t | e_{1:t})$?

Filtering Algorithm: Exact inference

$$P(X_t | e_{1:t}) = P(X_t | e_t, e_{1:t-1})$$

$$= \alpha P(X_t, e_t | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_t, e_t | e_{1:t-1})$$

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_{t} | x_{t-1}, e_{1:t-1}) P(e_{t} | X_{t}, x_{t-1}, e_{1:t-1})$$

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_{t} | x_{t-1}, e_{1:t-1}) P(e_{t} | X_{t}, x_{t-1}, e_{1:t-1})$$

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_{t} | x_{t-1}, e_{1:t-1}) P(e_{t} | X_{t})$$

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_{t} | x_{t-1}) P(e_{t} | X_{t})$$

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_{t} | x_{t-1}) P(e_{t} | X_{t})$$

$$= \alpha P(e_{t} | X_{t}) \sum_{x_{t-1}} P(X_{t} | x_{t-1}) P(x_{t-1} | e_{1:t-1})$$

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_{t} | x_{t-1}) P(e_{t} | X_{t})$$

$$= \alpha P(e_{t} | X_{t}) \sum_{x_{t-1}} P(X_{t} | x_{t-1}) P(x_{t-1} | e_{1:t-1})$$

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_{t} | x_{t-1}) P(e_{t} | X_{t})$$

$$= \alpha P(e_{t} | X_{t}) \sum_{x_{t-1}} P(X_{t} | x_{t-1}) P(x_{t-1} | e_{1:t-1})$$

In Class Activity: Weather HMM

Given $P(X_1) = \{sun: 0.5, rain: 0.5\}$

Goal: Compute $P(X_2=sun \mid e_2=e_1=True)$

X _{t-1}	$P(X_t X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

X _t	P(E _t X _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Remember recursion... start with $P(X_1|e_1)$

$$P(X_1|e_1) = \frac{P(X_1,e_1)}{P(e_1)} = \alpha P(e_1|X_1)P(X_1)$$

$$P(X_1 = sun | e_1 = True)$$

= $\alpha * 0.2 * 0.5 = 0.1 \alpha$

$$P(X_1 = rain | e_1 = True) = \alpha * 0.9 * 0.5 = 0.45 \alpha$$

In Class Activity: Weather HMM

Given $P(X_1) = \{sun: 0.5, rain: 0.5\}$

Goal: Compute $P(X_2=sun \mid e_2=e_1=True)$

X _{t-1}	$P(X_t X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

X _t	P(E _t X _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Next, move to $P(X_2|e_1,e_2)$ $P(X_2|e_1,e_2) = \alpha' P(X_2,e_2|e_1) = \alpha' P(e_2|X_2,e_1) P(X_2|e_1) = \alpha' P(e_2|X_2) P(X_2|e_1)$ where $P(X_2|e_1) = \sum_{x_1} P(X_2|x_1) P(x_1|e_1)$

$$P(X_{2} = \text{sun}|e_{1} = \text{True}) = \sum_{\substack{x_{1} \\ = .9 \\ *}} P(X_{2} = \text{sun}|x_{1}) P(x_{1}|e_{1} = \text{True})$$

$$= .9 * .1\alpha + .3 * .45\alpha = .225\alpha$$

$$P(X_{2} = \text{rain}|e_{1} = \text{True}) = \sum_{\substack{x_{1} \\ = .1 \\ *}} P(X_{2} = \text{rain}|x_{1}) P(x_{1}|e_{1} = \text{True})$$

$$= .1 * .1\alpha + .7 * .45\alpha = .325\alpha$$

In Class Activity: Weather HMM

Given $P(X_1) = \{sun: 0.5, rain: 0.5\}$

Goal: Compute $P(X_2=sun \mid e_2=e_1=True)$

X _{t-1}	$P(X_t X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

X _t	P(E _t X _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

```
Next, move to P(X_2|e_1,e_2)

P(X_2|e_1,e_2) = \alpha' P(X_2,e_2|e_1) = \alpha' P(e_2|X_2) P(X_2|e_1)
```

$$P(X_2 = sun|e_1 = True) = .225\alpha$$

 $P(X_2 = rain|e_1 = True) = .325\alpha$

$$P(X_2 = \text{sun}|e_1, e_2 = \text{True}) = \alpha' * 0.2 * .225\alpha = .045 \alpha \alpha'$$

$$P(X_2 = rain | e_1, e_2 = True) = \alpha' * 0.9 * .325 \alpha = 0.2925 \alpha \alpha'$$

Normalizing, we have
$$P(X_2 = sun | e_1, e_2 = True) = .045 / (.045 + 0.2925) = 0.133$$

and
$$P(X_2 = rain|e_1, e_2 = True) = .2925 / (.045 + 0.2925) = 0.867$$

Filtering Algorithm: Computational complexity

Computational cost per time step:

 $O(|X|^2)$ where |X| is the number of states

 $O(|X|^2)$ is infeasible for models with many state variables

Next lecture: Approximations!