
AI: Representation and Problem Solving

Reinforcement Learning II

Instructors: Tuomas Sandholm and Nihar Shah
Slide credits: CMU AI and http://ai.berkeley.edu

Logistics

• Midterm 2 on Wednesday
• Covers from propositional logic up to (and including) basic Q learning
• Doesn’t include the rest today’s lecture (after basic Q learning), which

will be covered on the Final Exam
• Extra-cool, optional:

Prof. Bart Selman will give the
Inaugural Hans Berliner Lecture on
“Mathematical and Scientific Discovery: A New Frontier for AI”
• On 4/4/2024 at 4 PM in Rashid Auditorium in GHC

Reinforcement Learning (RL) Review So Far

o We still assume an MDP:
o A set of states s Î S
o A set of actions (per state) A
o A model T(s,a,s’)
o A reward function R(s,a,s’)

o Still looking for a policy p(s)

o The twist: don’t know T or R, so must try out actions

o Big idea: Compute all averages over transition probabilities using
sample outcomes

Summary so far

o Passive RL: agent has to learn from experience

o Model-based: Estimate the transition and rewards; run
value iteration or policy iteration

o Model-free:
o Direct policy evaluation – empirical average utility
o Temporal difference learning – sample based policy iteration

update via running averages
4

Temporal Difference learning

o Main idea: learn from each experience visiting state s, doing 𝜋(𝑠)
o Update V(s) each time we experience a transition (s, a, s’, R)

o Not waiting for the whole episode to get utility
o Likely outcomes s’ will contribute updates more often

o Decreasing learning rate (𝛼) towards zero leads to
convergence

5

Update to 𝑽𝝅(s):

Sample of 𝑽𝝅(s): sample = 𝑅 + 𝛾	𝑉"(𝑠#)

Example: Model-Based Learning

Input Policy p

Assume: g = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

T(s,a,s’).
T(B, east, C) =
T(C, east, D) =
T(C, east, A) =
…

R(s,a,s’).
R(B, east, C) =
R(C, east, D) =
R(D, exit, x) =

…

Example: Model-Based Learning

Input Policy p

Assume: g = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

T(s,a,s’).
T(B, east, C) = 1
T(C, east, D) = 0.75
T(C, east, A) = 0.25
…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = 10

…

Example: Model-Free Direct Evaluation

Input Policy p

Assume: g = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

Algorithm: Average all total/future rewards that start at each state

A:

B:

C:

D:

E:

Example: Model-Free Direct Evaluation

Input Policy p

Assume: g = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

Algorithm: Average all total/future rewards that start at each state

A: -10 [-10]

B: 8, 8 [8]

C: 9, 9, 9, -11 [4]

D: 10, 10, 10 [10]

E: 8, -12 [-2]

Example: Temporal Difference Learning

Assume: g = 1,
α = 0.5

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

Poll

Which of the following allows you to estimate the optimal
policy?

o (A) Model-based RL
o (B) Model-free RL : direct policy evaluation
o (C) Model-free RL : temporal difference value learning

From TD Value Learning to Q-learning

o TD value learning is a model-free way to do policy evaluation,
mimicking Bellman updates with running sample averages

o If we want to turn values into a (new) policy, we can learn Q-values,
not state values

a

s

s, a

s,a,s’
s’

Conceptual; actual details in next slides

Bootstrapped prediction of Q-values

Sample of 𝑽𝝅(s): sample = 𝑟 + 𝛾	𝑉"(𝑠#)

Update to 𝑽𝝅(s):

Sample of 𝑸𝝅(s): sample = 𝑟 + 𝛾	𝑄"(𝑠#, 𝑎#)

Update to 𝑸𝝅(s): 𝑄" 𝑠 	← 1	 − 𝛼 	𝑄" 𝑠 + 𝛼	𝑠𝑎𝑚𝑝𝑙𝑒

Estimating 𝑉" 𝑠 	from (s, a, s’, r)

Estimating 𝑄" 𝑠 from (s, a, s’, r, a’)

Q-learning

o Expectimax update for optimal Q-values

o Q-learning: sample-based Q-value iteration
o Given data (s, a, s’, R):

o sample = R + 𝛾	𝐦𝐚𝐱
𝒂#

	𝑄(𝑠, 𝑎#) (consider new sample estimate)

o 𝑄 𝑠, 𝑎 = 1	 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼	𝑠𝑎𝑚𝑝𝑙𝑒 (incorporate into running avg)

Q-learning properties
o Important property: Q-learning converges to values of the

optimal policy even if you are acting suboptimally
o This is called off-policy learning

o Learning about the optimal policy while the experience is obtained
via a different (suboptimal) policy

o Caveats:
o Data-collecting policy has to explore enough
o Have to lower the learning rate α eventually

oBut not too quickly

o Basically, in the limit, doesn’t matter how you select actions!

In-class activity

Input S,A

Assume: g = 1
𝛼 = 0.5

Observed Episodes (Training) Output Q-Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, p* Value / policy iteration

Evaluate a fixed policy p Policy evaluation

Model-Based RL Model-Free RL

Goal Technique

Compute V*, Q*, p* VI/PI on approx. MDP

Evaluate a fixed policy p PE on approx. MDP

Goal Technique

Compute V*, Q*, p* Q-learning

Evaluate a fixed policy p TD Value Learning

Active Reinforcement Learning

Active Reinforcement Learning

o Full reinforcement learning: optimal policies (like value iteration)
o You don’t know the transitions T(s,a,s’)
o You don’t know the rewards R(s,a,s’)
o You choose the actions now
o Goal: learn the optimal policy / values

o In this case:
o Learner makes choices!
o Fundamental tradeoff: exploration vs. exploitation
o This is NOT offline planning! You actually take actions in the world and

find out what happens…

Exploration vs. Exploitation

How to Explore?
o Several schemes for forcing exploration

o Simplest: random actions (e-greedy)
oEvery time step, flip a coin
oWith (small) probability e, act randomly
oWith (large) probability 1-e, act on current policy

o Problems with random actions?
oYou do eventually explore the space, but keep

thrashing around once learning is done
oOne solution: lower e over time
oAnother solution: exploration function …

Exploration Functions
o When to explore?

o Random actions: explore a fixed amount
o Better idea: explore areas whose badness is not
 (yet) established, eventually stop exploring

o Exploration function
o Takes a value estimate u and a visit count n, and
 returns an optimistic utility, e.g.

𝑓 𝑢, 𝑛 = 𝑢 + 𝑘/(𝑛 + 1)

o Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-Update: 𝑄 𝑠, 𝑎 = 1	 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼	[𝑟 + 𝛾max
!!
	𝑓(𝑄 𝑠", 𝑎" , 𝑁 𝑠", 𝑎")]

Regular Q-Update: 𝑄 𝑠, 𝑎 = 1	 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼	[𝑟 + 𝛾max
!!
	𝑄 𝑠", 𝑎"]

Regret
o Even if you learn the optimal policy, you still make

mistakes along the way!

o Regret is a measure of your total mistake cost: the
difference between your (expected) rewards, including
youthful suboptimality, and optimal (expected) rewards

o Minimizing regret goes beyond learning to be optimal –
it requires optimally learning to be optimal

o Example: random exploration and exploration functions
both end up optimal, but random exploration has higher
regret

Approximate Q-Learning

Example: Pacman

Let’s say we discover
through experience
that this state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

Generalizing Across States

o Basic Q-Learning keeps a table of all q-values

o In realistic situations, we cannot possibly learn
about every single state!
o Too many states to visit them all in training
o Too many states to hold the q-tables in memory

o Instead, we want to generalize:
o Learn about some small number of training

states from experience
o Generalize that experience to new, similar

situations

Feature-Based Representations

o Solution: describe a state using a vector of
features (properties)

o Features are functions from states to real
numbers (often 0/1) that capture important
properties of the state

o Can also describe a q-state (s, a) with features
(e.g., action moves closer to food)

o Example features:
o Distance to closest ghost
o Distance to closest dot
o Number of ghosts
o 1 / (dist to dot)2
o Is Pacman in a tunnel? (0/1)

Linear value functions
o Using a feature representation, we can write a q function (or value function) for

any state using a few weights:

o 𝑉! 𝑠 = 𝑤"𝑓" 𝑠 + 𝑤#𝑓# 𝑠 +	…+ 𝑤$𝑓$(𝑠)

o 𝑄! 𝑠, 𝑎 = 𝑤"𝑓" 𝑠, 𝑎 + 𝑤#𝑓# 𝑠, 𝑎 +	…+ 𝑤$𝑓$(𝑠, 𝑎)

o Advantage: our experience is summed up in a few powerful numbers

o Disadvantage: states may share features but actually be very different in value!

Updating a linear value function

o Original Q learning rule tries to reduce prediction error at s, a:
o 𝑄 𝑠, 𝑎 ← 1	 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼[𝑅 𝑠, 𝑎, 𝑠# + 𝛾	max

:!
	𝑄 𝑠#, 𝑎#]

o 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼[𝑅 𝑠, 𝑎, 𝑠# + 𝛾	max
:!
	𝑄 𝑠#, 𝑎# − 𝑄 𝑠, 𝑎]

o Instead, we update the weights to try to reduce the error
at s, a:

o 𝑤; ←	?

Detour: Minimizing Error and Least Squares

0 20
0

20

40

0
10

20
30

40

0

10

20

30

20

22

24

26

Linear Approximation: Regression

Prediction: Prediction:

Optimization: Least Squares

0 20
0

Error or “residual”

Prediction

Observation

Gradient Descent

Goal: find 𝑥 that minimizes 𝑓(𝑥)
1. Start with initial guess, 𝑥<
2. Update 𝑥 by taking a step in the direction that 𝑓(𝑥) is changing

fastest (in the negative direction) with respect to x:
 𝑥 ← 𝑥	 − 𝛼∇=𝑓, where 𝛼 is the step size or learning rate
3. Repeat until convergence

Gradient Descent and Q learning

o Gradient descent on

o We know that 45
46
= −(𝑦 − 𝑥); so 𝑥	 ← 𝑥 + 	𝛼	(𝑦	 − 𝑥)

o Q-learning: find values Q(s, a) that minimizes difference
between samples and Q(s, a)
o 𝐸𝑟𝑟𝑜𝑟(𝑄(𝑠, 𝑎)) = >

?
𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑄(𝑠, 𝑎) ?

o 	𝑄 𝑠, 𝑎 ← 𝑄(𝑠, 𝑎) − 𝛼∇@(A,:)𝐸𝑟𝑟𝑜𝑟
o 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼[(𝑅 𝑠, 𝑎, 𝑠# + 𝛾	max

:!
	𝑄 𝑠#, 𝑎#) − 𝑄 𝑠, 𝑎]

𝑓 𝑥 =
1
2
𝑦 − 𝑥 #

“target” (sample) “prediction”

Approximate Q-learning and gradient descent

Approximate Q-update:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” (sample) “prediction”

Updating a linear value function

o Original Q learning rule tries to reduce prediction error at s, a:
o 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼[(𝑅 𝑠, 𝑎, 𝑠% + 𝛾	max

&!
	𝑄 𝑠%, 𝑎%) − 𝑄 𝑠, 𝑎]

o Instead, we update the weights to try to reduce the error at s, a:
o w' ← 𝑤(+ 𝛼 ∗ 𝑓(𝑠, 𝑎 ∗ [(𝑅 𝑠, 𝑎, 𝑠% + 𝛾	max

&!
	𝑄 𝑠%, 𝑎%) − 𝑄 𝑠, 𝑎]

Approximate Q-Learning summary

o Q-learning with linear Q-functions:

o Intuitive interpretation:
o Adjust weights of active features
o E.g., if something unexpectedly bad happens, blame the features

that were on: disprefer all states with that state’s features

o Formal justification: online least squares

Exact Q’s
Approximate Q’s

Poll: Pacman with approximate Q learning
• Two features: 𝑓)*+ 𝑠, 𝑎 and 𝑓,-+ 𝑠, 𝑎 𝛼 = 0.004
• Current weights: 𝑤)*+ = 4,𝑤,-+ = −1

𝑓"#$ 𝑠, 𝑁 = 0.5

𝑓%&' 𝑠, 𝑁 = 1.0
𝑎	 = 	𝑁

𝑅	 = 	−500

Q(s, N) = 4*0.5 + (-1)*1 = 1

(A)	𝑤"#$ and 𝑤%($ both increase by same amount
(B) 𝑤"#$ and 𝑤%($ both decrease by same amount
(C) 𝑤"#$ and 𝑤%($ both increase, 𝑤"#$ increases by larger amount
(D) 𝑤"#$ and 𝑤%($ both increase, 𝑤%&' 	increase by larger amount
(E) 𝑤"#$ and 𝑤%($ both decrease, 𝑤"#$ decreases by larger amount
(F) 	𝑤"#$ and 𝑤%($ both decrease, 𝑤%($ decreases by larger amount

Poll: Pacman with approximate Q learning
• Two features: 𝑓)*+ 𝑠, 𝑎 and 𝑓,-+ 𝑠, 𝑎 𝛼 = 0.004, 𝛾 = 1.0
• Current weights: 𝑤)*+ = 4,𝑤,-+ = −1

𝑓"#$ 𝑠, 𝑁 = 0.5

𝑓%&' 𝑠, 𝑁 = 1.0
𝑎	 = 	𝑁

𝑅	 = 	−500

Q(s, N) = 4*0.5 + (-1)*1 = 1

𝑠𝑎𝑚𝑝𝑙𝑒	 = 𝑅 + 𝛾max
!"

𝑄(𝑠", 𝑎′) = −500
e𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 𝑄 𝑠, 𝑎 = 1

𝑄 𝑠’, 𝑎 = 	0	∀𝑎

𝑤)*+ ← 4 + 𝛼 −501 	0.5 = 3.0
𝑤,-+ ← −1 + 𝛼 −501 	1.0	 = −3.0

All equations we saw so far

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Q-learning:

Value (TD) learning:

Standard expectimax: 𝑉 𝑠 = max
)

G
&*

𝑃 𝑠* 𝑠, 𝑎)𝑉(𝑠*)

𝑉∗ 𝑠 = max
)

G
&*

𝑃 𝑠* 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠* + 𝛾𝑉∗ 𝑠*

𝑉,-. 𝑠 = max
)

G
&*

𝑃 𝑠* 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠* + 𝛾𝑉, 𝑠* , ∀	𝑠

𝑄,-. 𝑠, 𝑎 = G
&*

𝑃 𝑠* 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠* + 𝛾max
)!

𝑄,(𝑠*, 𝑎*)] , 	 ∀	𝑠, 𝑎

𝜋/ 𝑠 = argmax
)

G
&*

𝑃 𝑠* 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠* + 𝛾𝑉 𝑠*] , ∀	𝑠

𝑉,-.
0 𝑠 = G

&*

𝑃 𝑠* 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠* + 𝛾𝑉,
0 𝑠*] , ∀	𝑠

𝜋123 𝑠 = argmax
)

G
&*

𝑃 𝑠* 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠* + 𝛾𝑉0"#$ 𝑠* , ∀	𝑠

𝑉0 𝑠 	= 	 𝑉0(𝑠) 	+ 𝛼 𝑟 + 𝛾	𝑉0 𝑠* −	𝑉0 𝑠

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾	max
)!

	𝑄 𝑠*, 𝑎* − 𝑄 𝑠, 𝑎]

Recent Reinforcement Learning Milestones

TDGammon
o 1992 by Gerald Tesauro
o 4-ply lookahead using V(s) trained from 1,500,000 games of

self-play
o 3 hidden layers, ~100 units each
o Input: contents of each location

plus several handcrafted features
o Experimental results:

o Approximately as strong as world champion
o Led to radical changes in the way

humans play backgammon

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

0

25

Deep Q-Networks
o Deep Mind, 2015
o Used a deep learning network to represent Q:

o Input is last 4 images (84x84 pixel values) plus score
o 49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro

Image: Deep Mind

44

Im
ag

es
: O

pe
n

AI
, A

ta
ri

OpenAI Gym
o 2016+
o Benchmark problems for learning agents
o https://gym.openai.com/envs

Images: Open AI

AlphaGo, AlphaZero

o Deep Mind, 2016+

Autonomous Vehicles?

