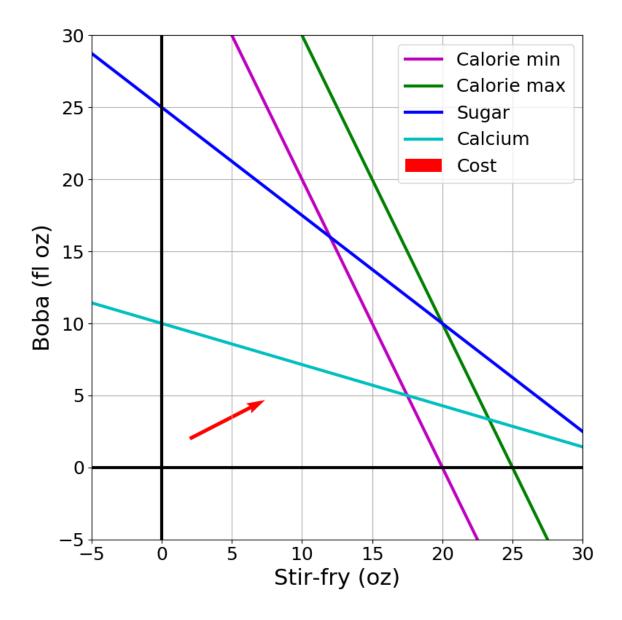
Warm-up: What to eat?


We are trying healthy by finding the optimal amount of food to purchase. We can choose the amount of stir-fry (ounce) and boba (fluid ounces).

Healthy Squad Goals

- $2000 \le \text{Calories} \le 2500$
- Sugar ≤ 100 g
- Calcium \geq 700 mg

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

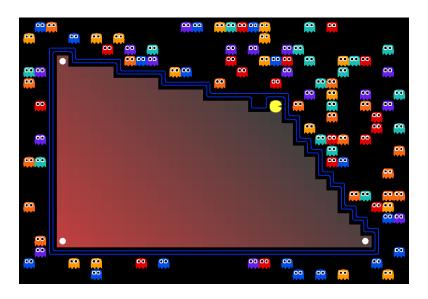
What is the cheapest way to stay "healthy" with this menu? How much stir-fry (ounce) and boba (fluid ounces) should we buy?

Announcements

Assignments:

- P1: Search & Games
 - Due Thu 2/6, 10 pm
- HW4 (written)
 - Due Tue 2/11, 10 pm
- P2: Optimization
 - Released later this week
 - Due Thu 2/20, 10 pm

Slip days


Announcements

Midterm 1 Exam

■ Mon 2/17, in class

Al: Representation and Problem Solving

Linear Programming

Instructors: Pat Virtue & Stephanie Rosenthal

Slide credits: CMU AI, http://ai.berkeley.edu

Warm-up: What to eat?

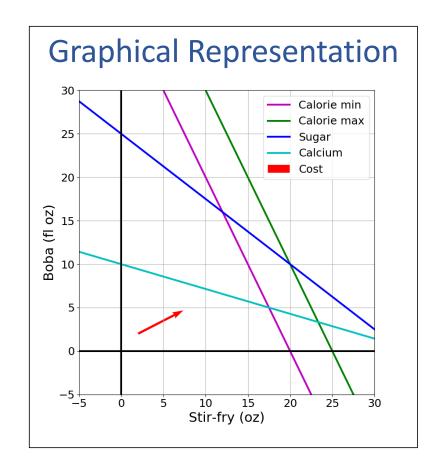
We are trying healthy by finding the optimal amount of food to purchase. We can choose the amount of stir-fry (ounce) and boba (fluid ounces).

Healthy Squad Goals

- $2000 \le \text{Calories} \le 2500$
- Sugar ≤ 100 g
- Calcium \geq 700 mg

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

What is the cheapest way to stay "healthy" with this menu? How much stir-fry (ounce) and boba (fluid ounces) should we buy?


Optimization

Problem Description

Optimization Representation

 $\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x}$

s.t. $Ax \leq b$

Warm-up: What to eat?

We are trying healthy by finding the optimal amount of food to purchase. We can choose the amount of stir-fry (ounce) and boba (fluid ounces).

Healthy Squad Goals

- $2000 \le \text{Calories} \le 2500$
- Sugar ≤ 100 g
- Calcium \geq 700 mg

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

What is the cheapest way to stay "healthy" with this menu? How much stir-fry (ounce) and boba (fluid ounces) should we buy?

Constraint Satisfaction Problems

Map coloring

Any x

s.t. **x** satisfies constraints

Constraint Satisfaction Problems

Map coloring

Any x

s.t. **x** satisfies constraints

What to eat?

We are trying healthy by finding the optimal amount of food to purchase. We can choose the amount of stir-fry (ounce) and boba (fluid ounces).

Healthy Squad Goals

- 2000 ≤ Calories ≤ 2500
- Sugar ≤ 100 g
- Calcium \geq 700 mg


Food	Cost	Calories	Sugar	Calcium
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

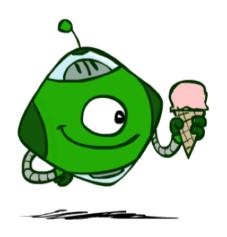
What is the cheapest way to stay "healthy" with this menu? How much stir-fry (ounce) and boba (fluid ounces) should we buy?

Diet Problem

Any x

s.t. **x** satisfies constraints

Healthy Squad Goals

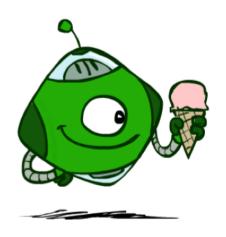

- $2000 \le \text{Calories} \le 2500$
- Sugar ≤ 100 g
- Calcium ≥ 700 mg

Food	Cost	Calories	Sugar	Calciu m
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

Diet Problem

 $\min_{\mathbf{x}} cost(\mathbf{x})$ Objective

s.t. **x** satisfies constraints


Healthy Squad Goals

- 2000 ≤ Calories ≤ 2500
- Sugar ≤ 100 g
- Calcium ≥ 700 mg

Food	Cost	Calories	Sugar	Calciu m
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

Diet Problem

```
\min_{\mathbf{x}} cost(\mathbf{x})
s.t. calories(\mathbf{x}) contained
sugar(\mathbf{x}) \leq limit
calcium(\mathbf{x}) \geq limit
```


Healthy Squad Goals

- $2000 \le \text{Calories} \le 2500$
- Sugar ≤ 100 g
- Calcium ≥ 700 mg

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

Diet Problem

$$\min_{x_1, x_2} 1 x_1 + 0.5 x_2$$
s.t.
$$100 x_1 + 50 x_2 \ge 2000$$

$$100 x_1 + 50 x_2 \le 2500$$

$$3 x_1 + 4 x_2 \le 100$$

$$20 x_1 + 70 x_2 \ge 700$$

Healthy Squad Goals

- $2000 \le \text{Calories} \le 2500$
- Sugar ≤ 100 g
- Calcium ≥ 700 mg

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

Diet Problem

$$\min_{\substack{x_1, \, x_2 \\ \text{s.t.}}} c_1 \, x_1 + c_2 \, x_2$$

$$a_{1,1} \, x_1 + a_{1,2} \, x_2 \ge b_1$$

$$a_{2,1} \, x_1 + a_{2,2} \, x_2 \le b_2$$

$$a_{3,1} \, x_1 + a_{3,2} \, x_2 \le b_3$$

$$a_{4,1} \, x_1 + a_{4,2} \, x_2 \ge b_4$$

$$c = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$$

Limit

$$A = \begin{bmatrix} 100 & 50 \\ 100 & 50 \\ 3 & 4 \\ 20 & 70 \end{bmatrix} \quad \boldsymbol{b} =$$

$$\boldsymbol{b} = \begin{bmatrix} 2000 \\ 2500 \\ 100 \\ 700 \end{bmatrix}$$

Calorie min 2500 Calorie max 100 Sugar Calcium

Diet Problem

$$\min_{\mathbf{x}} \quad \mathbf{c}^{T} \mathbf{x}$$
s.t.
$$a_{1,1} x_{1} + a_{1,2} x_{2} \ge b_{1}$$

$$a_{2,1} x_{1} + a_{2,2} x_{2} \le b_{2}$$

$$a_{3,1} x_{1} + a_{3,2} x_{2} \le b_{3}$$

$$a_{4,1} x_{1} + a_{4,2} x_{2} \ge b_{4}$$

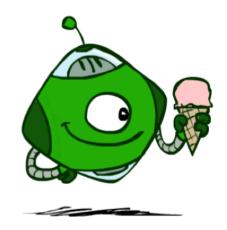
$$c = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$$

Limit

$$A = \begin{bmatrix} 100 & 50 \\ 100 & 50 \\ 3 & 4 \\ 20 & 70 \end{bmatrix} \quad \boldsymbol{b} =$$

$$\boldsymbol{b} = \begin{bmatrix} 2000 \\ 2500 \\ 100 \\ 700 \end{bmatrix}$$

Calorie min 2500 Calorie max 100 Sugar Calcium


Diet Problem

$$\min_{\mathbf{x}} \quad \mathbf{c}^{T} \mathbf{x}$$
s.t.
$$-a_{1,1} x_{1} - a_{1,2} x_{2} \leq -b_{1}$$

$$a_{2,1} x_{1} + a_{2,2} x_{2} \leq b_{2}$$

$$a_{3,1} x_{1} + a_{3,2} x_{2} \leq b_{3}$$

$$-a_{4,1} x_{1} - a_{4,2} x_{2} \leq -b_{4}$$

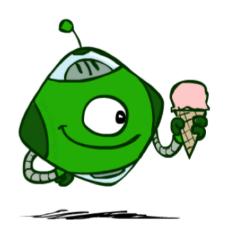
$$c = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$$

Limit

$$A = \begin{bmatrix} 100 & 50 \\ 100 & 50 \\ 3 & 4 \\ 20 & 70 \end{bmatrix} \quad b = \begin{bmatrix} 2000 \\ 2500 \\ 100 \\ 700 \end{bmatrix} \quad \begin{array}{c} \text{Calorie min} \\ \text{Calorie max} \\ \text{Sugar} \\ \text{Calcium} \\ \end{array}$$

$$b = \begin{bmatrix} 2000 \\ 2500 \\ 100 \\ 700 \end{bmatrix}$$

Calcium

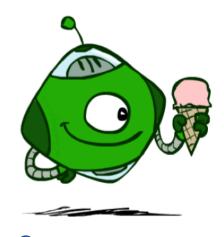

Diet Problem

$$\min_{\mathbf{x}} \quad \mathbf{c}^{T} \mathbf{x}$$
s.t.
$$a_{1,1} x_{1} + a_{1,2} x_{2} \leq b_{1}$$

$$a_{2,1} x_{1} + a_{2,2} x_{2} \leq b_{2}$$

$$a_{3,1} x_{1} + a_{3,2} x_{2} \leq b_{3}$$

$$a_{4,1} x_{1} + a_{4,2} x_{2} \leq b_{4}$$



$$c = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$$

$$A = \begin{bmatrix} -100 & -50 \\ 100 & 50 \\ 3 & 4 \\ -20 & -70 \end{bmatrix} b = \begin{bmatrix} -2000 \\ 2500 \\ 100 \\ -700 \end{bmatrix}$$
Calorie min Calorie max Sugar Calcium

Diet Problem

$$\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x} \\
\text{s.t.} \quad A\mathbf{x} \leq \mathbf{b}$$

$$c = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$$

$$A = \begin{bmatrix} -100 & -50 \\ 100 & 50 \\ 3 & 4 \\ -20 & -70 \end{bmatrix} \mathbf{b} = \begin{bmatrix} -2000 \\ 2500 \\ 100 \\ -700 \end{bmatrix} \begin{array}{c} \text{Calorie min} \\ \text{Calorie max} \\ \text{Sugar} \\ \text{Calcium} \\ \end{array}$$

What has to increase to add more nutrition constraints?

min	$oldsymbol{c}^Toldsymbol{x}$
\boldsymbol{x}	
s.t.	$Ax \leq b$

Select all that apply

- A) length x
- B) length c
- C) height A
- D) width A
- E) length **b**

What has to increase to add more nutrition constraints?

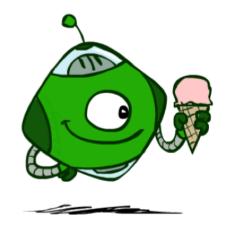
$$\min_{x} \quad c^{T}x$$
s.t.
$$Ax \leq b$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 $c = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$ $A = \begin{bmatrix} -100 & -50 \\ 100 & 50 \\ 3 & 4 \\ -20 & -70 \end{bmatrix}$

$$b = \begin{bmatrix} -2000 \\ 2500 \\ 100 \\ -700 \end{bmatrix}$$

What has to increase to add more menu items?

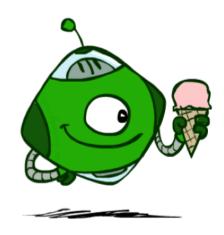
$$\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x} \\
\text{s.t.} \quad A\mathbf{x} \leq \mathbf{b}$$



- A) length x
- B) length *c*
- C) height A
- D) width A
- E) length **b**

What has to increase to add more nutrition constraints?

$$\min_{x} \quad c^{T}x$$
s.t.
$$Ax \leq b$$


$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 $c = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$ $A = \begin{bmatrix} -100 & -50 \\ 100 & 50 \\ 3 & 4 \\ -20 & -70 \end{bmatrix}$

$$b = \begin{bmatrix} -2000 \\ 2500 \\ 100 \\ -700 \end{bmatrix}$$

Question

If $A \in \mathbb{R}^{M \times N}$, which of the following also equals N?

$$\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x} \\
\text{s.t.} \quad A\mathbf{x} \leq \mathbf{b}$$

Select all that apply

- A) length x
- B) length *c*
- C) length **b**

Linear Programming

Linear objective with linear constraints

As opposed to general optimization

min.
$$f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \leq 0$, $i = 1 \dots M$
 $\mathbf{a}_i^T \mathbf{x} = \mathbf{b}_i$, $i = 1 \dots P$

Linear Programming

Different formulations

Inequality form

General form

min.
$$c^T x + d$$

s.t. $Gx \le h$
 $Ax = b$

Standard form

Important to pay attention to form!

Linear Programming

Different formulations

Inequality form

$$\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x}$$
s.t.
$$A\mathbf{x} \leq \mathbf{b}$$

General form

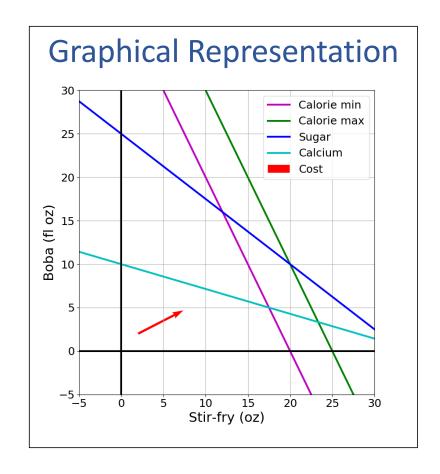
min.
$$c^T x + d$$

s.t. $Gx \le h$
 $Ax = b$

Standard form

$$\begin{array}{ll}
\min_{\mathbf{x}} & \mathbf{c}^T \mathbf{x} \\
\text{s.t.} & \mathbf{A}\mathbf{x} = \mathbf{b} \\
\mathbf{x} \geq 0
\end{array}$$

Can switch between formulations!


Optimization

Problem Description

Optimization Representation

 $\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x}$

s.t. $Ax \leq b$

Graphics Representation

Geometry / Algebra I Quiz

What shape does this inequality represent?

$$a_1 x_1 + a_2 x_2 \le b_1$$

Graphics Representation

Geometry / Algebra I Quiz

What shape does this inequality represent?

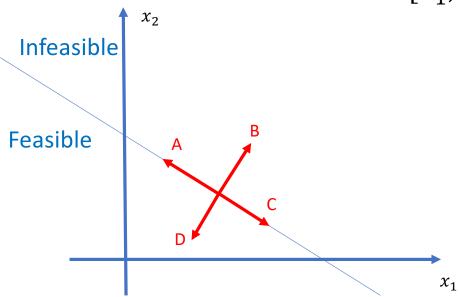
$$a_1 x_1 + a_2 x_2 = b_1$$

$$a_1 x_1 + a_2 x_2 \le b_1$$

$$a_{1,1} x_1 + a_{1,2} x_2 \le b_1$$

$$a_{2,1} x_1 + a_{2,2} x_2 \le b_2$$

$$a_{3,1} x_1 + a_{3,2} x_2 \le b_3$$


$$a_{4,1} x_1 + a_{4,2} x_2 \le b_4$$

What is the relationship between the half plane:

$$a_1 x_1 + a_2 x_2 \le b_1$$

and the vector:

$$[a_1, a_2]^T$$

Given the cost vector $[c_1, c_2]^T$ and initial point $x^{(0)}$, Which unit vector step Δx will cause $x^{(1)} = x^{(0)} + \Delta x$ to have the lowest cost $c^T x^{(1)}$?

Cost Contours

Given the cost vector $[c_1, c_2]^T$ where will $c^T x = 0$?

Cost Contours

Given the cost vector $[c_1, c_2]^T$ where will

$$c^{T}x = 0$$
?
 $c^{T}x = 1$?
 $c^{T}x = 2$?
 $c^{T}x = -1$?
 $c^{T}x = -2$?

LP Graphical Representation

Inequality form

LP Graphical Representation

Inequality form, with no constraints

$$\min_{\mathbf{x}}$$
 $\mathbf{c}^T \mathbf{x}$

LP Graphical Representation

Inequality form, with no constraints

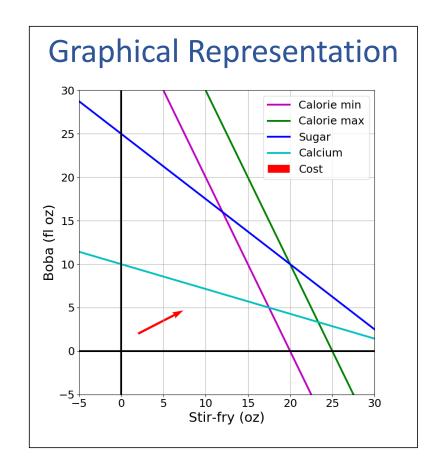
$$\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x}$$

s.t.
$$a_1 x_1 + a_2 x_2 \le b$$

True or False: An minimizing LP with exactly one constraint, will always have a minimum objective at $-\infty$.

$$\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x}$$

s.t.
$$a_1 x_1 + a_2 x_2 \le b$$


Optimization

Problem Description

Optimization Representation

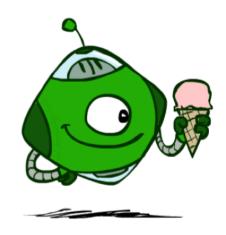
 $\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x}$

s.t. $Ax \leq b$

Warm-up: What to eat?

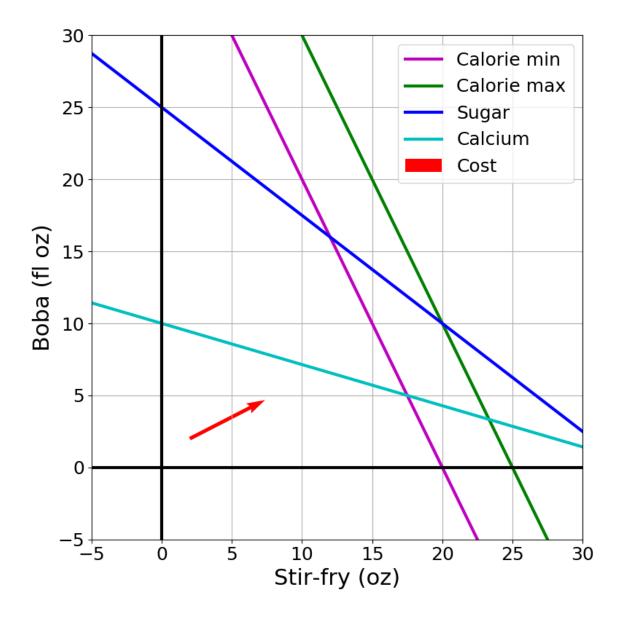
We are trying healthy by finding the optimal amount of food to purchase. We can choose the amount of stir-fry (ounce) and boba (fluid ounces).

Healthy Squad Goals

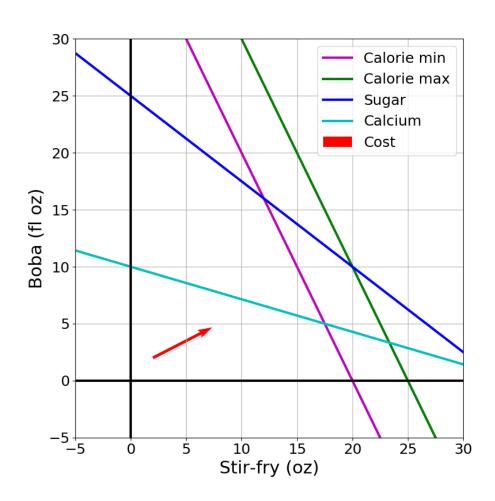

- $2000 \le \text{Calories} \le 2500$
- Sugar ≤ 100 g
- Calcium \geq 700 mg

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

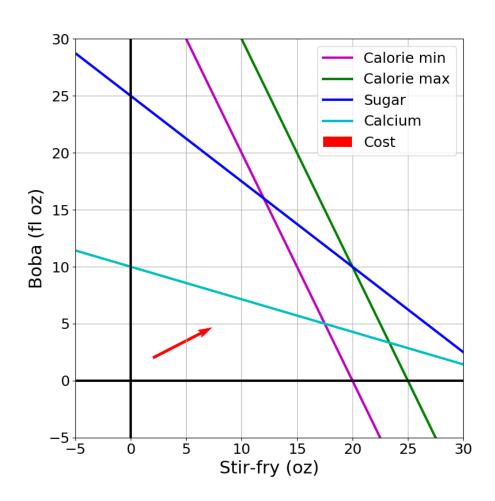
What is the cheapest way to stay "healthy" with this menu? How much stir-fry (ounce) and boba (fluid ounces) should we buy?


Diet Problem

$$\min_{x} c^{T}x$$
s.t. $Ax \leq b$


$$c = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$$

$$A = \begin{bmatrix} -100 & -50 \\ 100 & 50 \\ 3 & 4 \\ -20 & -70 \end{bmatrix} \mathbf{b} = \begin{bmatrix} -2000 \\ 2500 \\ 100 \\ -700 \end{bmatrix}$$
Calorie min Calorie max Sugar Calcium


Solving an LP

Solutions are at feasible intersections of constraint boundaries!!

Solving an LP

Solutions are at feasible intersections of constraint boundaries!!

