Warm-up as you log in

When sampling with likelihood weighting, what distribution do we have when we multiply fraction of counts times the weight?

$$\frac{N(X=+x)}{N} \cdot \text{weight}(+X)$$

$$= e$$

Announcements

Assignments (everything left for the semester):

- HW11 (online) due Tue 4/21
- P5 due Thu 4/30
- HW12 (written) out Tue 4/21, due Tue 4/28

Participation points

 Starting new, we're capping the denominator (63 polls) in the participation points calculation

Final Exam:

5/4 1-4pm (let us know by today 4/20 if you need it rescheduled)

Warm-up as you log in

When sampling with likelihood weighting, what distribution do we

have when we multiply fraction of counts times the weight?

$$P(X) \times P(e \mid X) \longrightarrow P(X \mid e)$$

$$+ \times N(+x)/N \times Veight(+x)$$

$$- \times N(-x)/N \times Veight(-x)$$

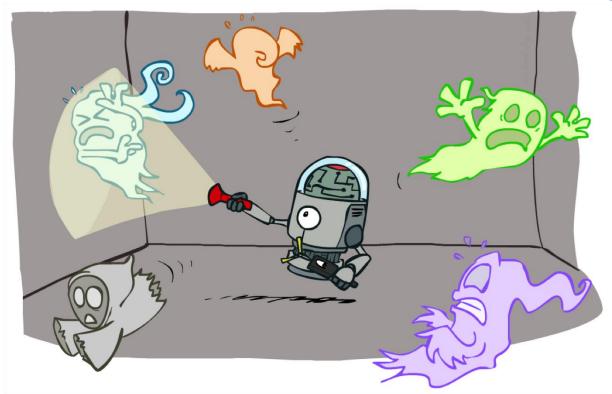
$$= Veight(+x)$$

$$V(-x) = P(e \mid +x)$$

$$V(-x) = P(e \mid -x)$$

AI: Representation and Problem Solving

HMMs and Particle Filtering

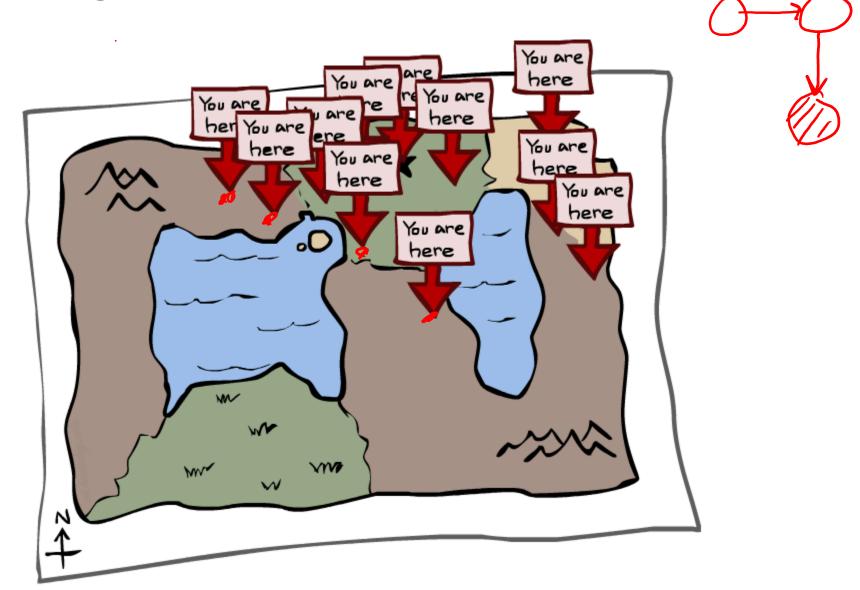


Instructors: Pat Virtue & Stephanie Rosenthal

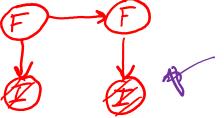
Slide credits: CMU AI and http://ai.berkeley.edu

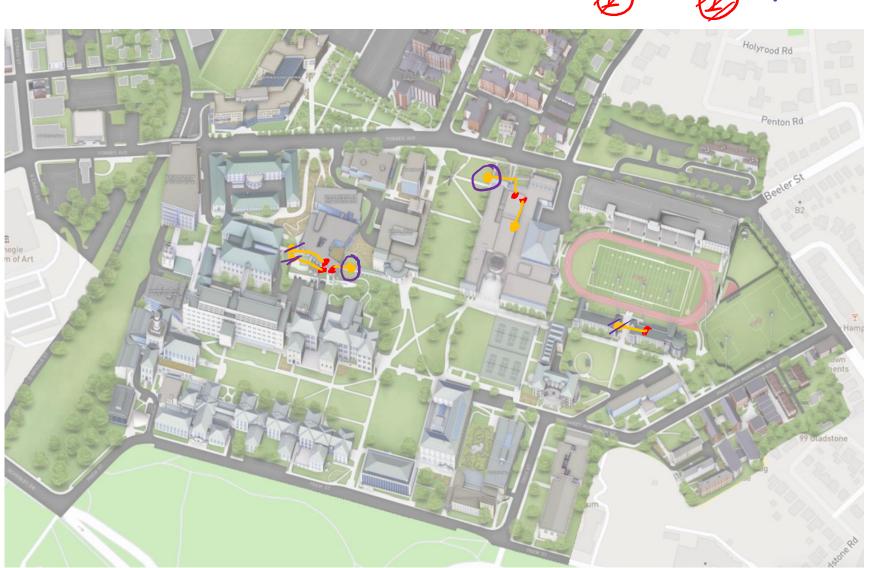
Demo: Pacman Ghostbusters

Particle Filtering



Particle Filtering





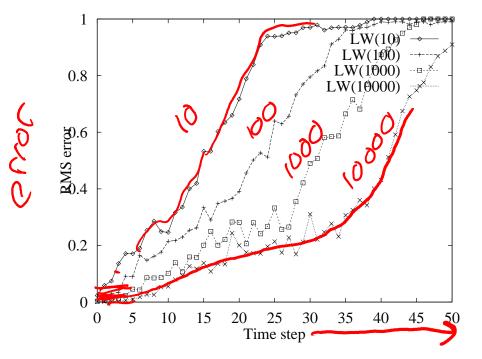
P(Fo) P(FearlFx) P(F,) P(F, 1e,) P(F2 le)

We need a new algorithm!

When |X| is more than 10^6 or so (e.g., 3 ghosts in a 10x20 world), exact inference becomes infeasible

Likelihood weighting fails completely – number of samples needed grows

exponentially with *T*



$$(X_0) + (X_1) + (X_2) + (X_3) + \cdots + (E_1) + (E_2) + (E_3)$$

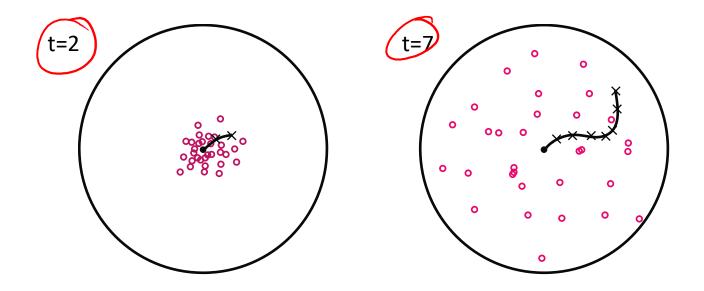
$$(X_1) + (X_2) + (X_3) + \cdots + (E_1) + (E_2) + (E_3)$$

$$(X_1) + (X_2) + (X_3) + \cdots + (E_1) + (E_2) + (E_3)$$

$$(X_1) + (X_2) + (X_3) + \cdots + (E_1) + (E_2) + (E_3)$$

$$(X_1) + (X_2) + (X_3) + \cdots + (E_3) + (E_4) +$$

We need a new idea!



The problem: sample state trajectories go off into low-probability regions, ignoring the evidence; too few "reasonable" samples

Solution: kill the bad ones, make more of the good ones

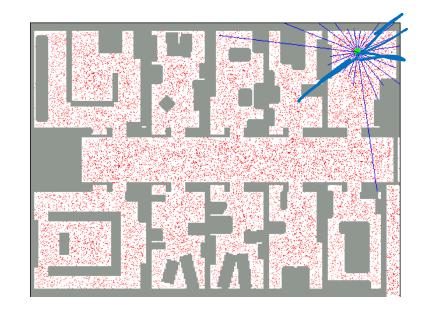
This way the population of samples stays in the high-probability region

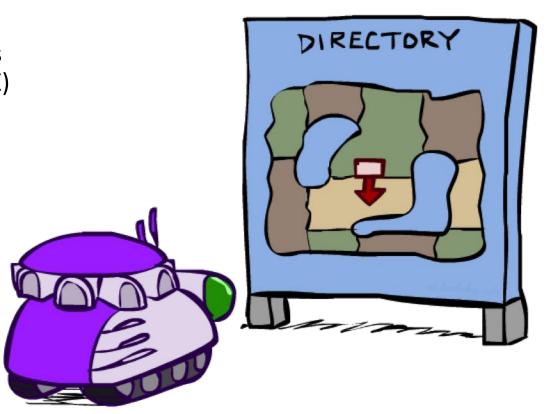
This is called resampling or survival of the fittest

Robot Localization

In robot localization:

- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- Particle filtering is a main technique



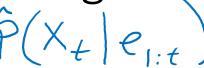


Particle Filter Localization (Sonar)

[Dieter Fox, et al.]

[Video: global-sonar-uw-annotated.avi]

Particle Filtering $\hat{P}(X_t | e_{l:t})$



- Represent belief state by a set of samples
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
- This is how robot localization works in practice

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

	•

Representation: Particles

Our representation of P(X) is now a list of N particles (samples)

- Generally, N << |X|</p>
- Storing map from X to counts would defeat the point

P(x) approximated by number of particles with value x

- So, many x may have P(x) = 0!
- More particles, more accuracy
- Usually we want a low-dimensional marginal
 - E.g., "Where is ghost 1?" rather than "Are ghosts 1,2,3 in {2,6], [5,6], and [8,11]?"

For now, all particles have a weight of 1

	•	
•		•

Particles:

(3,3)

(2,3)

(3,3)

(3,2)

(3,3)

(3,2)

(1,2)

(3,3)

(3,3)

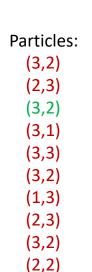
(2,3)

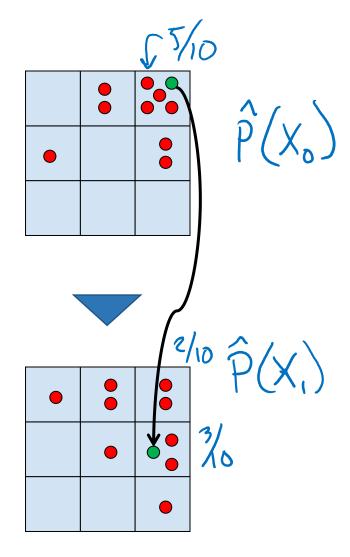
Particle Filtering: Propagate forward

A particle in state x_t is moved by sampling its next position directly from the transition model:

- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)
(2,3)





Particle Filtering: Observe

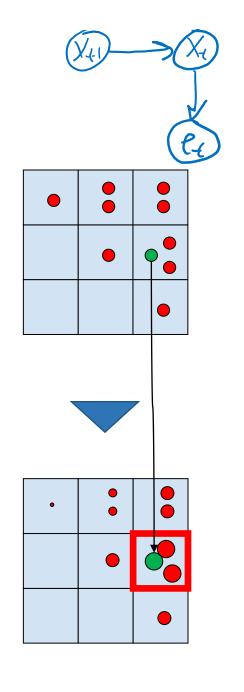
- Slightly trickier:
 - Don't sample observation, fix it
 - Similar to likelihood weighting, weight samples based on the evidence

$$W = P(e_t | x_t)$$

 Normalize the weights: particles that fit the data better get higher weights, others get lower weights

Particles: (3,2)(2,3)(3,2)(3,1)(3,3)(3,2)(1,3)(2,3)(3,2)(2,2)Particles: (3,2) w=.9 (2,3) w=.2 (3,2) w=.9 (3,1) w=.4 (3,3) w=.4

(3,2) w=.9 (1,3) w=.1 (2,3) w=.2 (3,2) w=.9 (2,2) w=.4



Particle Filtering: Resample

Rather than tracking weighted samples, we *resample*

We have an <u>updated belief distribution</u> based on the weighted particles

We sample N new particles from the weighted belief distributions

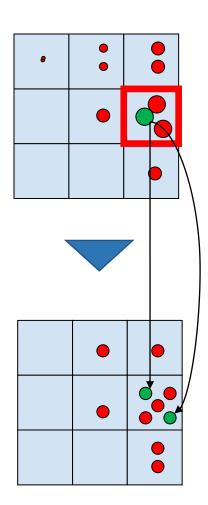
Now the update is complete for this time step, continue with the next one

Particles:

- (3,2) w=.9
- (2,3) w=.2
- (3,2) w=.9
- (3,1) w=.4
- (3,3) w=.4
- (3,2) w=.9
- (1,3) w=.1
- (2,3) w=.2
- (3,2) w=.9
- (2.2) w=.4

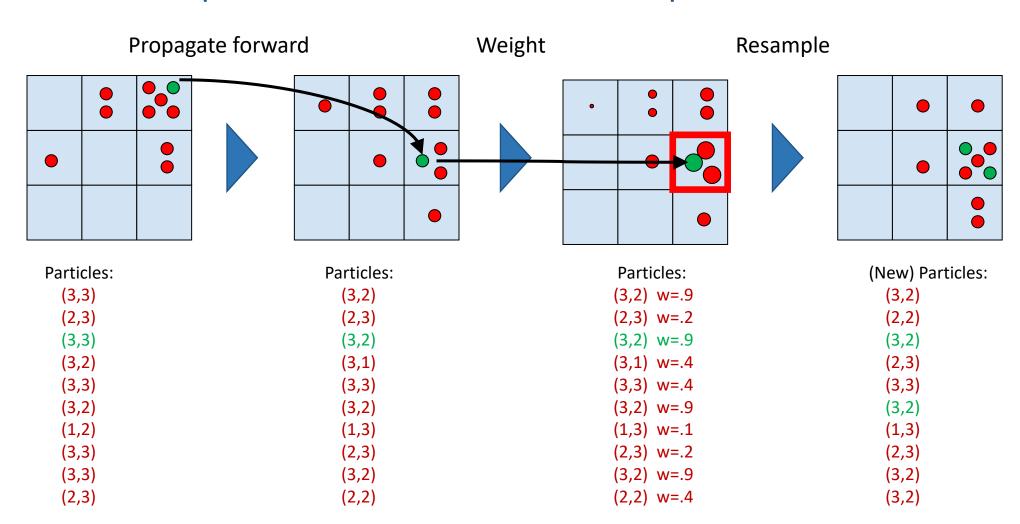
(New) Particles:

- (3,2)
- (2,2)
- (3,2)
- (2,3)
- (3,3)
- (3,2)
- (1,3)
- (2,3)
- (3,2)
- (3,2)



Summary: Particle Filtering

Particles: track samples of states rather than an explicit distribution



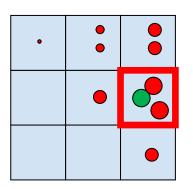
Consistency: see proof in AIMA Ch. 15

[Demos: ghostbusters particle filtering (L15D3,4,5)]

Weighting and Resampling

How to compute a belief distribution given weighted particles

Weight



	1			
1	1/0	2/10	1/10	_
		10	3/10	X
•			1/0	
		1		

16	21X)	_
1/0	2/10	14/10	
	4/	9/10	
		4/10	
1	\		

1	
100	
48	

1/2	4/	18/00
7100	4/	77/
100	100	100
0/	0/	4/
100	/100	140

	1+4+8+9+27+4
5	100
	$\frac{P(\chi,e)}{\leq p(\chi)}$
8	$\leq P(x,e)$
8	P(Xle)

Particles:

$$(3,2)$$
 w=.9

$$(2,3)$$
 w=.2

$$(3,2)$$
 w=.9

$$(3,1)$$
 w=.4

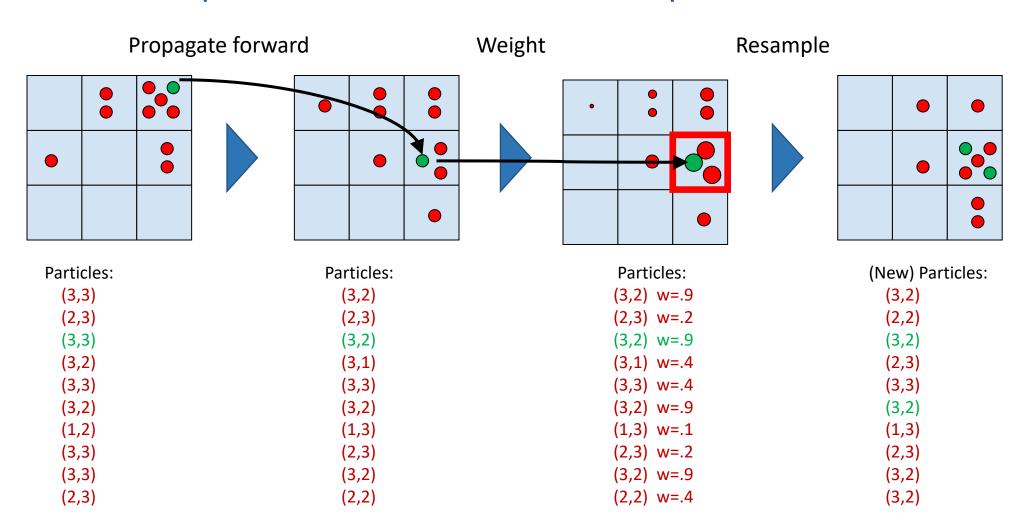
$$(3,3)$$
 w=.4

$$(2,3)$$
 w=.2

$$(2,2)$$
 w=.4

Summary: Particle Filtering

Particles: track samples of states rather than an explicit distribution

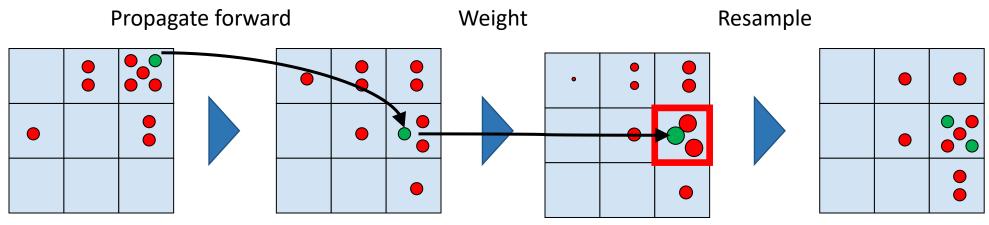


Consistency: see proof in AIMA Ch. 15

[Demos: ghostbusters particle filtering (L15D3,4,5)]

Piazza Poll 1

If we only have one particle which of these steps are unnecessary?



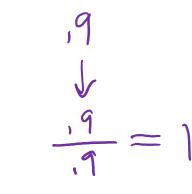
Select all that are unnecessary.

Propagate forward

Weight

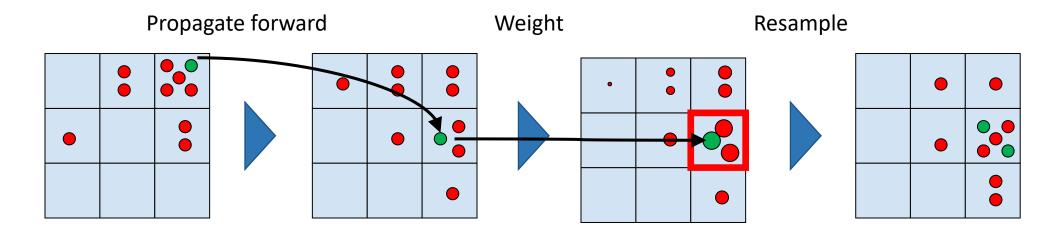
Resample

None of the above



Piazza Poll 1

If we only have one particle which of these steps are unnecessary?

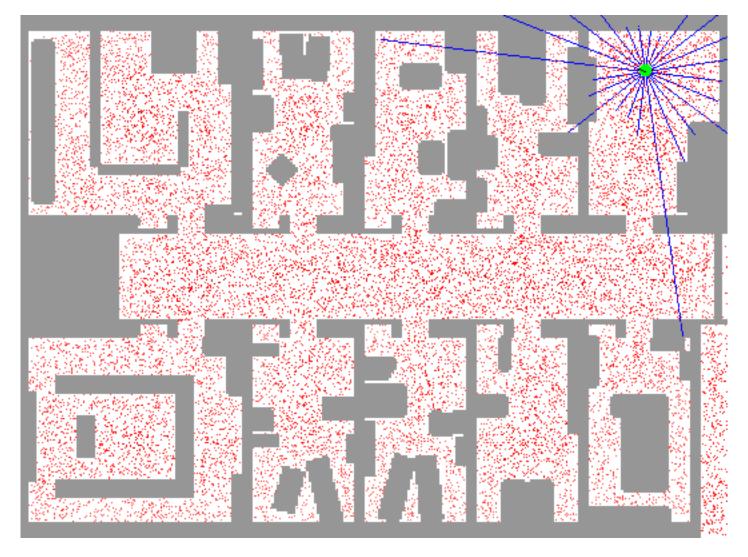


Select all that are unnecessary.

- A. Propagate forward
- B. Weight Unless the weight is zero, in which case, you'll
- C. Resample want to resample from the beginning 😊
- D. None of the above

Demo: Pacman Particle Filtering

Particle Filter Localization (Laser)

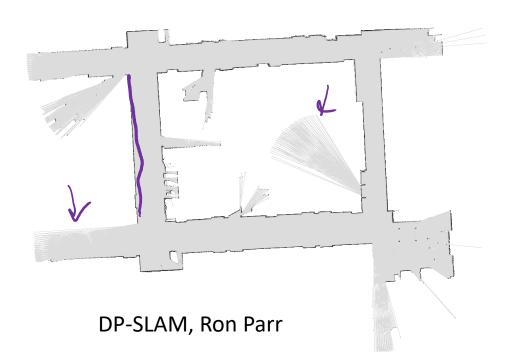


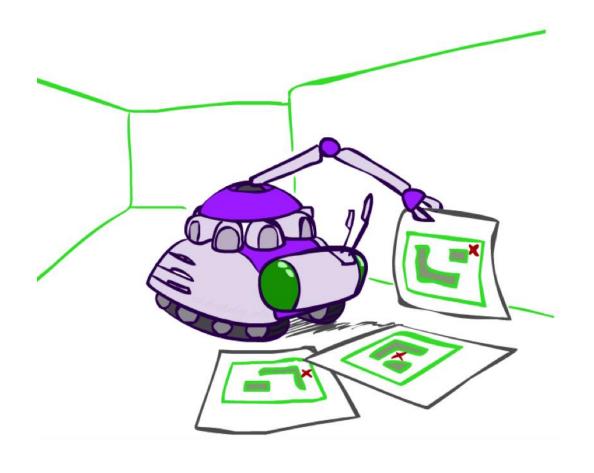
[Dieter Fox, et al.] [Video: global-floor.gif]

Robot Mapping

SLAM: Simultaneous Localization And Mapping

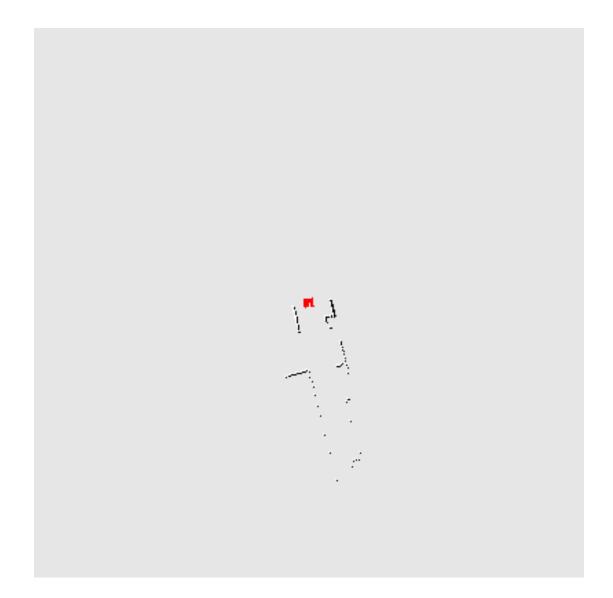
- We do not know the map or our location
- State consists of position AND map!
- Main techniques: Kalman filtering (Gaussian HMMs) and particle methods



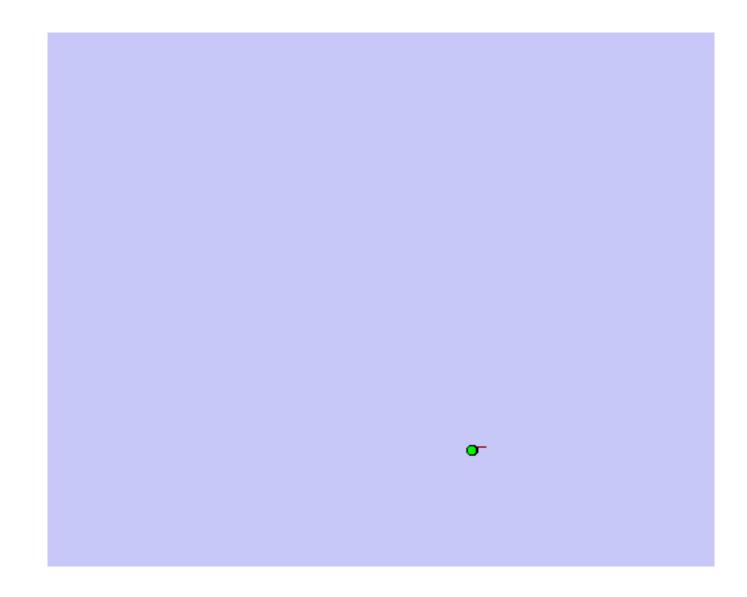


[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM – Video 1



Particle Filter SLAM – Video 2



[Dirk Haehnel, et al.]

SLAM

