Announcements

Assignments:

- HW9 (written)
 - Due Tuesday 3/31, 10 pm
- P4
 - Due Thu 4/2, 10 pm
 - Check your slip days!

Midterm:

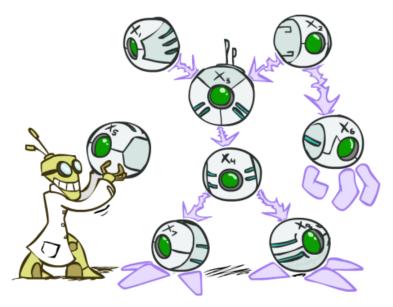
- Wed 4/8 on Gradescope (more details coming soon)
- Covers material from Integer Programming until Reinforcement Learning

Course Feedback:

Don't forget to fill out the <u>3</u> feedback forms on Piazza

Al: Representation and Problem Solving

Bayes Nets



Instructors: Pat Virtue & Stephanie Rosenthal

Slide credits: CMU AI and http://ai.berkeley.edu

Probability Notation

Notation and conventions in this course

$$P(+b,C) = \sum_{a \in \{a_1,a_2,a_3\}} P(a,+b,C)$$

Probability Notation

Notation and conventions in this course

$$P(+b,C) = \sum_{a \in \{a_1,a_2,a_3\}} P(a,+b,C)$$

- Random variables:
 - Capitalized
 - Represents all potential outcomes
 - e.g. *C*
- Outcomes (values):
 - lower case
 - e.g. +b, a_1 , a_2 , a_3
- Variables for values:
 - lower case
 - E.g. *a*

- For each random variable
 - Discrete outcomes
 - Disjoint outcomes
 - Not always binary

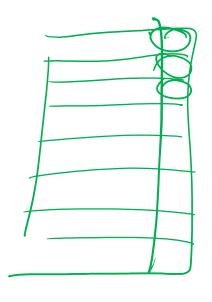
Probability Notation

Notation and conventions in this course

$$P(+b,C) = \sum_{a \in \{a_1,a_2,a_3\}} P(a,+b,C)$$

$$+c = \sum_{a} P(a,+b,C)$$

$$= \sum_{a} P(A,+b,C)$$



$$P(+b,+c)$$

 $P(+b,-c)$

$$P(A,B,C) = P(A)P(B|A)P(C|A,B)$$

 $P(+a,-b,+c)$

PAUSE!

Which of the following probability tables sum to one? Select all that apply.

```
i. P(\underline{A} \mid \underline{b})
ii. P(A, B, c)
iii. P(A, B \mid \underline{c})
iv. P(a, b \mid c)
v. P(a \mid B, C) \leftarrow Co
```

Which of the following probability tables sum to one? Select all that apply.

- i. $P(A \mid b)$
- ii. P(A, B, c)
- iii. $P(A,B \mid c)$
- iv. $P(a,b \mid c)$
- $V. P(a \mid B, C)$
- vi. $P(c \mid A)$

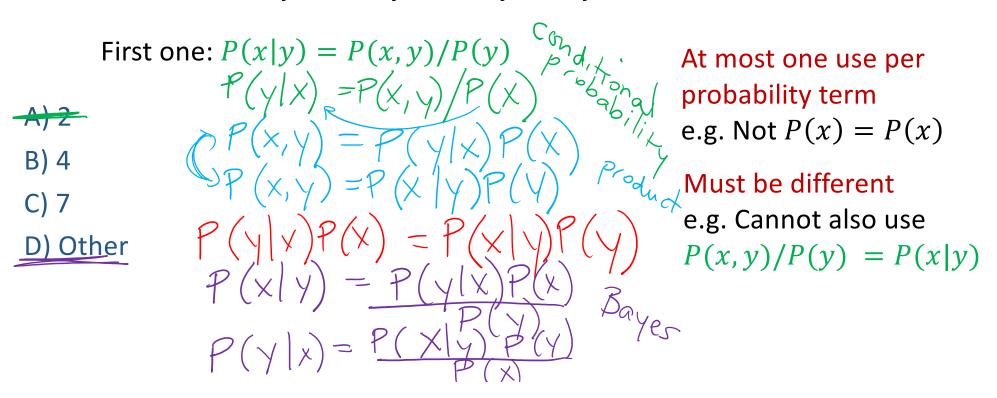
Which of the following probability tables sum to one? Select all that apply.

```
    i. P(A | b)
    ii. P(A,B,c)
    iii. P(A,B | c)
    iv. P(a,b | c)
    v. P(a | B,C)
    vi. P(c | A)
```

PAUSE!

How many valid equations can we compose using:

$$P(x)$$
, $P(y)$, $P(x,y)$, $P(x|y)$, $P(y|x)$ and $=$, \times , \div



How many valid equations can we compose using:

$$P(X)$$
, $P(Y)$, $P(X,Y)$, $P(X|Y)$, $P(Y|X)$ and $=$, \times , \div

First one: P(X|Y) = P(X,Y)/P(Y)

- A) 2
- B) 4
- C) 7
- D) Other

At most one use per probability term

e.g. Not P(X) = P(X)

Must be different

e.g. Cannot also use

$$P(X,Y)/P(Y) = P(X|Y)$$

Probability Tools Summary

Our toolbox

1. Definition of conditional probability

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

2. Product Rule

$$P(A,B) = P(A|B)P(B)$$

3. Bayes' theorem

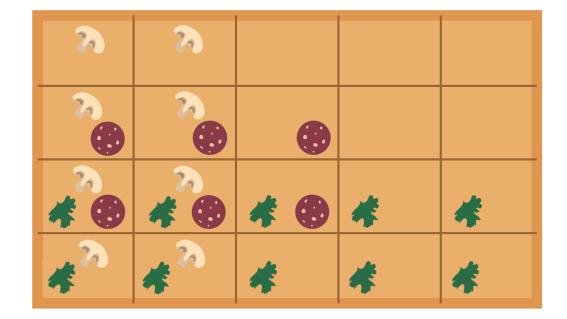
$$P(B|A) = \frac{P(A|B)P(B)}{P(A)P(B|A)P(B|A)P(A)}$$

4. Chain Rule

$$\underbrace{P(X_{1}, \dots, X_{N})} = \prod_{n=1}^{\infty} P(X_{n} \mid X_{1}, \dots, X_{n-1})$$

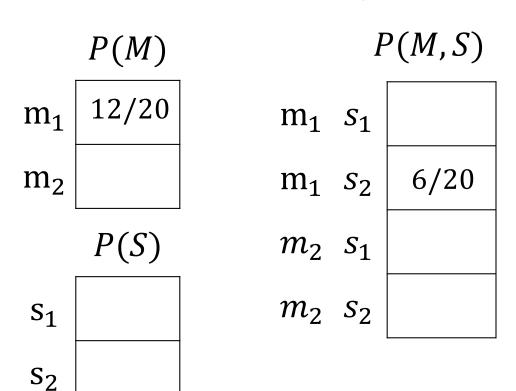
What is the probability of getting a slice with:

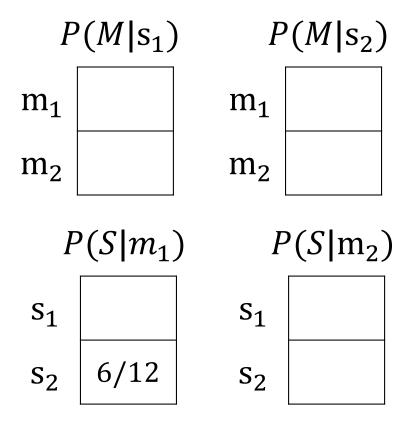
- 1) No mushrooms
- 2) Spinach and no mushrooms
- 3) Spinach, when asking for slice with no mushrooms
- Mushrooms
- Spinach
- No spinach
- No spinach and mushrooms
- No spinach when asking for no mushrooms
- No spinach when asking for mushrooms
- Spinach when asking for mushrooms



Icons: CC, https://openclipart.org/detail/296791/pizza-slice

You can answer all of these questions:





P(Weather)?

P(Weather | winter)?

P(Weather | winter, hot)?

Season	Temp	Weather	P(S, T, W)
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(Weather)?		Season	Temp	Weather	P(S, T, W)
P (Weather=Sun) =		summer	hot	sun	0.30
		summer	hot	rain	0.05
.3+.1+.15=.65		summer	cold	sun	0.10
55 P(= + 1)====		summer	cold	rain	0.05
$\sum_{\epsilon} \sum_{s} P(s, t, \omega = sun)$	\rightarrow	winter	hot	sun	0.10
		winter	hot	rain	0.05
$\mathcal{P}(1, (-1))$	\rightarrow	winter	cold	sun	0.15
P(Weather=rain)=		winter	cold	rain	0.20

P(Weather winter)?	Season	Temp	Weather	P(S, T, W)	
· - · · · · · · · · · · · · · · · · · ·	summer	hot	sun	0.30	
	summer	hot	rain	0.05	
P(Weather=sun winter) =	summer	cold	sun	0.10	
1 + 15	summer	cold	rain	0.05	
	winter	hot	sun	0.10	
.l+.05+.15+.2	winter	hot	rain	0.05	
$\rightarrow \rightarrow$	winter	cold	sun	0.15	
	winter	cold	rain	0.20	
ZEP (S=winter, t) = P (winter, sun) P(sun winter) ZEP (S=winter, t, w) = P (winter) conditional probability					

P(Weather | winter, hot)?

Season	Temp	Weather	P(S, T, W)
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Two tools to go from joint to query

1. Definition of conditional probability

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

2. Law of total probability (marginalization, summing out)

$$P(A) = \sum_{b} P(A, b)$$

$$P(Y \mid U, V) = \sum_{x} \sum_{z} P(x, Y, z \mid U, V)$$

Two tools to go from joint to query

Joint: $P(H_1, H_2, Q, E)$

Query: $P(Q \mid e)$

1. Definition of conditional probability

$$P(Q|e) = \frac{P(Q,e)}{P(e)}$$

2. Law of total probability (marginalization, summing out)

$$P(Q,e) = \sum_{h_1} \sum_{h_2} P(h_1, h_2, Q, e)$$

$$P(e) = \sum_{q} \sum_{h_1} \sum_{h_2} P(h_1, h_2, q, e)$$

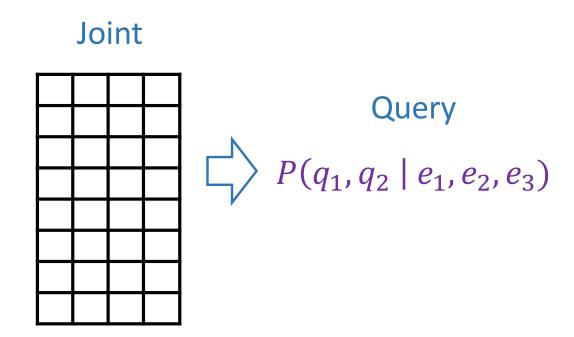
P(Weather)?

P(Weather | winter)?

P(Weather | winter, hot)?

Season	Temp	Weather	P(S, T, W)
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

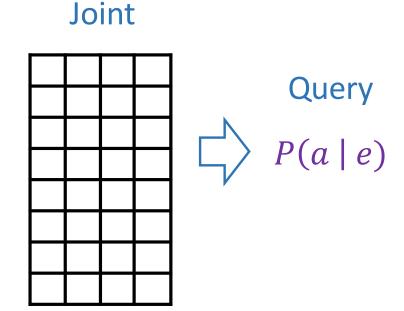
Joint distributions are the best!

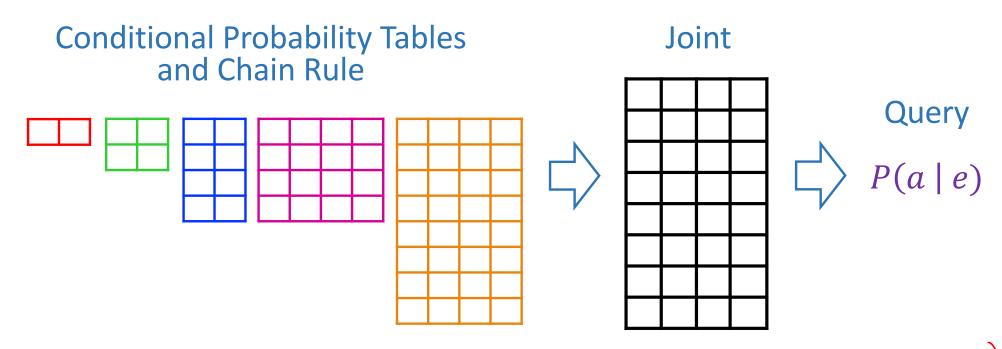


Joint distributions are the best!

Problems with joints

- We aren't given the joint table
 - Usually some set of conditional probability tables





P(A) P(B|A) P(C|A,B) P(D|A,B,C) P(E|A,B,C,D) P(fever) P(county fever) ...

P(colonerios).

Two tools to construct joint distribution

1. Product rule

$$P(A,B) = P(A \mid B)P(B)$$

$$P(A,B) = P(B \mid A)P(A)$$

2. Chain rule

$$P(X_1, X_2, ..., X_n) = \prod_{i} P(X_i \mid X_1, ..., X_{i-1})$$

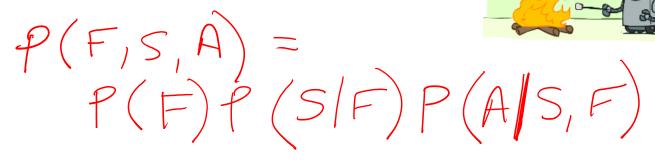
$$P(A, B, C) = P(A)P(B \mid A)P(C \mid A, B)$$
 for ordering A, B, C

$$P(A, B, C) = P(A)P(C \mid A)P(B \mid A, C)$$
 for ordering A, C, B

$$P(A, B, C) = P(C)P(B \mid C)P(A \mid C, B)$$
 for ordering C, B, A

Binary random variables

- Fire
- Smoke
- Alarm



Variables

■ B: Burglary

■ A: Alarm goes off

■ M: Mary calls

■ J: John calls

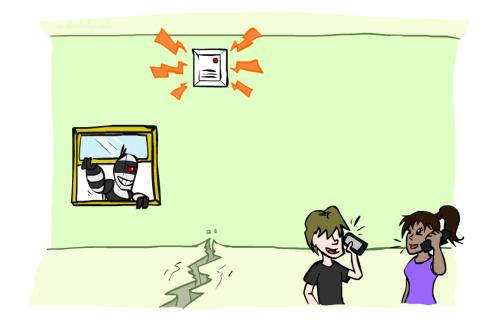
■ E: Earthquake!

How many different ways can we write the chain rule?

B. 5 Calamity C. 5 choose 5

D. 5!

5⁵



Variables

■ B: Burglary

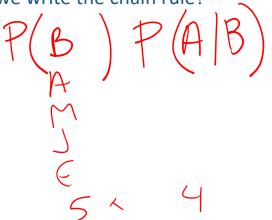
■ A: Alarm goes off

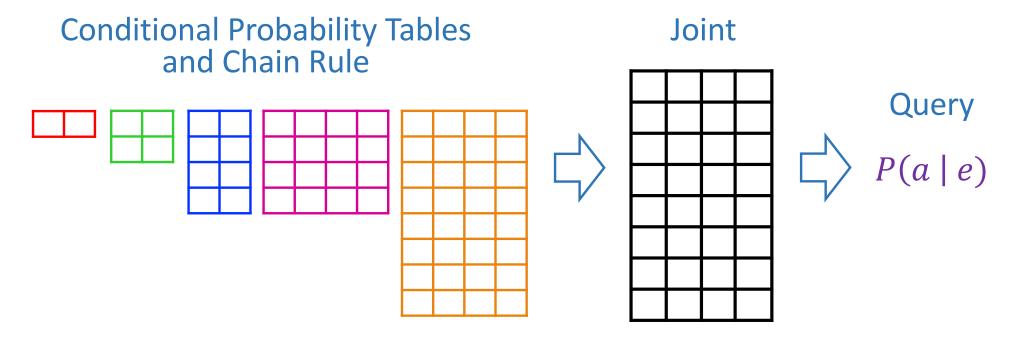
■ M: Mary calls

■ J: John calls

■ E: Earthquake!

A. 1
B. 5
C. 5 shoose 5
D. 5!





P(A) P(B|A) P(C|A,B) P(D|A,B,C) P(E|A,B,C,D)

Answer Any Query from Condition Probability Tables

Process to go from (specific) conditional probability tables to query

- 1. Construct the joint distribution
 - 1. Product Rule or Chain Rule
- 2. Answer query from joint
 - 1. Definition of conditional probability
 - 2. Law of total probability (marginalization, summing out)

Answer Any Query from Condition Probability Tables

Bayes' rule as an example

Given:
$$P(E|Q)$$
, $P(Q)$ Query: $P(Q | e)$

- 1. Construct the joint distribution
 - 1. Product Rule or Chain Rule

$$P(E,Q) = P(E|Q)P(Q)$$

- 2. Answer query from joint
 - 1. Definition of conditional probability

$$P(Q \mid e) = \frac{P(e,Q)}{P(e)}$$

2. Law of total probability (marginalization, summing out)

$$P(Q \mid e) = \frac{P(e,Q)}{\sum_{q} P(e,q)}$$

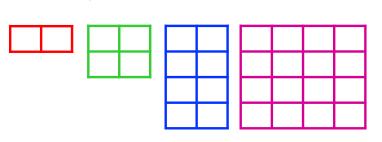
Bayesian Networks

Bayes net

One node per random variable

DAG

One CPT per node: P(node | *Parents*(node))



P(A,B,C,D) = P(A) P(B|A) P(C|A,B) P(D|A,B,C)

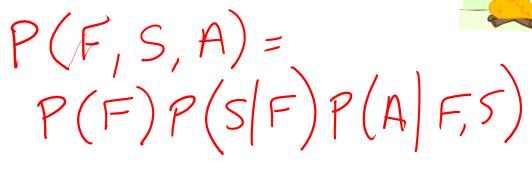
Encode joint distributions as product of conditional distributions on each variable

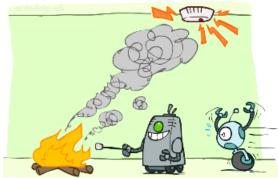
$$P(X_1, ..., X_N) = \prod_i P(X_i | Parents(X_i))$$

Build Bayes Net Using Chain Rule

Binary random variables

- Fire
- Smoke
- Alarm





Question

Variables

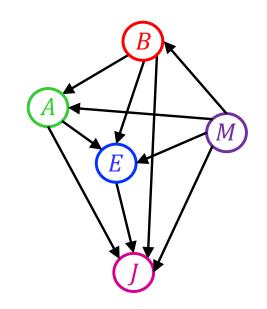
■ B: Burglary

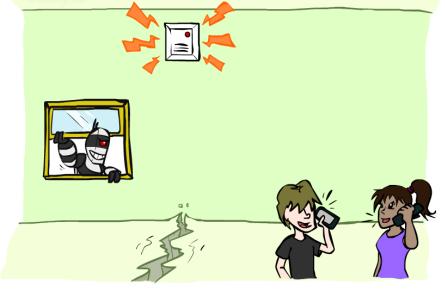
■ A: Alarm goes off

M: Mary calls

J: John calls

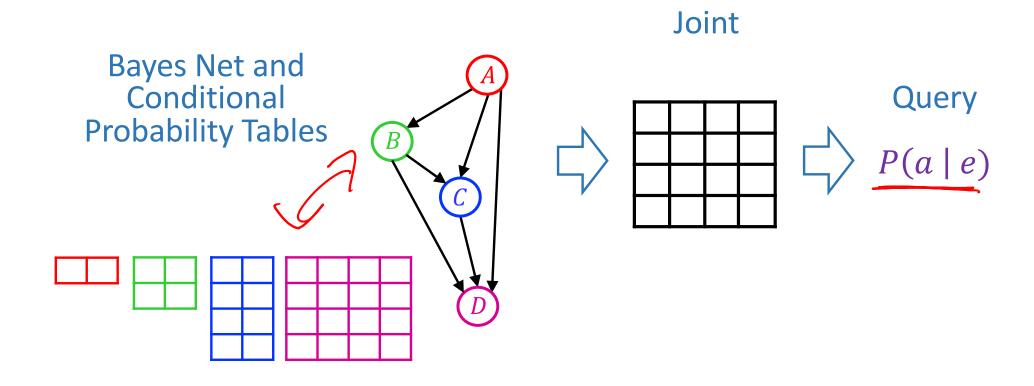
■ E: Earthquake!



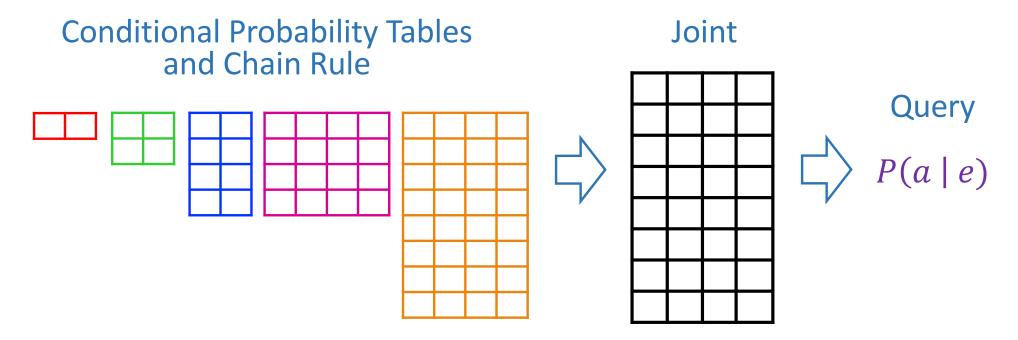


prefixe Bayes Met, write) the joint distribution? P(M)P(B|M)P(A|M,B)P(E|M,B,A)P(J|B,A,M,E)

Answer Any Query from Bayes Net



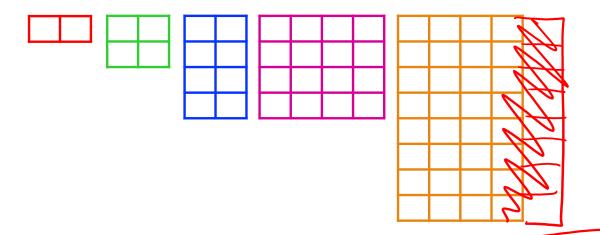
Answer Any Query from Condition Probability Tables



P(A) P(B|A) P(C|A,B) P(D|A,B,C) P(E|A,B,C,D)

Answer Any Query from Condition Probability Tables

Conditional Probability Tables and Chain Rule



Problems

- Huge
 - n variables with d
 values
 - d^n entries
- We aren't given the right tables

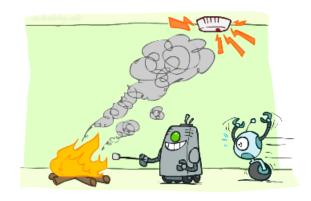
P(A) P(B|A) P(C|A,B) P(D|A,B,C) P(E|A,B,C,D)

Danielle Belgrave, Microsoft Research

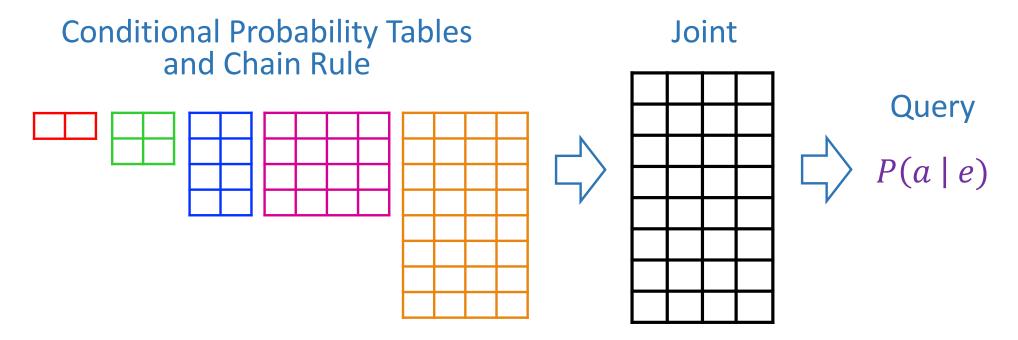
Do We Need the Full Chain Rule?

Binary random variables

- Fire
- Smoke
- Alarm

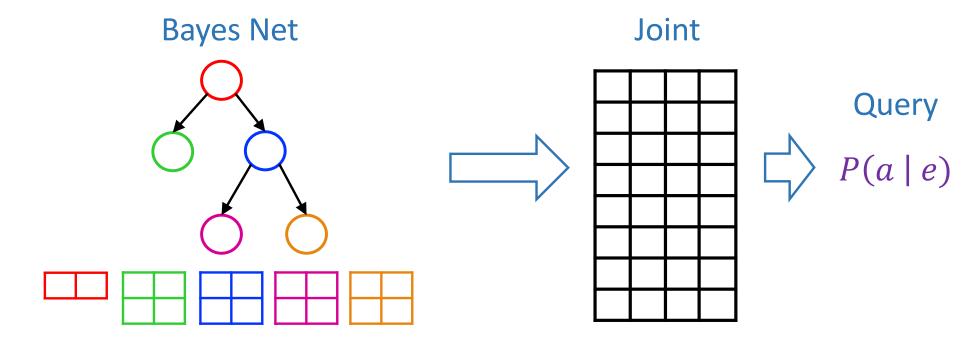


Answer Any Query from Condition Probability Tables



P(A) P(B|A) P(C|A,B) P(D|A,B,C) P(E|A,B,C,D)

Answer Any Query from Condition Probability Tables



P(A) P(B|A) P(C|A) P(D|C) P(E|C)

$$P(X_1, ..., X_N) = \prod_i P(X_i | Parents(X_i))$$