Al: Representation and Problem Solving

Reinforcement Learning II

Instructors: Tuomas Sandholm and Nihar Shah
Slide credits: CMU Al and http:/ /ai.berkeley.edu

Logistics

* Midterm 2 on Wednesday

 Covers from propositional logic up to (and including) basic Q learning
* Doesn’t include the rest today’s lecture (after basic Q learning), which
will be covered on the Final Exam
* Extra-cool, optional:
Prof. Bart Selman will give the
Inaugural Hans Berliner Lecture on
“Mathematical and Scientific Discovery: A New Frontier for Al”

e On4/4/2024 at 4 PM in Rashid Auditorium in GHC

Reinforcement Learning (RL) Review So Far

o We still assume an MDP:

o A set of statess € S
o A set of actions (per state) A
o A model T(s,a,s’)

o A reward function R(s,a,s’)

o Still looking for a policy n(s)
o The twist: don’t know T or R, so must try out actions

o Big idea: Compute all averages over transition probabilities using
sample outcomes

Summary so far

o Passive RL: agent has to learn from experience

o Model-based: Estimate the transition and rewards; run
value iteration or policy iteration

o Model-free:

o Direct policy evaluation — empirical average utility

o Temporal difference learning — sample based policy iteration

update via running averages
4

Temporal Ditference learning

o Main idea: learn from each experience visiting state s, doing m(s)

o Update V(s) each time we experience a transition (s, a, s, R)
o Not waiting for the whole episode to get utility

o Likely outcomes s’ will contribute updates more often
Sample of V*(s): sample=R +y V" (s")
Update to V™(s): V" (s) + (1 — a)V"(s) + (a)sample

o Decreasing learning rate (a) towards zero leads to
convergence

Example: Model-Based Learning

Input Policy & Observed Episodes (Training) Learned Model
. . . p
Episode 1 Episode 2 T(s,a,s)
B, east, C, -1 B, east, C, -1 T(B, east, C) =
C, east, D, -1 C, east, D, -1 i(g east, z)f
D, exit, x, +10 D, exit, x, +10 (C, east, A) =
. . . p
Episode 3 Episode 4 R(s,a,s")
E, north, C, -1 E, north, C, -1 R(B, east, C) =
C,east, D, -1 C, east, A, -1 R(C, ea.s’t’ D)=
R(D, exit, x) =

Assume: y=1 D, exit, x, +10 A, exit, x,-10

Example: Model-Based Learning

Input Policy & Observed Episodes (Training) Learned Model
Episode 1 Episode 2 T(s,a,s")

B, east, C, -1 B, east, C, -1 T(B, east,C) =1
T(C, east, D) =0.75

C, east, D, -1 C, east, D, -1 e D)=078
D, exit, x, +10 D, exit, x, +10 (C, east, A) = 0.
. . ~ /
Episode 3 Episode 4 R(s,a,s")
E, north, C, -1 E, north, C, -1 R(B, east, C) = -1
C,east, D, -1 C,east, A, -1 R(C, east, D) = -1

_] R(D, exit, x) = 10
Assume: y=1 D, exit, x, +10 A, exit, x,-10

Example: Model-Free Direct Evaluation

Input Policy & Observed Episodes (Training) Output Values
Episode 1 Episode 2 A
B, east, C, -1 B, east, C, -1
C, east, D, -1 C, east, D, -1 B:
D, exit, x, +10 D, exit, x, +10
Episode 3 Episode 4 C:
E, north, C, -1 E, north, C, -1
C,east, D, -1 C, east, A, -1 D:
Assume: Y = 1 D, exit, x, +10 A, exit, x,-10
E:

Algorithm: Average all total/future rewards that start at each state

Example: Model-Free Direct Evaluation

Input Policy & Observed Episodes (Training) Output Values

Episode 1 Episode 2 A: -10[-10]

B, east, C, -1 B, east, C, -1

C, east, D, -1 C, east, D, -1 B: s 8 [8]

D, exit, x, +10 D, exit, x, +10
Episode 3 Episode 4 C:9,9,9-11 4]

E, north, C, -1 E, north, C, -1

C, east, D,-1 C, east, A, -1 D: 10, 10, 10 [10]

Assume: Y = 1 D, exit, x, +10 A, exit, x,-10

E: 8 -12[-2]

Algorithm: Average all total/future rewards that start at each state

Example: Temporal Difference Learning

States Observed Transitions

[B, east, C, -2] [C, east, D, -2]

Assume:y =1,
a=0.5 sample = R(s,7(s),s) + V7 (s")
VT(s) «+ (1 —a)V™(s) + (a)sample

Poll

Which of the following allows you to estimate the optimal
policy?

o (A) Model-based RL
o (B) Model-free RL : direct policy evaluation
o (C) Model-free RL : temporal difference value learning

From TD Value Learning to Q-learning

o TD value learning is a model-free way to do policy evaluation,
mimicking Bellman updates with running sample averages

o If we want to turn values into a (new) policy, we can learn Q-values,
not state values
w(s) = argmax Q(s,a)
a

Q(s,a) = ZT(S, a,s’) [R(s, a,s’) + ’yV(s/)}

A
. N
. N
.
.
.
.
.
.
.
.
P
P
.
.
.
.
.
A

Conceptual; actual details in next slides

Bootstrapped prediction of Q-values

Estimating V™(s) from (s, a, s, r)

Sample of V*(s): sample =1 +y V™ (s")

Update to V*(s): V™ (s) + (1 —a)V"(s) + (a)sample

Estimating Q™(s) from (s, a, s’, r, a’)

Sample of Q™(s): sample =r +y Q™ (s’,a’)
Update to Q™(s): Q™(s) « (1 —a) Q™(s) + a sample

Q-learning

o Expectimax update for optimal Q-values

Qit1(s,0) « S T(s,0,5) |R(s,a,8) + 7 maxQu(s', @)

o Q-learning: sample-based Q-value iteration
o Given data (s, a, s, R):
o sample =R +y max Q(s, a") (consider new sample estimate)
al’

0Q(s,a) = (1 —a)Q(s,a) + a sample (incorporate into running avg)

Q-learning properties

o Important property: Q-learning converges to values of the
optimal policy even if you are acting suboptimally
o This is called off-policy learning

o Learning about the optimal policy while the experience is obtained
via a different (suboptimal) policy

o Caveats:
o Data-collecting policy has to explore enough

o Have to lower the learning rate a eventually
o But not too quickly

o Basically, in the limit, doesn’t matter how you select actions!

In-class activity

Input S,A Observed Episodes (Training) Output Q-Values
Episode 1 Episode 2
B, east, C, -1 B, east, C, -1
C, east, D, -1 C, east, D, -1
D, exit, x, +10 D, exit, x, +10
Episode 3 Episode 4
E, north, C, -1 E, north, C, -1
A =1 C,east, D, -1 C,east, A, -1
ssume. vy = D, exit, x, +10 A, exit, x,-10

a=05

Qs,0) (1=)Q(s,0) + (a) |r +7maxQ(s',)]

The Story So Far: MDPs and RL

Known MDP: Offline Solution

-

Goal
Compute V*, Q*, n*

Evaluate a fixed policy =

~

Technique

Value / policy iteration

Policy evaluation

Model-Based RL

G

oal

Compute V*, Q*, n*

&

Technique

N

VI/PI on approx. MDP

Evaluate a fixed policy 1 = PE on approx. MDP

)

Model-Free RL

(" Goal Technique A
Compute V*, Q*, n* Q-learning
Evaluate a fixed policy 1 = TD Value Learning

o)

Active Reinforcement Learning

Active Reinforcement Learning

o Full reinforcement learning: optimal policies (like value iteration)
o You don’t know the transitions T(s,a,s’)
o You don’t know the rewards R(s,a,s’)
o You choose the actions now
o Goal: learn the optimal policy / values

o In this case:
o Learner makes choices!
o Fundamental tradeoff: exploration vs. exploitation

o This is NOT offline planning! You actually take actions in the world and
find out what happens...

Exploration vs. Exploitation

How to Explore?

o Several schemes for forcing exploration

o Simplest: random actions (e-greedy)
o Every time step, flip a coin
o With (small) probability ¢, act randomly
o With (large) probability 1-¢, act on current policy /|

o Problems with random actions?

o You do eventually explore the space, but keep
thrashing around once learning is done

o One solution: lower € over time

o Another solution: exploration function ...

Exploration Functions

o When to explore?
o Random actions: explore a fixed amount
o Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring
o Exploration function

o Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g.

fun)=u+k/(n+1)
Regular Q-Update: Q(s,a) =1 —a)Q(s,a) +a[r+ ymax Q(s’,a")]

Moditied Q-Update: Q(s,a) = (1 —a)Q(s,a) + a [r + ymax £(Q(s',a"),N(s',a')]

o Note: this propagates the “bonus” back to states that lead to unknown states as well!

Regret

Even if you learn the optimal policy, you still make
mistakes along the way!

Regret is a measure of your total mistake cost: the
difference between your (expected) rewards, including
youthful suboptimality, and optimal (expected) rewards

Minimizing regret goes beyond learning to be optimal —
it requires optimally learning to be optimal

Example: random exploration and exploration functions
both end up optimal, but random exploration has higher
regret

Approximate Q-Learning

Example: Pacman

Let’s say we discover In naive g-learning,
through experience we know nothing Or even this one!
that this state is bad: about this state:

Generalizing Across States

o Basic Q-Learning keeps a table of all g-values

o Inrealistic situations, we cannot possibly learn
about every single state!

o Too many states to visit them all in training
o Too many states to hold the g-tables in memory

o Instead, we want to generalize:

o Learn about some small number of training
states from experience

o Generalize that experience to new, similar
situations

Feature-Based Representations

o Solution: describe a state using a vector of
features (properties)

o Features are functions from states to real
numbers (often 0/1) that capture important
properties of the state

o Can also describe a (il -state (s, a) with features
(e.g., action moves closer to food)

o Example features:
o Dutance to- closest glhost
o Dutance to- closest dot
o Number of ghosts
o 1 / (st to- dob)?
o Iy Pacman un a tunnel? (0/1)

Linear value functions

o Using a feature representation, we can write a q function (or value function) for
any state using a few weights:

O VW(S) — Wlfl(s) + szz(s) + .t ann(s)

o Qu(s,a) =w;ifi(s,a) +w,f,(s,a) + ...+ w,f,,(s,a)
o Advantage: our experience is summed up in a few powerful numbers

o Disadvantage: states may share features but actually be very different in value!

Updating a linear value function

o Original Q learning rule tries to reduce prediction error at s, a:
0 Q(s,a) « (1 —a)Q(s,a) + a[R(s,a,s") + y max Q(s’,a’)]
a

o Q(s,a) « Q(s,a) + a[R(s,a,s") + y max Q(s’,a’) — Q(s,a)]

o Instead, we update the weights to try to reduce the error
ats, a:

OWi(—?

Detour: Minimizing Error and Least Squares

40

Linear Approximation: Regression

20

f1(z)

Prediction: Prediction:

y = wo + wi f1(x) y; = wo + wi f1(x) + wafo(x)

Optimization: Least Squares

2
total error = Z (y; — y}-)2 => (yz - Zwkfk(xi))
i k

1

) Error or “residual”
Observation Y

Prediction :’y‘ —————————————

0 f1(x) ?

Gradient Descent

Goal: find x that minimizes f(x)

1. Start with initial guess, x,

2. Update x by taking a step in the direction that f(x) is changing
fastest (in the negative direction) with respect to x:

x « x —aV,f, where a is the step size or learning rate

3. Repeat until convergence

Gradient Descent and Q learning

1
o Gradient descent on f(x) =7 - x)*

oWeknowthat%=—(y—x);sox —x+ a(y —x)

o Q-learning: find values Q(s, a) that minimizes difference
between samples and Q(s, a)

o Error(Q(s,a)) = % (sample — Q(s,a))*

o Q(s,a) « Q(s,a) — aVys g Error
0Q(s,a) « Q(s,@) + a[(R(s,a,s") +y max Q(s',a")) — Q(s,)]

“target” (sample) “prediction”

Approximate Q-learning and gradient descent

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = % (?J - Zwkfk(x>>
k
o egror(w) _ (y _ Zwkfk(x)) fm(z)
Wm, k

Wm, < Wm + (y - Zwkfk($)> fm(x)
k
Approximate Q-update:
W — w4+ o |1+ 7 maxQ(s,a") — Q(s, a)| fm(s,a)

“target” (sample) “prediction”

Updating a linear value function

o Original Q learning rule tries to reduce prediction error at s, a:
o Q(s,a) < Q(s,a) + a[(R(s,a,s') + y max Q(s',a’)) — Q(s,a)]

o Instead, we update the weights to try to reduce the error at s, a:
o wj «w; +axfi(s,a) * [(R(s,a,s") + ymax Q(s’,a’)) — Q(s,a)]
a

Approximate Q-Learning summary

| Qs.0) = wifi(s @) twafals,)+ Aunfals,a)

o Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference = !7“ + v max Q(s, a/)] — Q(s,a)
a
Q(s,a) «— Q(s,a) + a[difference] ExactQ’s
w; «— w; + o [difference] f;(s,a) Approximate Q’s

o Intuitive interpretation:
o Adjust weights of active features

o E.g., if something unexpectedly bad happens, blame the features
that were on: disprefer all states with that state’s features

o Formal justification: online least squares

Poll: Pacman with approximate Q learning

* Two features: f4,(s,a) and fgs (s, a) a = 0.004
* Current weights: wqor = 4, Wgge = —1
Q(s, N) = 4*0.5 + (-1)*1 = 1
N 4)
faot(s,N) = 0.5 a =N s
fost(s,N) = 1.0 R = =500
\ J

J

(A) Wgor and w,s both increase by same amount
(B) wyor and w,¢; both decrease by same amount

dot gst y
(C) wgor and wyg, both increase, wy,, increases by larger amount
(D) wqor and wyg both increase, wy, increase by larger amount
(E) wqor and wyg both decrease, wy,. decreases by larger amount
(F) Wgor and wgg both decrease, w,g: decreases by larger amount

Poll: Pacman with approximate Q learning

* Two features: f4,(s,a) and fgs (s, a) a = 0.004,y = 1.0
* Current weights: wqor = 4, Wgge = —1
Q(s, N) =405+ (-1)*1 =1 Q(s’,a) = 0Va
) 4 ™\
faot(s,N) = 0.5 a =N) N [
. fest(s,N) = 1.0 R = -500 S
S Y, . Y

_ sample = R+ ymaxQ(s’,a") = —500
w; «— w; + « [difference] f;(s,a) estimate — 0(s, @) = 1

Waot < 4 + a(—501) 0.5 = 3.0
Wgst < —1 + a(—501) 1.0 = —-3.0

All equations we saw so far

Standard expectimax:
Bellman equations:
Value iteration:
Q-iteration:

Policy extraction:
Policy evaluation:
Policy improvement:
Value (TD) learning:

Q-learning;:

V(s) = m;IXE P(s'|s, @)V (s")

Ve(s) = mc?xsi P(s'ls,)[R (s, a,5") + yV*(s)]

Viess(s) = m;\:Z: P(s'ls, @)[R(s,as") + yVi(sD)], Vs

Qs (s, @) = Zsz;(sws, DIR(s,,5") +7 maxQ,(s',a)], ¥s,a
7, (s) = arggl;;(z P(s'|s,)[R(s,a,s") + yV(s)], Vs
VEa(s) =) P(s'ls, i(DIRGs, m(s),) +YVEGD], Vs
T (5) = :ll“gcrlnaxz P(s'ls,)[R(s,a,s") + yV™oud(s")], Vs
Vi(s) = Vi(s) +alr+yVi(s) — V7(s)]

Q(s,a) = Q(s,a) +alr+ymaxQ(s’,a’) — Q(s,a)]

Recent Reinforcement Learning Milestones

TDGammon

0 1992 by Gerald Tesauro

o 4-ply lookahead using V(s) trained from 1,500,000 games of
self-play

o 3 hidden layers, ~100 units each
o Input: contents of each location

plus several handcrafted features
o Experimental results:

o Approximately as strong as world champion

o Led to radical changes in the way
humans play backgammon

Deep Q-Networks

o Deep Mind, 2015
o Used a deep learning network to represent Q:
o Input is last 4 images (84x84 pixel values) plus score
o 49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro

Convglution Convglution Fully cgnnected Fully cgnnected

z'rn(—z‘bu-)ﬁ‘ ‘
‘1EELEEFELELE PN <« v >
aggg;gggaalalulalu

L s~ 4 |Noinput
/ -8/
s‘DD § o

\ .
° \\ e o\\
. \\\\o o\ \
D/ . \’ o« 1\
DD Q l Q @
.
- /]
/ . o/ /l
o / . o //
o/ / o .
/ °

¢

\\‘D[] [EI

)

(sNsNuNuNu =i,
(CFY ESNEE-is]
N

OpenAl Gym

o 2016+

o Benchmark problems for learning agents

o https:/ /gym.openai.com/envs

Breakout-ram-v0
aximize score in the game

Breakout, with RAM :'A';‘H"[ZM,.".

FetchPush-v0
Push a block to a goal

t Yo position

Acrobot-v1 S Ak
Swing up a two-link robo

o
3

Episode 2

MountainCarContinuous-vO Carnival-v0
Drive up a big hill with id- . Maximize score in the game
Bt o ' Humanoid-v2 HandManipulateBlock-v0 Carnival. with screen
continuous contro Make a 3D two-legged robot OronE e D o mmaeetee Carnival, with scree
valk R et i o St tri images as input
walk hand S

AlphaGo, AlphaZero

o Deep Mind, 2016+

+ 0+ Google DeepMind

Challenge Match

8 - 15 March 2016

Autonomous Vehicles?

