15-281 Artificial Intelligence HW10

INSTRUCTIONS

e Due: Monday, April 22, 2024 at 10:00 PM EDT. Remember that you may use up to 2 slip days for the
written homework making the last day to submit Wednesday, April 24, 2024 at 10:00 PM EDT.

e Format: Write your answers in the yoursolution.tex file and compile a pdf (preferred) or you can type
directly on the blank pdf. Make sure that your answers are within the dedicated regions for each question/part.
If you do not follow this format, we may deduct points. Handwritten solutions are not acceptable and may
lead to lost points.

e How to submit: Submit a pdf with your answers on Gradescope. Log in and click on our class 15-281, click
on the HW10 assignment, and upload your pdf containing your answers. Misaligned submissions will have
at least 5% taken off their score.

e Policy: See the course website for homework policies and academic integrity.
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Q1. [8 pts] Bayes Nets Sampling

Consider the following Bayes Net and corresponding probability tables.
R P(R)

+r 0.4
0.6

-

E R PE|R) R P(W|R)
te 41 0.3 T 0.9
- +r 0.7 41 0.1
+e -1 0.6 T 0.2
-e -r 0.4 T 0.8

M E W PM|EW)

+m +e +w 0.1

-m te 4w 0.9 F W PF|W)

+m +e -w 0.45 I +w 0.15

-m  4e  -w 0.55 £ 4w 0.85

+m - 4w 0.35 N — 0.75

-m - +w 0.65 N 0.25

+m -e -W 0.9

-m -e -W 0.1

Consider the case where we are sampling to approximate the query P(R | +f,+m).

(a) [6 pts] Fill in the following table with the probabilities of drawing each respective sample given that we are
using each of the following sampling techniques.

Method < +r,+e, —w,+m, +f > < +r,—e, 4w, —m,+f >

Prior sampling

Rejection sampling

Likelihood weighting

(b) [2 pts]
”Sampling is important.” — Gibby Gibson, iCarly, S2 Ep. 81

We are going to use Gibbs sampling to estimate the probability of getting the sample < +r, +e, —w, +m, +f >.
We will start from the sample < —r, —e, —w, +m, +f > and resample F first then R. What is the probability
of drawing sample < +r, +e, —w, +m, +f >7
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Q2. [19 pts] More Sampling

Consider the following Bayes Net and corresponding probability tables.

P(A) P(B|A) PC|B) PO
—a | 3/4 —a | —h [ 2/3 b | —e| 1/4 —¢ | —d | 1/8
+a | 1/4 —a | +b | 1/3 —b | +c | 3/4 —¢ | +d | 7/8
+a | —b | 4/5 +b | —e | 1/2 +e | —d | 56
+a | +b | 1/5 +b | +c | 1/2 +e | +d | 1/6

(—a,+b,+c,—d) | (—a,—b,+c, —d)
(—a,—b,—c,+d) | (—a,—b,+c, —d)
(—a,+b,+c,+d) | (—a,—b, —c, —d)
(+a,+b,—c,+d) | (+a,+b, +c, —d)

(a) [3 pts] You are given the following samples:

(i) [1 pt] Assume that these samples came from performing prior sampling. Estimate P(—c) using the samples.

Answer:

(ii) [2 pts] Now we will sample P(—c | —a, —d) using rejection sampling. List out the samples that would not
be used when doing rejection sampling for this task, and write the estimate for P(—c | —a, —d).

Rejected Samples: Estimate:

(b) [4 pts] We will now use likelihood weighted sampling to estimate P(—c | —a, —d).
following samples.

Give the weights for the

(i) [1 pt] (—a,+b,+c,—d)

Answer:

(ii) [1 pt] (=a,+b,—¢,=d)

Answer:

(iii) [1 pt] (=a, =b, +¢,—d)

Answer:




(iv) [1 pt] (—a,—b, —c,—d)

Answer:

(c) [1 pt] Using the samples, estimate P(—c | —a, —d). Round your answer to 4 decimal places.

Answer:

(d) [11 pts] Consider the following Bayes net with binary variables A, B.

A B | P(B|A)
A | P(A) || +a +b .99
+a .01 +a —b .01

—a | .99 —a +b | .0001
—a —b 9999
(i) [2 pts] Use inference to find the actual probability distribution P(A | +b).
P(+4al+b): P(-a|+b):

(ii) [2 pts] We are trying to estimate P(A | +b) using likelihood weighted sampling. What is the first sample
most likely to be, and what is the corresponding weight of the sample?

Sample: Weight:

(iii) [3 pts] Suppose we only draw 5 samples, how many of them will we expect to be (—a,+b)? (Round to
the nearest integer). What distribution P(A | +b) will be estimated?

Number (—a, +b): P(+a|+b): P(-a]+b):
(iv) [3 pts] How about 1000 samples?
Number (—a,+b): P(+4al+Db): P(-a|+Db):

(v) [1 pt] In some Bayes net A - B — C' — D — E, will likelihood weighted sampling provide more accurate
distributions for P(A | E) or P(E | A) with a relatively low sample count? Explain why (you may use

previous parts as an example).
Hint: what happens if the evidence can be reached only by unlikely values of upstream variables?

Answer:
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Q3. [30 pts] Dynamic Bayes Net and Hidden Markov Model

A professor wants to know if students are getting enough sleep. Each day, the professor observes whether the students
sleep in class, and whether they have red eyes. Let S; be the random variable of the student having enough sleep,
R; be the random variable for the student having red eyes, and C; be the random variable of the student sleeping in
class on day t. The professor has the following theory:

e The prior probability of getting enough sleep at time t, with no observations, is 0.6

e The probability of getting enough sleep on night ¢ is 0.9 given that the student got enough sleep the previous
night, and 0.2 if not

e The probability of having red eyes is 0.1 if the student got enough sleep, and 0.7 if not

e The probability of sleeping in class is 0.2 if the student got enough sleep, and 0.4 if not

Sevr | St | P(Se+1|Se) || Re | St | P(Re|St) || Ce | St | P(C:|Sy) |
So | P(So) +8¢,, | +5¢ 0.9 +r | +s 0.1 +c | +s 0.2
48 0.6 —8¢,, | +5¢ 0.1 —r | +s 0.9 —c | +s 0.8
| =3 0.4 +58¢,, | —5t 0.2 +r | —s 0.7 +e | —s | 0.4
—Sty | —S8t 0.8 —r | —s 0.3 —c| —s8 0.6

Using the DBN above and these evidence values

e [—r1,—c1] = not red eyes, not sleeping in class
o [+7r3, —co] = red eyes, not sleeping in class

o [+r3,+c3] = red eyes, sleeping in class

we want to compute P(S; | 71.¢,¢1.¢) for each of t = 1,2,3 as well as perform smoothing to get P(Ss | r1.3,¢1.3)-

In order to do so, we will compute intermediate values which will correspond to the predict and update steps of our
forward algorithm as well as finding the value of @ (the normalization constant) in each case.

Note: Please round your answers to 3 decimal places at the end of each calculation. That is, if you
need to compute multiple intermediate values to get your answer, do not round until you get your
final answer. Please also note we will only be able to award partial credit if work is shown.



Figure copied from previous page for convenience:

Siy1 | St | P(Se+1|Se) || Re | St | P(Re | St) || Ce | S | P(C: | St) \
So | P(So) || +8ts | +5¢ 0.9 +r | +s 0.1 +ec | +s 0.2
+5 0.6 —8¢,, | +5¢ 0.1 —r | +s 0.9 —c | +s 0.8
| —s | 04 || 48, | —s¢ 0.2 4+r | —s 0.7 +c| —-s| 04
—St, | —S8t 0.8 —r | —s 0.3 —c | —s 0.6

Round all numerical answers to 3 decimal places. Please also note we will only be able to award
partial credit if work is shown. Evidence values: [—ry, —c1], [+7r2, —ca], [+73, +c3]

(a) [7 pts] State Estimation: ¢t =1
(i) [3 pts] Predict:

Use the Bayes’ Net’s CPTs to write an equivalent expression for P(+s1) :

P(—I—Sl) = P(_Sl) =

(i) [3 pts] Update:

Use the Bayes’ Net’s CPTs and « to find an equivalent expression for P(+s;| —r1,—c1) :

When solving for probabilities, don’t leave a in your answer.
P(+s1|—r1,—1) = P(=s1| —r1,—c1) =

(iii) [1 pt] What was the value for a?

o =
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Figure copied from previous page for convenience:

St S: | P(St+1 | St) R, | S: | P(R:| 5%) C: | St | P(C: | S:)
So | P(So) || +8ty | +5¢ 0.9 +7 | +s 0.1 +c | +s 0.2
[ +s 0.6 —Sit,, | +5¢ 0.1 —r | +s 0.9 =c:| +8:] 0.8
—5 0.4 +5¢, | —5t 0.2 +r | —s 0.7 +c | —s 0.4
—St, | —St 0.8 -r | —8 0.3 —Cc | —s 0.6

Round all numerical answers to 3 decimal places. Please also note we will only be able to award
partial credit if work is shown. Evidence values: [—r1, —c1], [+7r2, —ca], [+73, +c3]

(b) [9 pts] State Estimation: ¢ = 2
(i) [4 pts] Predict:

P(+sy | =11, —c1) = P(=sy | —r1,—c1) =

(i) [4 pts] Update:

Use the Bayes’ Net’s CPTs, previous probabilities, and «a to find an equivalent expression
fOI‘ P(+82 ‘ 7’1:2,61:2) :

When solving for probabilities, don’t leave a in your answer.

P(+sg | r1:2,€1:2) = P(—sg | r1:2,c1:2) =

(iii) [1 pt] What was the value for a?

o =




Figure copied from previous page for convenience:

_ Set1 | St | P(Sex1|St) || Re | St | P(Re|Se) || Ce | St | P(C: | Se)
So | P(So) || +8ts | +5¢ 0.9 +r | +s 0.1 +ec | +s8 0.2
+5 0.6 —8¢,, | +58¢ 0.1 —r | +s 0.9 —c | +s8 0.8

| —s | 04 || 48, | —s¢ 0.2 4+r | —s 0.7 +c| —-s| 04

—St, | —St 0.8 -r | —s 0.3 —c| —s8 0.6

Round all numerical answers to 3 decimal places. Please also note we will only be able to award
partial credit if work is shown. Evidence values: [—r1, —c1], [+7r2, —ca], [+73, +c3]

(c) [9 pts] State Estimation: ¢t = 3
(i) [4 pts] Predict:

P(+s3 | r1:2,c1:0) = P(—s3 | ri2,c1:2) =

(i) [4 pts] Update:

Use the Bayes’ Net’s CPTs, previous probabilities, and « to find an equivalent expression
for P<+83 ‘ 7”1;3,01;3) :

When solving for probabilities, don’t leave a in your answer.
P(4s3 | 71:3,c1:3) = P(—s3|ri3,c1:3) =

(iii) [1 pt] What was the value for a?

o =
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Figure copied from previous page for convenience:

Sig1 | St | P(Set1 | Se) || Re | St | P(Re | Sy) || Ce | Si | P(Ci | Se)
| So | P(So) || +8t4 | +5¢ 0.9 4r | +s 0.1 +c | +s 0.2
| +s 0.6 —St,, | +5¢ 0.1 —7r | +s 0.9 —c | +s 0.8
| —s| 04 || 48, | —s¢ 0.2 4+r | —s 0.7 +c|-s| 04
—S8ty | —S¢ 0.8 -r | —s 0.3 —c | —8 0.6

Round all numerical answers to 3 decimal places. Please also note we will only be able to award
partial credit if work is shown. Evidence values: [—ry, —c1], [+7r2, —ca], [+73, +c3]

(d) [5 pts] We can build upon the previous three parts and use smoothing to compute P(Ss | r1.3,¢1.3).

(i) [2 pts] Backward message: P(+73,+c3 | S2) =), P(+r3,+c3 | s3)P(s3 | S2)

P(+r3,+cs | +s2) = P(+r3,+c3 | —s2) =

(il) [2 ptS} Smoothing: P(SQ | 1.3, 01;3) = OZP(SQ ‘ 7’1;2,61;2)P(—|—T3, +c3 | SQ)
When solving for probabilities, don’t leave a in your answer.

P(+sg | r1:3,c1:3) = P(—sg | ri3,c1:3) =

(iii) [1 pt] What was the value for a?

o =
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Q4. [12 pts] Modified HMM Updated Equations

Consider the HMM graph structure shown below.

O COENC)

Recall the Forward algorithm is a two step iterative algorithm used to approximate the probability distribution
P(Xt | €1, .uny et)

The two steps of the algorithm are as follows:

1. Predict:
P(Xt | 61...2671) = Z P(Xt | xtfl)P(l'tfl | 61...t71)

Tt—1

2. Observe:
P(X;|e1 1) = Pley | Xo)P(Xy | er...e-1)
S 2op, Plec [ 2) Pz | e1.4-1)

For this problem we will consider modifying the forward algorithm as the HMM graph structure changes. Our goal
will continue to be to create an iterative algorithm which is able to compute the distribution of states, X; , given all
available evidence from time 0 to time ¢.

(a) [4 pts] Consider the graph below where new observed variables, Z;, are introduced and influence the evidence.

(i) [2 pts] What will the modified predict update be?
P(Xi | e t-1,21..0-1) =

(Xe | z1.0—1)P(ze—1 | €1, 0—1,21.4—1)

(X¢ | we—1)P(xy—1 | €1.4—1,21..4—1)

(Xt | 61...t—1,2’1...t—1)P($t—1 \ $t—1,2’1...t—1)
(X | ®¢—1)P(x1—1 | €1..4—1) (no change)

Tt—1

Tt—1

OOO0O0O
MMM
R Ra-la

Tt—1

Tt—1
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(ii) [2 pts] What will the modified observed update be?

P(Xt | 614..t721...t)
Pet| Xt,2¢) P(Xeler...t—1,21...6—-1)
Zwt,zt Petlxe,zt)P(aeler.. t—1,21...6—1)

Pes|X¢,ze)P(Xeler...t—1,21...6—1)
2, Pletlme,ze) Ploefer. t—1,21.4-1)

P(€t|Xt)P(Xt\€1...t—1)
Zzt P(et|ze,ze) P(xeler.. t—1,21...6—1)

Pet|X¢,ze) P(Xeler...e—1,21...6—1)
Zzt P(e¢|xe,ze)P(aeler.. .t—1,21...6—1)

P(es| Xe)P(Xeler...t—1)
2, Pletlm)Pailer. v 1)

o O O O O

(no change)

(b) [4 pts] Next, consider the graph below where the Z; variables are unobserved.

(i) [2 pts] What will the modified predict update be?

P(Xt | 61...t—1) =

O th_l P(Xt | Zl,..tfl)P(‘thl \ 61.“t71721.“t71)

O e, P(Xiz—1)P(wi-1 [ €1 4-1,21.4-1)

O >, PXiler 1,21 4-1)P(e—1 | 24-1,21.4-1)
O 2, P(X¢[2-1)P(ze-1 | €1..4-1) (no change)

(i) [2 pts] What will the modified observed update be?

P(Xt | 61...t) =
P(Xile1...t—1)P(z¢)P(es| X, 2¢)
Zzt P(It|51.,.t—1)P(€t\wmzt)P(zt)
P(Xiler. x-1) 32, P(ze)P(et| Xy 2¢)
P(It\el...t—l)ZZt P(et|zt,2e)P(2t)

P(Xt‘el.A.t—l)P(zt)P(et‘Xtyzt)
P(ziler...t—1)P(et|xe,z¢) P(z¢)

P(Xiler..1-1) 32, P(z)P(ed] Xv,2t)
e, Plaeler. i-1) 32,, Pletlwe,ze) P(zr)

o O O O O

Pey| X¢)P(Xiler. 1—
Zrt( Pl(ett|)rt)(P(ta‘7t\el_t__tl_)l) (HO Change)
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(c) [4 pts] Finally, consider a graph where the newly introduced variables are unobserved and influenced by the

evidence nodes.

(i) [2 pts] What will the modified predict update be?

P(Xt | 61...t—1) =

O Z:rt 1 P(Xt | 21,.,t,1)P($t71 ‘ 61,,,t,172’1mt71)

O Zxr 1 P(Xy | w—1)P(ze—1 | €1.4-1,21...6-1)

O >, PXiler 1,21 4-1)P(@1 | 24-1,21.4-1)
O X, P(X¢ | @—1)P(xi-1 | e1..4-1) (no change)

(i) [2 pts] What will the modified observed update be?

P(Xt | 61...t) =
Pet|X¢,2e) P(Xeler.. .e—1,21...6—1)
2., Pledze,ze) P(ziler. i—1,21..0-1)

Pet|X¢,ze ) P(Xeler..e—1,21...6—1)
2, Pletlme,ze) Ploefer. t—1,21.4—1)

Plet|X¢)P(Xiler...t—1)
D,z Pletlwe,ze ) Ploeler e—1,21. 0-1)

o O O O

P(€t|Xt)P(Xt\€ Lot— )
2y P(€t|1t)P(fﬂt1\€1...:—1) (no change)
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Q5. [31 pts] Particle Filtering

In this question, we will use a particle filter to track the state of a robot that is lost in the small map below:

As we walk through this problem, there are many values to compute, so you may want to download and print the
following worksheet and fill it in as you go.

NOTE: For your convenience, we’ve created a supplemental gradescope assignment to help you check
you work for the first couple answers of parts (a) - (g). Like other online homeworks, entering in the
correct answers will prompt a solution explanation. That being said, no credit is given for completing
this gradescope assignment (ignore the tiny point values that’s required to appease gradescope), so
please still put your answers in the writeup.

The robot’s state is represented by an integer 1 < X; < 10 corresponding to its location in the map at time t. We
will approximate our belief over this state with N = 8 particles.

You have no control over the robot’s actions. At each timestep, the robot either stays in place, or moves to any one
of its neighboring locations, all with equal probability. For example, if the robot starts in state X; = 7, it will more
to state X;4+1 = 6 with probability % or X; = 7 with probability % Similarly, if the robot starts in state X; = 2, the
next state X;41 can be any element of {1,2, 3,10}, and each occurs with probability %.

At each time step, a sensor on the robot gives a reading E; € {H,C,T, D} corresponding to the type of state the
robot is in. The possible types are:

e Hallway (H) for states bordered by two parallel walls (4,9).

e Corner (C) for states bordered by two orthogonal walls (3,5,8,10).
e Tee (T) for states bordered by one wall (2,6).

e Dead End (D) for states bordered by three walls (1,7)

The sensor is not very reliable: it reports the correct type with probability %, but gives erroneous readings the rest
of the time, with probability é for each of the three other possible readings.



(a) [4 pts] Fill in the sensor model below:

P(Sensor Reading | State Type)

Answer

Sensor Reading = H | State Type = H

Sensor Reading = C | State Type = H

Sensor Reading = T | State Type = H

Sensor Reading = D | State Type =

Sensor Reading = H | State Type =

Sensor Reading = C | State Type =

H
C
C
Sensor Reading = T | State Type = C
C
T

Sensor Reading = H | State Type =

Sensor Reading = C | State Type = T

Sensor Reading = T | State Type = T

Sensor Reading = D | State Type = T

Sensor Reading = H | State Type =

Sensor Reading = C | State Type =

Sensor Reading = T | State Type =

P(
P(
P(
P(
P(
P(
P(
P(Sensor Reading = D | State Type =
P(
P(
P(
P(
B D
B( D
P( D
B( D

Sensor Reading = D | State Type =

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

15
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(b) [4 pts] Suppose that we want to sample from a set of 4 events, {A, B,C, D}, which which occur with corre-

sponding probabilities P4, Pp, Po, Pp.

First, we form the set of cumulative weights, given by {0, P4, P4 + P, Pa + Pg + Pc,1}. (Note: Py + Pg +
Pc + Pp = 1). These weights partition the [0, 1) interval into bins, as shown below. We then draw a number
r uniformly at random from [0, 1) and pick A, B,C, or D based on which bin r lands in.

The process is illustrated in the diagram below. If r; uniformly chosen from [0,1) lands in the interval
[Pa, P4 + Pg], then the resulting sample would be B. Similarly, if ro lands in [P4 + Pg, P4 + Pp + Pc],
the sample would be C, and r3 landing in [P4 + Pp, P4 + P + Pc] would also be C.

r

A B C D

0 P.  Pu+Pg Pa+Pg+Pe 1
Note: Po+Pp+Pc+Pp =1

Now we will sample the starting positions for our particles at time ¢ = 0. For each particle p;, we have generated
a random number 7; sampled uniformly from [0, 1).

Your job is to use these numbers to sample a starting location for each particle. As a reminder, locations are
integers from the range [1,10], as shown in the map. You should assume that the locations go in ascending
order and that each location has equal probability. The random number generated for particle ¢, denoted
by r; is provided. Please fill in the locations of the eight particles.

T p; | Initial Location X
r1 =0.139 | p1
Tro = 0.416 D2
rg = 0.683 | p3
T4 = 0.825 P4
rs = 0.396 | ps
r¢ = 0.161 | pg
r7 = 0.554 | p7
rs = 0.013 Ps
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(c) [4 pts] Now we’ll perform a time update from ¢ = 0 to t = 1 using the transition model. Stated again, the
transition model is as follows: At each timestep, the robot either stays in place, or moves to any one of its
neighboring locations, all with equal probability.

You should again sample from the range [0, 1), where the bins are the possible locations sorted in ascending
numerical order. As an example, if Xy = 3, the next state X; can be one of {2,3,4}, each with equal
probability. Thus the [0,0.333) bin would be for X; = 2, the [0.333,0.667) bin would be for X; = 3, and the

[0.667,1) bin would be for X; = 4.

Fill in the bin partitioning for the update from particles starting in the Xy = 2 state in the first table below.
Note the first row is given an example (do not use in your answer) and you may not need to use

all of the rows provided.

bin

X1

[0,0.333)

2

For each particle, take the starting position you found in part (b), and perform the time update for that
particle. That is, sample the next position of each of particles.

T p; | Predicted Location X;
ry = 0.822 | py
T9 = 0.244 D2
rg = 0.686 | p3
T4 = 0.842 D4
rs = 0.113 | ps
Te = 0.314 Pe
ry = 0.177 | pr
rg = 0.406 | pg
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(d) [5 pts] Recall that a particle filter just keeps track of a list of particles, but at any given time, we can compute
a probability distribution from these particles.

Using the current newly updated set of particles (that you found in Part (c)), give the estimated probability
that the robot is in each location.

P(X1)

Jui

@OO\]@U!»PW[\D»—‘N

—
o

(e) [4 pts] The sensor reading at t = 1 is: E; = D. Using the sensor model you specified in Part (a), incorporate
the evidence by weighting the particles. Refer back to Part (c) to get the positions of your particles.

Particle p; | Weight w;
P1
D2
P3
Y2
Ps
Y4
pr
P8
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(f) [5 pts] After incorporating the evidence by weighting the particles, we can compute an updated probability
distribution from these particles.

Using the set of particles (Parts (c) and (d)), and the weights (Part (e)), give the estimated probability that
the robot is in each location given the evidence, P(X; | By = D). Hint: You will first want to calculate

P(X4,E; = D) and then normalize.

P(Xy,E1=D) | P(X; | E1 =D)

i

@OO\]CDO“%OJNJF—‘X

—
o

Use this space to show any other work for partial credit




20

(g) [4 pts] Finally, we’ll resample the particles. This reallocates resources to the most relevant parts of the state

space in the next time update step.
Use your P(X; | E1) from the previous part to sample eight new particles.

First fill in the bins to partition the [0, 1) interval to be sampled from in the first table. You may not need to

use all of the rows provided:

bin

X

Using the bins above, now fill in the location of the new particles according to the given samples:

T p; | Resampled Location X;
r = 0.803 P1
ro = 0.712 P2
rs = 0.626 P3
T4 = 0.140 P4
rs = 0.559 Ps
re = 0.979 | pg
T = 0.231 Y srd
rg = 0.847 | ps

(h) [1 pt] We said that the sensor provided a reading F; = D. What fraction of the particles ended up at a dead

end int =17

Answer:

This completes everything for the first time step, t = 0 — ¢t = 1.
repeating the time update, evidence incorporation by weighting, and resampling. We’'ll leave that to the

computers, though.

Of course, we would now continue by



