
Warm-up:
What is the relationship between number of constraints and number of 
possible solutions?

In other words, as the number of the constraints increases,
does the number of possible solutions:
A) Increase
B) Decrease
C) Stay the same
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Logical Agents
Logical agents and environments

Agent
Percepts

Actions

Environment

Sensors

Actuators

?
Knowledge Base

Inference



Logical Agents
So what do we TELL our knowledge base (KB)?
§ Facts (sentences)

§ The grass is green
§ The sky is blue

§ Rules (sentences)
§ Eating too much candy makes you sick
§ When you’re sick you don’t go to school

§ Percepts and Actions (sentences)
§ Tuomas ate too much candy today

What happens when we ASK the agent?
§ Inference – new sentences created from old

§ Tuomas is not going to school today



Models

How do we represent possible worlds with models and knowledge bases?
How do we then do inference with these representations?



Logic Language
Natural language?

Propositional logic
§ Syntax: P Ú (¬Q Ù R);        X1 Û (Raining Þ Sunny)
§ Possible world: {P=true, Q=true, R=false, S=true} or 1101
§ Semantics: a Ù b is true in a world iff is a true and b is true (etc.)

First-order logic
§ Syntax: "x $y P(x,y) Ù ¬Q(Joe,f(x))  Þ f(x)=f(y)
§ Possible world: Objects o1, o2, o3; P holds for <o1,o2>; Q holds for <o3>; f(o1)=o1; 

Joe=o3; etc.
§ Semantics: f(s) is true in a world if s=oj and f holds for oj; etc.



Propositional Logic



Propositional Logic
Symbol:
§ Variables that can be true or false
§ We’ll try to use capital letters, e.g. A, B, P1,2

§ Often include True and False
Operators:
§ ¬ A: not A
§ A Ù B: A and B (conjunction)
§ A Ú B: A or B (disjunction) Note: this is not an “exclusive or”
§ A Þ B: A implies B (implication). If A then B 
§ A Û B: A if and only if B (biconditional)



Propositional Logic Syntax: Sentences
Given: a set of proposition symbols {X1, X2, …, Xn} 
§ (we often add True and False for convenience)

Xi is a sentence
If a is a sentence then ¬a is a sentence
If a and b are sentences then a Ù b is a sentence
If a and b are sentences then a Ú b is a sentence
If a and b are sentences then a Þ b is a sentence
If a and b are sentences then a Û b is a sentence
And p.s. there are no other sentences!



Propositional Logical Vocab
Literal
§ Atomic sentence: True, False, Symbol, ¬Symbol

Clause
§ Disjunction of literals: 𝐴 ∨ 𝐵	 ∨ 	¬𝐶

Definite clause
§ Disjunction of literals, exactly one is positive
§¬𝐴 ∨ 𝐵	 ∨ 	¬𝐶

Horn clause
§ Disjunction of literals, at most one is positive
§ All definite clauses are Horn clauses

Vocab Alert!



𝛂 ∨ 𝛃  is inclusive or, not exclusive

Notes on Operators



Truth Tables
𝛂 ∨ 𝛃  is inclusive or, not exclusive

𝛂 𝛃 𝛂 Ù 𝛃
F F F

F T F

T F F

T T T

𝛂 𝛃 𝛂 Ú 𝛃 
F F F

F T T

T F T

T T T



𝛂 ∨ 𝛃  is inclusive or, not exclusive

𝛂 ⇒ 𝛃  is equivalent to  ¬𝛂 ∨ 𝛃
§ Says who?

Notes on Operators



Truth Tables
𝛂 ⇒ 𝛃  is equivalent to  ¬𝛂 ∨ 𝛃

𝛂 𝛃 𝛂 ⇒ 𝛃 ¬𝛂 ¬𝛂 ∨ 𝛃
F F T T T

F T T T T

T F F F F

T T T F T



𝛂 ∨ 𝛃  is inclusive or, not exclusive

𝛂 ⇒ 𝛃  is equivalent to  ¬𝛂 ∨ 𝛃
§ Says who?

𝛂 ⇔ 𝛃 is equivalent to (𝛂 ⇒ 𝛃) ∧ (𝛃 ⇒ 𝛂)
§ Prove it!

Notes on Operators



Truth Tables
𝛂 ⇔ 𝛃 is equivalent to (𝛂 ⇒ 𝛃) ∧ (𝛃 ⇒ 𝛂)

𝛂 𝛃 𝛂 ⇔ 𝛃 𝛂 ⇒ 𝛃 𝛃 ⇒ 𝛂 (𝛂⇒𝛃) ∧ (𝛃⇒𝛂)

F F T T T T

F T F T F F

T F F F T F

T T T T T T

Equivalence: it’s true in all models. Expressed as a logical sentence:

(𝛂 ⇔ 𝛃) ⇔ [(𝛂 ⇒ 𝛃) ∧ (𝛃 ⇒ 𝛂)]



Poll 1
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true,
what do we know about 𝐴 ∨ 𝐶?

i.  𝐴 ∨ 𝐶 is guaranteed to be true
ii.  𝐴 ∨ 𝐶 is guaranteed to be false
iii.  We don’t have enough information to say anything 

definitive about 𝐴 ∨ 𝐶



Poll 1
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true, what do we know about 𝐴 ∨ 𝐶?

𝐴 𝐵 𝐶 𝐴 ∨ 𝐵 ¬𝐵 ∨ 𝐶 𝐴 ∨ 𝐶 

false false false false true false

false false true false true true

false true false true false false

false true true true true true

true false false true true true

true false true true true true

true true false true false true

true true true true true true



Poll 1
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true, what do we know about 𝐴 ∨ 𝐶?

𝐴 𝐵 𝐶 𝐴 ∨ 𝐵 ¬𝐵 ∨ 𝐶 𝐴 ∨ 𝐶 

false false false false true false

false false true false true true

false true false true false false

false true true true true true

true false false true true true

true false true true true true

true true false true false true

true true true true true true



Poll 1
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true,
what do we know about 𝐴 ∨ 𝐶?

i.  𝐴 ∨ 𝐶 is guaranteed to be true
ii.  𝐴 ∨ 𝐶 is guaranteed to be false
iii.  We don’t have enough information to say anything 

definitive about 𝐴 ∨ 𝐶



Poll 2
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true,
what do we know about 𝐴?

i.  𝐴 is guaranteed to be true
ii.  𝐴 is guaranteed to be false
iii.  We don’t have enough information to say anything 

definitive about 𝐴



Poll 2
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true, what do we know about 𝐴?

𝐴 𝐵 𝐶 𝐴 ∨ 𝐵 ¬𝐵 ∨ 𝐶 𝐴 ∨ 𝐶 

false false false false true false

false false true false true true

false true false true false false

false true true true true true

true false false true true true

true false true true true true

true true false true false true

true true true true true true



Poll 2
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true,
what do we know about 𝐴?

i.  𝐴 is guaranteed to be true
ii.  𝐴 is guaranteed to be false
iii.  We don’t have enough information to say anything 

definitive about 𝐴



Logic Representation of World Models 

§ Knowledge Base of things we know to be true (logical sentences): 
  P Ú (¬Q Ù R);        X1 Û (Raining Þ Sunny)

§ Possible world model (assignment of variables to values): 
  {P=true, Q=true, R=false, S=true} or 1101

§ Semantics: a Ù b is true in a world iff is a true and b is true (etc.)



Propositional Logic

function PL-TRUE?(a,model) returns true or false
    if a is a symbol then return Lookup(a, model)
    if Op(a) = ¬ then return not(PL-TRUE?(Arg1(a),model))
    if Op(a) = Ù then return and(PL-TRUE?(Arg1(a),model), 
                                                          PL-TRUE?(Arg2(a),model))
    etc.

(Sometimes called “recursion over syntax”)

Check if sentence is true in given model
In other words, does the model satisfy the sentence?



Warm-up:
What is the relationship between number of constraints and number of 
possible solutions?

In other words, as the number of the constraints increases,
does the number of possible solutions:
A) Increase
B) Decrease
C) Stay the same

Where is the knowledge in our CSPs?



Question
What is the relationship between the size of the knowledge base and 
number of satisfiable models?

In other words, as the number of the knowledge base rules increases,
does the number of satisfiable models:
A) Increase
B) Decrease
C) Stay the same



Sentences as Constraints
Adding a sentence to our knowledge base constrains the
number of possible models:

KB: Nothing

P Q R

false false false

false false true

false true false

false true true

true false false

true false true

true true false

true true true

Possible
Models



Sentences as Constraints
Adding a sentence to our knowledge base constrains the
number of possible models:

KB: Nothing
KB: [(P ∧ ¬Q) ∨ (Q ∧ ¬P)] ⇒ R

P Q R

false false false

false false true

false true false

false true true

true false false

true false true

true true false

true true true

Possible
Models



Sentences as Constraints
Adding a sentence to our knowledge base constrains the
number of possible models:

KB: Nothing
KB: [(P ∧ ¬Q) ∨ (Q ∧ ¬P)] ⇒ R
KB: R, [(P ∧ ¬Q) ∨ (Q ∧ ¬P)] ⇒ R

P Q R

false false false

false false true

false true false

false true true

true false false

true false true

true true false

true true true

Possible
Models



Sherlock Entailment
“When you have eliminated the impossible, whatever remains, 
however improbable, must be the truth” – Sherlock Holmes via 
Sir Arthur Conan Doyle
(Not quite)

§ Knowledge base and inference 
allow us to remove impossible 
models, helping us to see what is 
true in all of the remaining 
models



Wumpus World
Logical Reasoning as a CSP

§ Bij = breeze felt

§ Sij = stench smelt

§ Pij = pit here

§ Wij = wumpus here

§ G = gold

http://thiagodnf.github.io/wumpus-world-simulator/

http://thiagodnf.github.io/wumpus-world-simulator/


Wumpus World
Possible Models

§ P1,2 P2,2 P3,1 

§ Knowledge base

§ Breeze ⇒ Adjacent Pit
§ Nothing in [1,1]
§ Breeze in [2,1]



Entailment
Entailment: a |= b (“a entails b” or “b follows from a”) iff in every world 
where a is true, b is also true
§ I.e., the  a-worlds are a subset of the b-worlds [models(a) Í models(b)]

Usually, we want to know whether KB |= query
§ models(KB) Í models(query)
§ In other words
§ KB removes all impossible models (any model where KB is false)
§ If query is true in all of these remaining models, we conclude that query must be true

Entailment and implication are very much related
§ However, entailment relates two sentences, while an implication is itself a sentence 

(usually derived via inference to show entailment)



Wumpus World
Possible Models

§ P1,2 P2,2 P3,1 

§ Knowledge base

§ Breeze ⇒ Pit Adjacent
§ Pit ⇒ Breeze in all Adjacent
§ Nothing in [1,1]
§ Breeze in [2,1]

Entailment: KB |= 𝛼
“KB entails 𝛼” iff in every world 
where KB is true, 𝛼 is also true



Wumpus World
Possible Models

§ P1,2 P2,2 P3,1 

§ Knowledge base

§ Breeze ⇒ Adjacent Pit
§ Pit ⇒ Breeze in all Adjacent
§ Nothing in [1,1]
§ Breeze in [2,1]

§ Query 𝛼!:

§ No pit in [1,2]

Entailment: KB |= 𝛼
“KB entails 𝛼” iff in every world 
where KB is true, 𝛼 is also true



Wumpus World
Possible Models

§ P1,2 P2,2 P3,1 

§ Knowledge base

§ Breeze ⇒ Adjacent Pit
§ Pit ⇒ Breeze in all Adjacent
§ Nothing in [1,1]
§ Breeze in [2,1]

§ Query 𝛼":

§ No pit in [2,2]

Entailment: KB |= 𝛼
“KB entails 𝛼” iff in every world 
where KB is true, 𝛼 is also true



Wumpus World
Possible Models

§ P1,2 P2,2 P3,1 

§ Knowledge base

§ Breeze ⇒ Adjacent Pit
§ Pit ⇒ Breeze in all Adjacent
§ Nothing in [1,1]
§ Breeze in [2,1]

§ Query 𝛼":

§ No pit in [2,2] – UNSURE!!

Entailment: KB |= 𝛼
“KB entails 𝛼” iff in every world 
where KB is true, 𝛼 is also true



Propositional Logic Models

A 0 0 0 0 1 1 1 1
B 0 0 1 1 0 0 1 1
C 0 1 0 1 0 1 0 1

All Possible Models

Model Symbols



Poll 3
Does the KB entail query C?

A 0 0 0 0 1 1 1 1
B 0 0 1 1 0 0 1 1
C 0 1 0 1 0 1 0 1

A 0 0 0 0 1 1 1 1
BÞC 1 1 0 1 1 1 0 1

AÞBÚC 1 1 1 1 0 1 1 1

C 0 1 0 1 0 1 0 1

All Possible Models

Model Symbols

Knowledge Base

Query

Entailment: a |= b
“a entails b” iff in every world 
where a is true, b is also true



Poll 3
Does the KB entail query C?
Yes!

A 0 0 0 0 1 1 1 1
B 0 0 1 1 0 0 1 1
C 0 1 0 1 0 1 0 1

A 0 0 0 0 1 1 1 1
BÞC 1 1 0 1 1 1 0 1

AÞBÚC 1 1 1 1 0 1 1 1
KB 0 0 0 0 0 1 0 1
C 0 1 0 1 0 1 0 1

All Possible Models

Model Symbols

Knowledge Base

Query

Entailment: a |= b
“a entails b” iff in every world 
where a is true, b is also true



Entailment
How do we implement a logical agent that proves entailment?

§ Logic language
§ Propositional logic
§ First order logic

§ Knowledge Base
§ Add known logical rules and facts

§ Inference algorithms
§ Model checking
§ Theorem proving



Simple Model Checking
function TT-ENTAILS?(KB, α) returns true or false



Simple Model Checking, contd.

Same recursion as backtracking P1=true P1=false

P2=true P2=false

Pn=falsePn=true
11

11
1…

1

00
00

…
0

KB?
α?



Simple Model Checking
function TT-ENTAILS?(KB, α) returns true or false
    return TT-CHECK-ALL(KB, α, symbols(KB) U symbols(α), {}) 

function TT-CHECK-ALL(KB, α, symbols, model) returns true or false 
    if empty?(symbols) then 
            if PL-TRUE?(KB, model) then return PL-TRUE?(α, model) 
            else return true
    else
            P ← first(symbols)
            rest ← rest(symbols)
            return  and (TT-CHECK-ALL(KB, α, rest, model ∪ {P = true}) 
                         TT-CHECK-ALL(KB, α, rest, model ∪ {P = false})) 



Simple Model Checking, contd.

Same recursion as backtracking
O(2n) time, linear space
Can we do better?

P1=true P1=false

P2=true P2=false

Pn=falsePn=true
11

11
1…

1

00
00

…
0

KB?
α?



Inference: Proofs
A proof is a demonstration of entailment between a and b 
Method 1: model-checking
§ For every possible world, if a is true make sure that is b true too
§ OK for propositional logic (finitely many worlds); not easy for first-order logic

Method 2: theorem-proving
§ Search for a sequence of proof steps (applications of inference rules) leading from a to b 
§ E.g., from P Ù (P Þ Q), infer Q by Modus Ponens

Properties
§ Sound algorithm: everything it claims to prove is in fact entailed
§ Complete algorithm: every sentence that is entailed can be proved



Simple Theorem Proving: Forward Chaining
Forward chaining applies Modus Ponens to generate new facts:
§ Given X1 Ù X2 Ù … Xn  Þ Y and X1, X2, …, Xn 
§ Infer Y

Forward chaining keeps applying this rule, adding new facts, until 
nothing more can be added

Requires KB to contain only definite clauses: 
§ (Conjunction of symbols) Þ symbol; or
§ A single symbol (note that X is equivalent to True  Þ X)



Forward Chaining Algorithm
function PL-FC-ENTAILS?(KB, q) returns true or false

    

P Þ Q
L Ù M Þ P
B Ù L Þ M
A Ù P Þ L
A Ù B Þ L
A
B 

CLAUSES



Forward Chaining Algorithm
function PL-FC-ENTAILS?(KB, q) returns true or false
    count ← a table, where count[c] is the number of symbols in c’s premise
    inferred ← a table, where inferred[s] is initially false for all s 
    agenda ← a queue of symbols, initially symbols known to be true in KB 

P Þ Q
L Ù M Þ P
B Ù L Þ M
A Ù P Þ L
A Ù B Þ L
A
B 

1
2
2
2
2
0
0 

CLAUSES AGENDACOUNT
A  false
B  false
L   false
M false
P  false
Q  false
 

INFERRED



Q

P

M

L

BA

Forward Chaining Example: Proving Q

P Þ Q
L Ù M Þ P
B Ù L Þ M
A Ù P Þ L
A Ù B Þ L
A
B 

1
2
2
2
2
0
0 

A  false
B  false
L   false
M false
P  false
Q  false
 

CLAUSES

AGENDA
A   B

INFERREDCOUNT

Lx   

xxxx  true

// 1

// 1

x   

xxxx  true

// 1

// 0

x   

xxxx  true
// 1

// 0

Mx   

xxxx  true

// 0

Px   

xxxx  true

// 0

// 0

L Qx   x   

xxxx  true



Forward Chaining Algorithm
function PL-FC-ENTAILS?(KB, q) returns true or false
    count ← a table, where count[c] is the number of symbols in c’s premise
    inferred ← a table, where inferred[s] is initially false for all s 
    agenda ← a queue of symbols, initially symbols known to be true in KB 

    while agenda is not empty do 
            p ← Pop(agenda)
            if p = q then return true 
            if inferred[p] = false then 
                    inferred[p]←true
                    for each clause c in KB where p is in c.premise do 
                            decrement count[c] 
                            if count[c] = 0 then add c.conclusion to agenda 
    return false



Properties of forward chaining
Theorem: FC is sound and complete for definite-clause KBs
Soundness: follows from soundness of Modus Ponens (easy to check)
Completeness proof:
 1. FC reaches a fixed point where no new atomic sentences are derived 
 2. Consider the final inferred table as a model m, assigning true/false to symbols 
 3. Every clause in the original KB is true for m
  Proof: Suppose a clause a1Ù... Ùak Þ b is false for m 
  Then a1Ù... Ùak is true in m and b is false for m 
  Therefore the algorithm has not reached a fixed point! 
 4. Hence m is a model of KB
 5. If KB |= q, q is true in every model of KB, including m

A  false
B  false
L   false
M false
P  false
Q  false

xxxx  true

xxxx  true

xxxx  true
xxxx  true

xxxx  true
xxxx  true



Does forward chaining work on this example?
A ⇒ B
¬A ⇒ B



Inference Rules 
Modus Ponens

!⇒#,	 !
#

Unit Resolution
&∨(,	 ¬(∨*

&∨*

General Resolution
&&∨⋯∨&'∨(,	 ¬(∨*&∨⋯∨*(

&&∨⋯∨&'∨*&∨⋯∨*(

Notation Alert!



Resolution
Algorithm Overview
function PL-RESOLUTION?(KB, a) returns true or false
    We want to prove that KB entails a
    In other words, we want to prove that we cannot satisfy (KB and not a)

1. Start with a set of CNF clauses, including the KB as well as ¬a
2. Keep resolving pairs of clauses until

A. You resolve the empty clause
 Contradiction found!
 KB ⋀¬𝛼 cannot be satisfied
 Return true, KB entails a
B. No new clauses added
 Return false, KB does not entail a



Resolution
Example trying to prove ¬𝑃!,"

¬𝑃!,# ∨ 𝐵#,# ¬𝐵#,# ∨ 𝑃#,! ∨ 𝑃!,# ¬𝑃#,! ∨ 𝐵#,# ¬𝐵#,# ¬¬𝑃#,!

Knowledge Base

General Resolution
(!∨⋯∨("∨*,	 ¬*∨,!∨⋯∨,#

(!∨⋯∨("∨,!∨⋯∨,#



Resolution
Example trying to prove ¬𝑃!,"

¬𝑃!,# ∨ 𝐵#,# ¬𝐵#,# ∨ 𝑃#,! ∨ 𝑃!,# ¬𝑃#,! ∨ 𝐵#,# ¬𝐵#,# 𝑃#,!

Knowledge Base

General Resolution
(!∨⋯∨("∨*,	 ¬*∨,!∨⋯∨,#

(!∨⋯∨("∨,!∨⋯∨,#

¬𝐵#,# ∨ 𝑃#,! ∨ 𝐵#,# 𝑃#,! ∨ 𝑃!,# ∨ ¬𝑃!,# ¬𝐵#,# ∨ 𝑃!,# ∨ 𝐵#,# 𝑃#,! ∨ 𝑃!,# ∨ ¬𝑃#,! ¬𝑃!,# ¬𝑃#,!



Resolution
function PL-RESOLUTION?(KB, a) returns true or false
    clauses ← the set of clauses in the CNF representation of KB ⋀¬𝛼
    new ←	{ }
    loop do
        for each pair of clauses 𝐶! , 𝐶"  in clauses do

            resolvents ← PL-RESOLVE(𝐶! , 𝐶")
            if resolvents contains the empty clause then
                return true
            new ← new ∪ resolvants
        if new ⊆ clauses then
            return false
        clauses ← clauses ∪ new



Properties
Forward Chaining is:
§ Sound and complete for definite-clause KBs
§ Complexity: linear time 

Resolution is:
§ Sound and complete for any PL KBs!
§ Complexity: exponential time L



Poll 4
The regions below visually enclose the set of models that satisfy the 
respective sentence 𝛾 or 𝛿. For which of the following diagrams is the 
sentence 𝛾 Ù 𝛿 satisfiable? Select all that apply.

γ δ γ δ δγ

γ

δ

δ

γ

A) B) C)

D) E)



Poll 5
The regions below visually enclose the set of models that satisfy the 
respective sentence 𝛾 or 𝛿. For which of the following diagrams does 
𝛾 entail 𝛿? Select all that apply.

γ δ γ δ δγ

γ

δ

δ

γ

A) B) C)

D) E)



Satisfiability and Entailment
A sentence is satisfiable if it is true in at least one world (e.g., CSPs!)
Suppose we have a hyper-efficient SAT solver; how can we use it to test 
entailment?
§ Suppose  a |= b 
§ Then  a Þ b is true in all worlds
§ Hence ¬(a Þ b) is false in all worlds
§ Hence a Ù ¬b is false in all worlds, i.e., unsatisfiable

So, add the negated conclusion to what you know, test for 
(un)satisfiability; also known as reductio ad absurdum

Efficient SAT solvers operate on conjunctive normal form



Satisfiability and Entailment

http://thiagodnf.github.io/wumpus-world-simulator/

http://thiagodnf.github.io/wumpus-world-simulator/


Conjunctive Normal Form (CNF)

Every sentence can be expressed as a conjunction of clauses
Each clause is a disjunction of literals
Each literal is a symbol or a negated symbol
Conversion to CNF by a sequence of standard transformations:

§ At_1,1_0 Þ (Wall_0,1 Û Blocked_W_0)

§ At_1,1_0 Þ ((Wall_0,1 Þ Blocked_W_0) Ù (Blocked_W_0 ÞWall_0,1)) 

§ ¬At_1,1_0 v ((¬Wall_0,1 v Blocked_W_0) Ù (¬Blocked_W_0 v Wall_0,1)) 

§ (¬At_1,1_0  v  ¬Wall_0,1   v   Blocked_W_0) Ù (¬At_1,1_0   v  ¬Blocked_W_0   v  Wall_0,1)

Replace biconditional by two implications

Replace a Þ b  by ¬a v b 

Distribute v over Ù 



Efficient SAT solvers
DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern solvers
Essentially a backtracking search over models with some extras:
§ Early termination: stop if 
§ all clauses are satisfied; e.g., (A Ú B) Ù (A Ú ¬C) is satisfied by {A=true}
§ any clause is falsified; e.g., (A Ú B) Ù (A Ú ¬C) is falsified by {A=false, B=false}

§ Pure literals: if all occurrences of a symbol in as-yet-unsatisfied clauses have the 
same sign, then give the symbol that value
§ E.g., A is pure and positive in (A Ú B) Ù (A Ú ¬C) Ù (C Ú ¬B) so set it to true

§ Unit clauses: if a clause is left with a single literal, set symbol to satisfy clause
§ E.g., if A=false, (A Ú B) Ù (A Ú ¬C) becomes (false Ú B) Ù (false Ú ¬C), i.e. (B) Ù (¬C)
§ Satisfying the unit clauses often leads to further propagation, new unit clauses, 

etc.



DPLL algorithm
function DPLL(clauses, symbols, model) returns true or false 
    if every clause in clauses is true in model then return true
    if some clause in clauses is false in model then return false
    
    P, value ←FIND-PURE-SYMBOL(symbols, clauses, model)
    if P is non-null then return DPLL(clauses, symbols–P, model∪{P=value}) 
    
    P, value ←FIND-UNIT-CLAUSE(clauses, model)
    if P is non-null then return DPLL(clauses, symbols–P, model∪{P=value}) 
    
    P ← First(symbols)
    rest ← Rest(symbols)

    return or(DPLL(clauses, rest, model∪{P=true}),
                      DPLL(clauses, rest, model∪{P=false}))



Planning as Satisfiability
Given a hyper-efficient SAT solver, can we use it to make plans?
Yes, for fully observable, deterministic case: planning problem is 
solvable iff there is some satisfying assignment for actions etc.





Planning as Satisfiability
Given a hyper-efficient SAT solver, can we use it to make plans?
Yes, for fully observable, deterministic case: planning problem is 
solvable iff there is some satisfying assignment for actions etc.

For T = 1 to infinity, set up the KB as follows and run SAT solver:
§ Initial state, domain constraints
§ Transition model sentences up to time T
§ Goal is true at time T
§ Precondition axioms: At_1,1_0 Ù N_0  Þ  ¬Wall_1,2 etc.
§ Action exclusion axioms: ¬(N_0 Ù W_0) Ù ¬(N_0 Ù S_0) Ù .. etc.



Initial State
The agent may know its initial location:
§ At_1,1_0

Or, it may not:
§ At_1,1_0 v At_1,2_0 v At_1,3_0 v … v At_3,3_0

We also need a domain constraint – cannot be in two places at once!
§ ¬(At_1,1_0 Ù At_1,2_0) Ù ¬(At_1,1_0 Ù At_1,3_0) Ù …
§ ¬(At_1,1_1 Ù At_1,2_1) Ù ¬(At_1,1_1 Ù At_1,3_1) Ù …
§ …



Fluents and Effect Axioms
A fluent is a state variable that changes over time

How does each state variable or fluent at each time gets its value?

Fluents for PL Pacman are Pacman_x,y_t , e.g., Pacman _3,3_17



Fluents and Successor-state Axioms
A fluent is a state variable that changes over time

How does each state variable or fluent at each time gets its value?

Fluents for PL Pacman are Pacman_x,y_t , e.g., Pacman _3,3_17

A state variable gets its value according to a successor-state axiom
§ Xt Û [Xt-1 Ù ¬(some actiont-1 made it false)] v

              [¬Xt-1 Ù (some actiont-1 made it true)]



Planning as Satisfiability
For T = 1 to infinity, set up the KB as follows and run SAT solver:
§ Initial state, domain constraints
§ Transition model sentences up to time T
§ Goal is true at time T

Why? 
If I can find a satisfying set of variables that meet the constraints, then I 
have also found a plan as the set of action variables. 



EXTRA SLIDES



Logical Agent Vocab
Model
§ Complete assignment of symbols to True/False

Sentence
§ Logical statement
§ Composition of logic symbols and operators

KB
§ Collection of sentences representing facts and rules 

we know about the world

Query
§ Sentence we want to know if it is provably True, 

provably False, or unsure.



Entailment
Does the knowledge base entail my query?
§ Query 1: ¬	𝑃[1,2]
§ Query 2: ¬	𝑃[2,2]



Provably True, Provably False, or Unsure

http://thiagodnf.github.io/wumpus-world-simulator/

http://thiagodnf.github.io/wumpus-world-simulator/


Logical Agent Vocab
Entailment
§ Input: sentence1, sentence2
§ Each model that satisfies sentence1 must also satisfy sentence2
§ "If I know 1 holds, then I know 2 holds"
§ (ASK), TT-ENTAILS, FC-ENTAILS, RESOLUTION-ENTAILS 

Satisfy
§ Input: model, sentence
§ Is this sentence true in this model?
§ Does this model satisfy this sentence
§ "Does this particular state of the world work?’
§ PL-TRUE



Logical Agent Vocab
Satisfiable
§ Input: sentence
§ Can find at least one model that satisfies this sentence

§ (We often want to know what that model is)
§ "Is it possible to make this sentence true?"
§ DPLL

Valid
§ Input: sentence
§ sentence is true in all possible models


