Al: Representation and Problem Solving
Local Search

Instructors: Pat Virtue & Stephanie Rosenthal
Slide credits: CMU Al, http://ai.berkeley.edu

Learning Objectives

* Describe and implement the following local search algorithms
* |terative improvement algorithm with min-conflict heuristic for CSPs

Hill Climbing (Greedy Local Search)

Random Walk

Simulated Annealing

Beam Search

Genetic Algorithm

* |dentify completeness and optimality of local search algorithms

 Compare different local search algorithms as well as contrast with
classical search algorithms

* Select appropriate local search algorithms for real-world problems

Local Search

* Can be applied to identification problems (e.g., CSPs), as well as some
planning and optimization problems

* Typically use a complete-state formulation, e.g., all variables assigned
in a CSP (may not satisfy all the constraints)

iterative Improvement for CSPs

iterative Improvement for CSPs

e Start with an arbitrary assignment, iteratively reassign variable values

* While not solved,
 Variable selection: randomly select a conflicted variable

e Value selection with min-conflicts heuristic h: Choose a value that violates the fewest
constraints (break tie randomly)

* For n-Queens: Variables x; € {1..n}; Constraints x; # x;, |xi — xj| #|i—jl,Vi#j

=

—>

—

Demo — n-Queens

[Demo: n-queens — iterative improvement (L5D1)]

Demo — Graph Coloring

iterative Improvement for CSPs

e Given random initial state, can solve n-queens in almost constant time for arbitrary n
with high probability (e.g., n = 10,000,000)!

* Same for any randomly-generated CSP except in a narrow range of the ratio

o number of constraints
number of variables

D/

|
critical
ratio

CPU
time

Local Search

* A local search algorithmis...
* Complete if it always finds a goal if one exists
e Optimal if it always finds a global minimum/maximum

Is Iterative Improvement for CSPs complete?

No! May get stuck in a local optima

State-Space Landscape

In identification problems, could be a function measuring how close you are to a

valid solution, e.g., —1 X #conflicts in n-Queens/CSP

objectixe function

shoulder

N

s 15 bcal magmyn

lobal maximum W'hé’t's t}%{ﬁ“ e_ﬁ__e;ncé\t(ecgv{/éen

shoulder andlat loc Imaxnpum
(both are plateaux)tor 9 1N

local maximum C/\')/()f‘m (S)

"flat" local maximum

£ AG) = h(s")
for all 5!

»state space

current
state

Hill Climbing (Greedy Local Search)

e Simple, general idea:
e Start wherever

* Repeat: move to the best “neighboring” state
(successor state)

* If no neighbors better than current, quit

Complete? No!

Optimal? No!

Hill Climbing (Greedy Local Search)

function HILL-CLIMBING(problem) returns a state that is a local maximum

current «+— MAKE-NODE(problem.INITIAL-STATE)

loop do
neighbor < a highest-valued successor of current
if neighbor. VALUE < current. VALUE then return current.STATE
current < neighbor

How to apply Hill Climbing to n-Queens? How is it different from Iterative Improvement?
Define a state as a board with n queens on it, one in each column
Define a successor (neighbor) of a state as one that is generated by moving a
single queen to another square in the same column How many successors?

Hill Climbing (Greedy Local Search)

function HILL-CLIMBING(problem) returns a state that is a local maximum

current < MAKE-NODE(problem.INITIAL-STATE) What if there is a tie?
lOOf) do '
7

eighbor < a highest-valued successor of current Typically break ties randomly
if neighbor. VALUE < current. VALUE then|return current.STATE|

current — neighbor \n ot if we do not stop here? Make a sideway move if “="

* In 8-Queens, steepest-ascent hill climbing solves 14% of problem instances
* Takes 4 steps on average when it succeeds, and 3 steps when it fails

 When allow for <100 consecutive sideway moves, solves 94% of problem instances
* Takes 21 steps on average when it succeeds, and 64 steps when it fails

Variants of Hill Climbing

* Random-restart hill climbing

* “If at first you don’t succeed, try, try again.”
e Complete!
 What kind of landscape will random-restarts hill climbing work the best?

 Stochastic hill climbing

* Choose randomly from the uphill moves, with probability dependent on the
“steepness” (i.e., amount of improvement)

* Converge slower than steepest ascent, but may find better solutions

* First-choice hill climbing

* Generate successors randomly (one by one) until a better one is found
 Suitable when there are too many successors to enumerate

Variants of Hill Climbing

« What if variables are continuous, e.g. find x € [0,1] that maximizes f(x)?
* Gradient ascent
* Use gradient to find best direction
* Use the magnitude of the gradient to determine how big a step you move

objectixe function

lobal maximum

shoulder

N

local maximum

"flat" local maximum

» Value space of variables

current
state

Piazza Poll 1: Hill Climbing

1. Starting from X, where do you end up?
2. Starting from Y, where do you end up?
3. Starting from Z, where do you end up?

Objective Function
n

i

(>

1.
V.

State Space

cCyY

D

X->AY->D Z->FE
X—-B,Y->D,Z-FE
X->X,Y->C,Z-7
| don’t know

Random Walk

* Uniformly randomly choose a neighbor to move to

 Complete but inefficient!

Simulated Annealing

* Combines random walk and hill climbing

* Complete and efficient
* Inspired by statistical physics

* Annealing — Metallurgy
* Heating metal to high temperature then cooling
e Reaching low energy state

* Simulated Annealing — Local Search
* Allow for downhill moves and make them rarer as time goes on
e Escape local maxima and reach global maxima

Simulated Annealing

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”

current <— MAKE-NODE(problem.INITIAL-STATE)
for t =1 to oo do

T — schedule(1) Control the change of
if 7' = 0 then return current | temperature T (1 over time)

next < a randomly selected successor of curm@ Almost the same as hill climbing
AF « next.VALUE — current.VALUE,

. : except for a random successor
if AF > 0 then current < next _ o

else current <— next only with probability‘eAE/ | Unlike hill climbing, move
downhill with some prob.

Simulated Annealing

AE/T

P|move downhill] = e

* Bad moves are more likely to be allowed when T
is high (at the beginning of the algorithm)

* Worse moves are less likely to be allowed

E(x)
p(z) o< e kT

Stationary distribution:

Guarantee: If T decreased slowly enough, will converge to optimal state!

But! In reality, the more downhill steps you need to escape a local optimum, the
less likely you are to ever make them all in a row

Local Beam Search

* Keep track of k states

* In each iteration
* Generate all successors of all k states
* Only retain the best k successors among them all

How is this different from K local searches with different initial states in parallel?

The searches communicate! “Come over here, the grass is greener!”

Analogous to evolution / natural selection!

Limitations and Variants of Local Beam Search

 Suffer from a lack of diversity; Quickly concentrated in a small region
of the state space

e Variant: Stochastic beam search

 Randomly choose k successors (offsprings) of a state (organism) population
according to its objective value (fitness)

Genetic Algorithms

* Inspired by evolutionary biology

* Nature provides an objective function (reproductive fitness) that Darwinian
evolution could be seen as attempting to optimize

e A variant of stochastic beam search

» Successors are generated by combining two parent states instead of
modifying a single state (sexual reproduction rather than asexual
reproduction)

Genetic Algorithms for 8-Queens

Fithess Selection Pairs Cross—-Over
24748552 | 24 31% 327@52411 32748552 | 3274812
32752411 | 23 29% 247?48552 >_< 24752411 24752411
24415124 h‘ 327.52é411 32752124 322124
32543213 | 11 14% 24415;124 >_< 24415411 244154

State Representation: 8-digit string, each digitin {1.. 8}
Fitness Function: #Nonattacking pairs

Selection: Select k individuals randomly with probability proportional to their fitness
value (random selection with replacement)

Crossover: For each pair, choose a crossover point € {1..7}, generate two offsprings by
crossing over the parent strings

Mutation (With some prob.): Choose a digit and change it to a different value in {1.. 8}
What if k is an odd number?

Genetic Algorithms for 8-Queens

* Why does crossover make sense here?

 Would crossover work well without a
selection operator?

Genetic Algorithms

 Start with a population of k individuals (states)

* |n each iteration
* Apply a fitness function to each individual in the current population
* Apply a selection operator to select k pairs of parents
* Generate k offsprings by applying a crossover operator on the parents

* For each offspring, apply a mutation operation with a (usually small) independent
probability

* For a specific problem, need to design these functions and operators

 Successful use of genetic algorithms require careful engineering of the
state representation!

Genetic Algorithms

function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual
inputs: population, a set of individuals
FITNESS-FN, a function that measures the fitness of an individual

repeat
new _population «— empty set
for : = 1 to SIZE(population) do
x < RANDOM-SELECTION(population, FITNESS-FN)
1y «— RANDOM-SELECTION(population, FITNESS-FN)
child <— REPRODUCE(z, y)
if (small random probability) then child < MUTATE(child)
add child to new_population
population «— new_population
until some individual is fit enough, or enough time has elapsed
return the best individual in population, according to FITNESS-FN

How is this different from the illustrated procedure on 8-Queens?

Exercise: Traveling Salesman Problem

* Given a list of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city and returns to
the origin city?

* Input: ¢;;, Vi,j €1{0,...,n — 1}

* Qutput: A ordered sequence {v,, vy, ..., v, } with vy = 0, v,, = 0 and
all other indices show up exactly once

* Question: How to apply Local Search algorithms to this problem?

Summary: Local Search

 Maintain a constant number of current nodes or states, and move to
“neighbors” or generate “offsprings” in each iteration
* Do not maintain a search tree or multiple paths
* Typically do not retain the path to the node

* Advantages
e Use little memory

e Can potentially solve large-scale problems or get a reasonable (suboptimal or
almost feasible) solution

Learning Objectives

* Describe and implement the following local search algorithms
* |terative improvement algorithm with min-conflict heuristic for CSPs

Hill Climbing (Greedy Local Search)

Random Walk

Simulated Annealing

Beam Search

Genetic Algorithm

* |dentify completeness and optimality of local search algorithms

 Compare different local search algorithms as well as contrast with
classical search algorithms

* Select appropriate local search algorithms for real-world problems

