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Sequential data

" Finance

" Speech recognition
" Robot localization

= User attention

" Medical monitoring

Need to introduce time (or space) into our models



Today

 Two popular models for sequential data
 Markov chains and hidden Markov models (HMMs)
 Used widely in many applications

e Also form building blocks for more complex models



Markov Chains
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= Let X denote the quantity of interest (e.g., stock price)

= Consider discrete time (e.g., days)

= Let X, denote random variable for the value of X (stock price) at time t (i.e., day t)
= Possible values of X at a given time are called the states

" |nitial state probabilities: Probability distribution of X;

= Transition probabilities or dynamics: P(X;|X..;) specify how the state evolves over time

= Stationarity assumption: transition probabilities same at all times, i.e., P(X;| X..1) = P(X¢ | X¢.1)
= Same as MDP transition model, but no choice of action, no rewards



Conditional Independence
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= Past and future independent given the present
= Each time step only depends on the previous
= This is called the (first order) Markov property

Note that the chain is just a (growable) Bayes net



Example: Markov Chain Weather

States: X = {rain, sun}

= |nitial distribution: 1.0 sun

= CPTP(X; | Xq): Two new ways of representing the same CPT
Xea | Xe | P(XeIXeq) 0.3 0.9
sun | sun 0.9 0.5
sun | rain 0.1 — v =
rain | sun 0.3 A
rain | rain 0.7 0.7 0.7

0.1
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Example: Markov Chain Weather 03 ’
Initial distribution: P(X; = sun) = 1.0 @

0.7 0.1

What is the probability distribution after one step?
P(X, =sun) =7



Example: Markov Chain Weather
Initial distribution: P(X; = sun) = 1.0
0.7
What is the probability distribution after one step?
P(X, =sun) =7

P(X; = sun) = )., P(X; = x4, X, = sun)
= lep(Xz =sun | X; = x; )P(X; = x1)
= P(X, =sun | X; = sun)P(X; = sun) +
P(X, =sun| X; =rain)P(X, = rain)
=09-1.0+03-0.0=0.9

0.3

0.1

0.9



Question
Initial distribution: P(X, = sun) = 0.9

What is the probability distribution after the next step?
P(X; =sun) =7

A) 0.81
B) 0.84
C) 0.9
D) 1.0
E) 1.2

0.7

0.3

0.1

0.9



. 0.9
Question 0.3

Initial distribution: P(X, = sun) = 0.9

0.7
0.1

What is the probability distribution after the next step?
P(X; =sun) =7

?(X :501"\3 = Z P(XB:%M\) XZ:XB
A) 0.81 / X,
B) 0.84 _ _ _ =
) = = Plmsen | X, POG=x)
C) 0.9 Xy
D) 1.0 = 0409 + 0.30.\
E) 1.2

= OZ| + 0,03 = D%ﬁL



Markov Chain Inference
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If you know the transition probabilities, P(X; | X;_;), and you know P (X,),

write an equation to compute P(X5).




Markov Chain Inference

(D))~

If you know the transition probabilities, P(X; | X;_;), and you know P (X,),

write an equation to compute P(X5).

P(Xs5) = Xy, P(x4,Xs)
= Zx4P(X5 | x4 )P (x4)




More generally

What is the state at time t?

P(Xt) = Z P(Xt—l = X; / Probability from ]
previous iteration
Xt-1
= Z P(X¢|Xe—q = 2 1)P(Xemq1 = X¢—1)

Xt—1

Iterate this update starting at t=1

Transition model ]




Hidden Markov Models




Hidden Markov Models

In many applications, the true state is not observed directly.
Instead, you observe some possibly noisy information.

Robot tracking:
= Observations are range readings (continuous)
= States are positions on a map (continuous)

Speech recognition HMMs:

= Observations are acoustic signals (continuous
valued)

= States are specific positions in specific words (so,
tens of thousands)

Machine translation HMMs:

= Observations are words (tens of thousands)
= States are translation options

Molecular biology:
= Observations are nucleotides ACGT

= States are coding/non-coding/start/stop/splice-site
etc.



Hidden Markov Models

In many applications, the true state is not observed directly.
Instead, you observe some possibly noisy information.

» Underlying Markov chain over states X 00
" You observe evidence E, at each time step Lo
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An HMM is defined by:

" |nitial distribution: P(X,)
" Transition model: P(X, | X, ,)

= Sensor model: P(E, | X,)

Example: Weather HMM
X¢-1 P(X¢|X¢-1)
sun 0.9 0.1
rain 0.3 0.7

Xy P(Et|Xt)
true false
sun 0.2 0.8




HMM as Probability Model ‘_':”
= Joint distribution for Markov model: @ @

P(Xg,.-+) X7) = P(X{ ) t=1..T P(X: | X¢q)

" Joint distribution for hidden Markov model:
P(Xoy X1,E1, weey XE7) = POXO) L icq 7 POXe | Xiq) PLEL | X))
" Future states are independent of the past given the present

= Current evidence is independent of everything else given the current state

= Fxercise: Are evidence variables independent of each other?



Some useful stuff

Notation: X,., = (X, Xgs1, - Xp)

For example: P(X;., | e1.3) = P(X1, X5, | e7, €5, €e3)

Probability: Consider a random variable B taking three possible values b,,b,,bs.
Suppose you know that P(b,)=2«, P(b,)=1.250a, P(b5)=0.75a, for some a>0. Then what is
P(b,)?

Key takeaway: If you know P(B=b) for all b up to a constant, then you can recover P(B)
by normalizing.



HMM Queries

Filtering: P(X;|e1.) Prediction: P(X...|e;.,)
D@D D EEOH®)
ORORONO () (&) (e

Smoothing: P(X,| e,.;), k<t Explanation: P(X,..|e;.)
O EOHOPE ONONONO

() @ & @@



Filtering

What is the current state, given all of the current and past evidence ?
That is, what is P(X;|e,.,)?

>-0-6f

gg




Filtering Algorithm: Exact inference

P(X: | err) =P(X¢| e, €q1.0-1) @—»@—»@—
1 | |
v v

(Xt ee] €117

does not depend on X;

N
P(et| e1.t-1)

v
©—




Filtering Algorithm

P(X: | err) =P(X¢| e eq1.0-1)
=a P(X¢, e¢| €1.t-1)

= 2 P(x¢—1, Xe €¢| €1.6-1)

Xt—1

O-Ofe-E




Filtering Algorithm

P(X; | e1.t) = P(X¢| e, €1:¢-1) Q(D_>Q(D__> ‘
= P(Xt, etl el:t—l) l
v v
= a 2 P(xt—l;Xtt etl ellt—l)

Xt—1

= a 2 P(x;—1| €1.6—1) P(X¢lxe—1, €1:0-1) P(e¢| Xt Xe—1, €1:0-1)

Xt—1




Filtering Algorithm

P(X: | e1.t) = P(X¢| et, €1.6-1) @—»@ >@

=a P(X¢, e¢| €1.t-1)

4 4 4
=a ) Py, Xp,erl exe-a)

Xt—1

= a 2 P(x¢—q] €1.e-1) P(Xelxe—q, €1:0-1) Pec| Xy, X1, €1:6-1)

Xt—1

)
j




Filtering Algorithm

P(X: | err) =P(X¢| e eq1.0-1) @_»@ >@

= P(Xt, etl el:t—l)

'
=« 2 P(x¢_1,X¢, ] €1.4-1)

Xt—1

_ Z P(xo—y] er:e1) P(XelXe—1, €10 1)P(er|X)

Xt—1




Filtering Algorithm

P(X: | err) =P(X¢| e eq1.0-1) @_»@ >@

= P(Xt, etl el:t—l)

'
=« 2 P(x¢_1,X¢, ] €1.4-1)

Xt—1

=a ) POl ere-1) P(Xeley) PleclX)

Xt—1




Filtering Algorithm

P(X: | e1.t) = P(X¢| er, €1.4-1) @—»@ >@

=a P(X;, e¢| €1.t-1)

\ 4 \ 4 \ 4
=a z P(xi—1, X, e¢| €1.4-1)

Xt—1

=« z P(x¢—1| e1.4—1) P(X¢lxe—1) P(es| Xt)

Xt—1

= a P(e.|X;) z P(X¢|xe—1) P(x¢—1] €1.¢-1)

Xt—1




Recursion!

Filtering Algorithm

P(X: | err) =P(X¢| e eq1.0-1) @—»@——»@——»
=a P(Xy, el e1.0-1) | | l
v v
=a 2 P(x¢—1, Xe, €¢] €1.6-1)

Xt—1

=a ) POl ene-s) P(Xelxeoy) PleclX)

Xt—1

gg

= a P(e.|X;) 2 P(X¢lxe—1) P(x¢—1] €1.4-1)

Xt—1



Recursion!

Filtering Algorithm

P(X¢ | e1.) = P(X¢| eg,e1.4-1) Xy »@——»@ >

= a P(X;, e| e1.4-1) | l

4 ) 4
— S Pl Kot ere s

Xt—1

=a ) PCtel exe-1) PORelxe—y) Plec]Xo)

Xt—1

= aPeclX) ) P(Xelxe-s) P(res] exer)

Xt—1




In Class Activity: Weather HMM

Given P(X;) = {sun:0.5, rain:0.5}
Goal: Compute P(X,=sun | e,= e,;=True)

Remember recursion... start with P(X;|e;)

P(X4,e1)
P(X;le1) = P(Zl)l

= a P(e1|X;1)P(X1)

P(X; = sun|e; = True)

=a *x0.2*05=0.1«a

P(X,

Xi1 P(X¢ | X¢-1) X¢ P(E¢|X¢)
sun rain true false

sun 0.9 0.1 sun 0.2 0.8

rain | 0.3 0.7 rain | 0.9 0.1

rainle; = True) = a* 0.9 *0.5 =0.45 «




In Class Activity: Weather HMM

Xeq | P(X¢lXgq) X P(E¢|X,)
Given P(X;) = {sun:0.5, rain:0.5} sun | rain true | false
Goal: Compute P(X,=sun | e,= e;=True) sun | 0.9 | 0.1 sun | 02 | 0.8
rain | 03 | 0.7 rain | 09 | 0.1
Next, move to P(X,|eq,e;)
P(X;leje;) = a'P(Xy, ezxle;) = a’P(ez|X3, e)P(Xzler) = a'P(ez|X2)P(X;leq)
where P(X;|e;) = Yx, P(X21x)P(x4]e1)

P(X, = sun|e; = True) = Z P(X, = sun|x,)P(x;|e; = True)

= 9* Jda+ .3 x.45a = .225a
P(X, = rain|e; = True) = Z P(X, = rain|x,)P(x,|e; = True)

= 1* doa+ .7 *.45a = .325«x



In Class Activity: Weather HMM

| . Xi.q P(X¢[X¢.1) Xy P(E¢|Xy)
Given P(X;) = {sun:0.5, rain:0.5} un fain true | false
Goal: Compute P(X,=sun | e,= e;=True) sun | 0.9 0.1 sun | 0.2 0.8
rain | 0.3 0.7 rain | 0.9 0.1

Next, move to P(X,|eq,e;)
P(X;lee;) = a'P(Xy, ezler) = a'P(e,|X,)P(X;leq)

P(X, = sun|e; = True) = .225«

P(X, = rain|e; = True) = .325«

P(X, = sun|e;,e, = True) = o' * 0.2 * .225a = .045 a o’

P(X, = rain|e;,e, = True) = a’ * 0.9 *.325 a = 0.2925 a o’

Normalizing, we have P(X, = sun|e, e, = True) =.045 / (.045+ 0.2925) = 0.133
and P(X, = rain|e,,e, = True) =.2925 / (.045+ 0.2925) = 0.867



Filtering Algorithm: Computational complexity
P(X,ler) == a P(e:|X;) th_l P(X¢lxe—1) P(x¢—1| €1:4-1)

lNormaIizeI i Update I i Predict I

Computational cost per time step:
O(|X|?) where | X| is the number of states

O(|X|?) is infeasible for models with many state variables

Next lecture: Approximations!



