Announcements

Assignments:

- HW7 (online)
 - Due Tue 3/24, 10 pm
- HW8 (online)
 - Also due Tue 3/24, 10 pm
- P4
 - Due Thu 4/2, 10 pm
- Head's up: HW9 (written)
 - Released soon
 - Due Tue 3/31, 10 pm

Announcements

Coronavirus – COVID-19

- Take care of yourself and others around you
- Follow CMU and government guidelines
- We're "here" to help in any capacity that we can
- Use tools like zoom to communicate with each other too!

Zoom

- Let us know if you have issues
- Etiquette: Turn on video when:
 - Talking
 - Your turn in OH
 - In recitation

AI: Representation and Problem Solving

Reinforcement Learning

Instructors: Pat Virtue & Stephanie Rosenthal

Slide credits: CMU AI and http://ai.berkeley.edu

MDP Notation

Standard expectimax:
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a)V(s')$$

Bellman equations:
$$V^*(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^*(s')]$$

Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s$$

Q-iteration:
$$Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s,a$$

Policy extraction:
$$\pi_V(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')], \quad \forall s$$

Policy evaluation:
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$$

Policy improvement:
$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s'$$

Piazza Poll 1

R(5)

Rewards may depend on any combination of state, action, next state.

Which of the following are valid formulations of the Bellman equations?

$$A. V^*(s) = \max_{s'} \prod_{a} P(s'|s,a) [R(s,a,s') + \gamma V^*(s')]$$

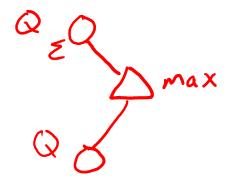
$$\int B. \ V^*(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,b)] + \gamma V^*(s')]$$

C.
$$V^*(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s,a)V^*(s')$$

$$D. V^*(s) = \max_{a} [\underline{R(s,a)} + \gamma \sum_{s'} P(s'|s,a) V^*(s')]$$

$$VE. Q^*(s,a) = R(s,a) + \gamma \sum_{s} P(s'|s,a) \max_{a'} Q^*(s',a')$$

$$Q^*(s,a) = \sum_{s} P(s'|s,a) \left[R(s,a,a') + \lambda \max_{a'} Q^*(s',a') \right]$$



Piazza Poll 2

do until it stops changing

Which of the following are used in policy iteration?

$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s$$

$$Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s,a$$

$$\underline{\pi_V(s)} = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma \underline{V(s')}], \quad \forall s$$

$$V_{k+1}^{\overline{\pi}}(s) = \sum_{s'} P(s'|s,\underline{\pi}(s))[R(s,\underline{\pi}(s),s') + \gamma V_k^{\overline{\pi}}(s')], \quad \forall s$$

$$\sqrt{\lambda}$$
E. Policy improvement

$$\sqrt{\text{2E. Policy improvement:}} \quad \pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s'$$

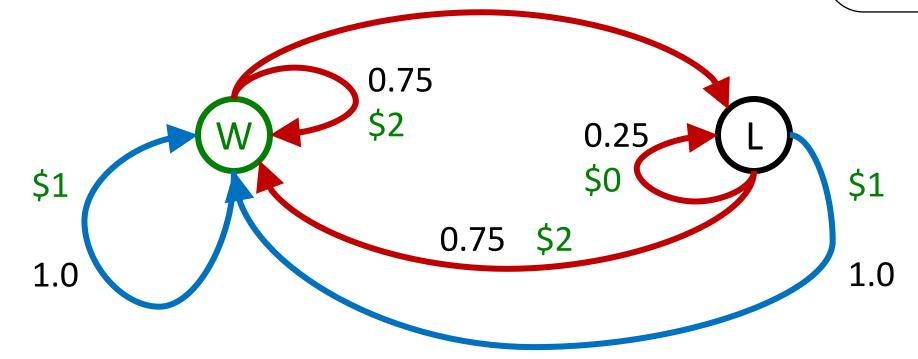
Double Bandits

Double-Bandit MDP

Actions: Blue, Red

States: Win, Lose

No discount
100 time steps
Both states have
the same value



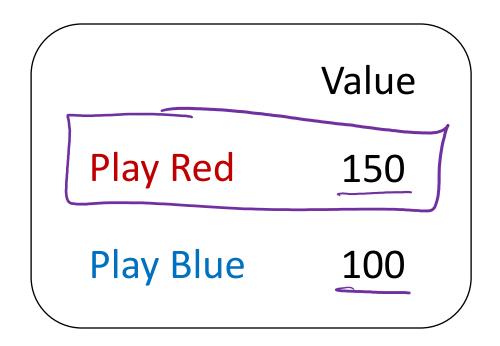
Offline Planning

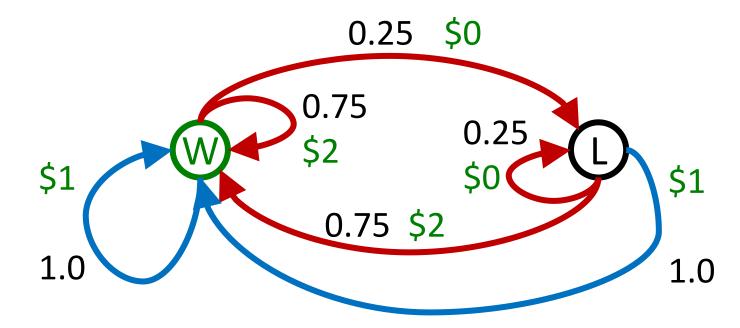
$$100 \left[.25.0 + .75.2 \right] = 150$$

Solving MDPs is offline planning

- You determine all quantities through computation
- You need to know the details of the MDP
- You do not actually play the game!

No discount
100 time steps
Both states have
the same value





Let's Play!

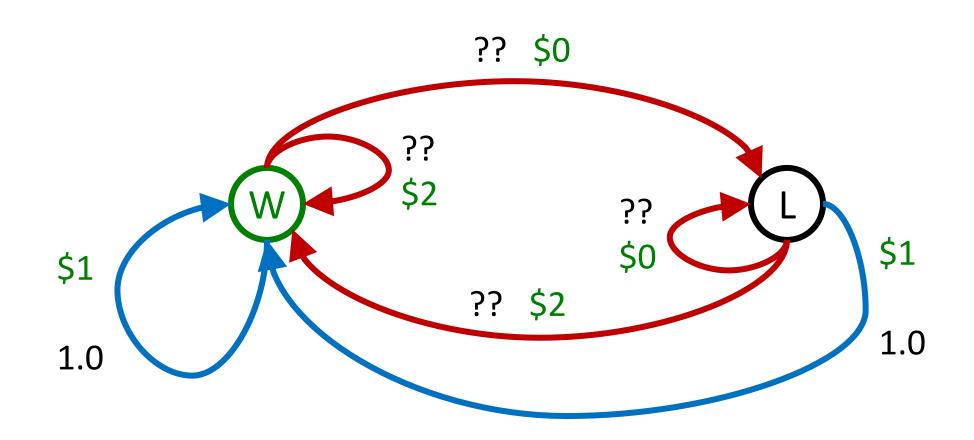
 \$2
 \$2
 \$0
 \$2
 \$2

 \$2
 \$2
 \$0
 \$0
 \$0

6/10

Online Planning

Rules changed! Red's win chance is different.



Let's Play!

\$0 \$0 \$0 \$2 \$0 2/10 \$2 \$0 \$0 \$0 \$0

What Just Happened?

That wasn't planning, it was learning!

- Specifically, reinforcement learning
- There was an MDP, but you couldn't solve it with just computation
- You needed to actually act to figure it out

Important ideas in reinforcement learning that came up

- **Exploration**: you have to try unknown actions to get information
- Exploitation: eventually, you have to use what you know
- Regret: even if you learn intelligently, you make mistakes
- → Sampling: because of chance, you have to try things repeatedly
 - Difficulty: learning can be much harder than solving a known MDP

Reinforcement learning

What if we didn't know P(s'|s,a) and R(s,a,s')?

Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s$$
O-iteration:
$$Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s$$

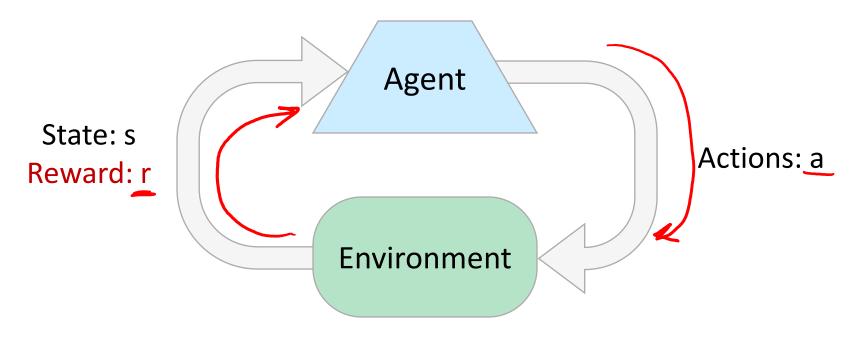
Q-iteration:
$$Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a) [P(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s,a$$

Policy extraction:
$$\pi_V(s) = \underset{a}{\operatorname{argmax}} \sum_{S'} P(s'|s,a) [R(s,a,s') + \gamma V(s')], \quad \forall s$$

Policy evaluation:
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[P(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$$

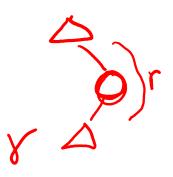
Policy improvement:
$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s$$

Reinforcement Learning



Basic idea:

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- → Must (learn to) act so as to maximize expected rewards
 - All learning is based on observed samples of outcomes!



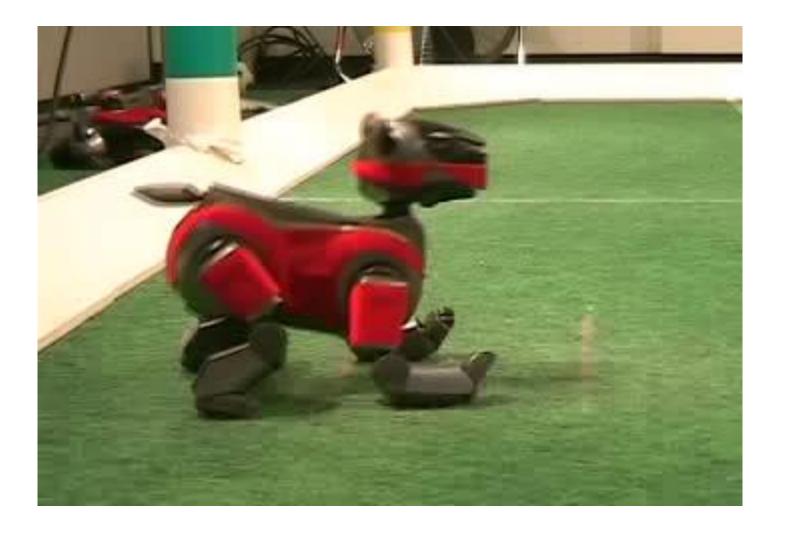
Initial

A Learning Trial

After Learning [1K Trials]

Initial

Training

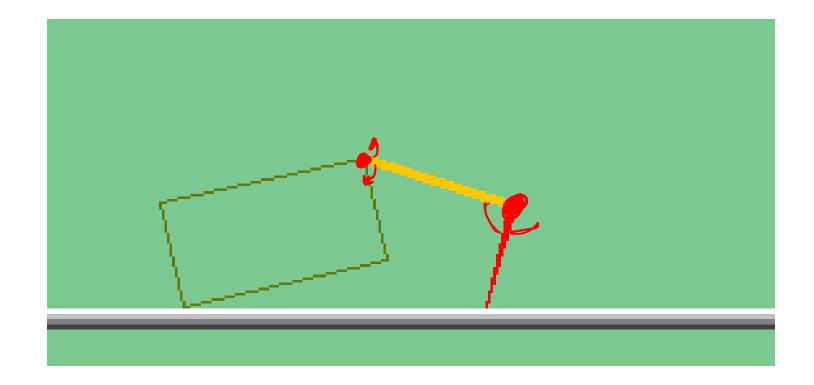


Finished

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005]

The Crawler!



Demo Crawler Bot

Reinforcement Learning

Still assume a Markov decision process (MDP):

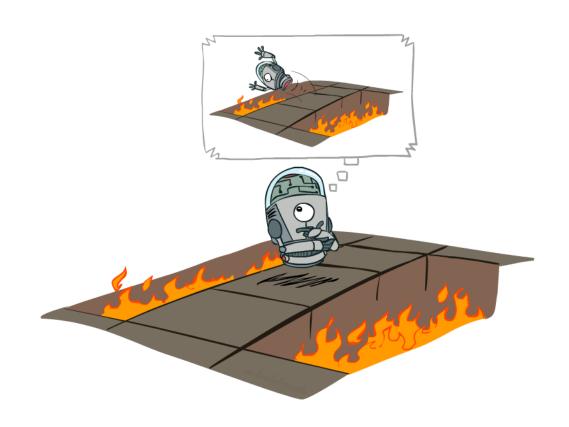
- A set of states $s \in S$
- A set of actions (per state) A
- A model T(s,a,s') $\Leftrightarrow P(s'|s, a)$
- A reward function R(s,a,s')

Still looking for a policy $\pi(s)$

New twist: don't know T or R

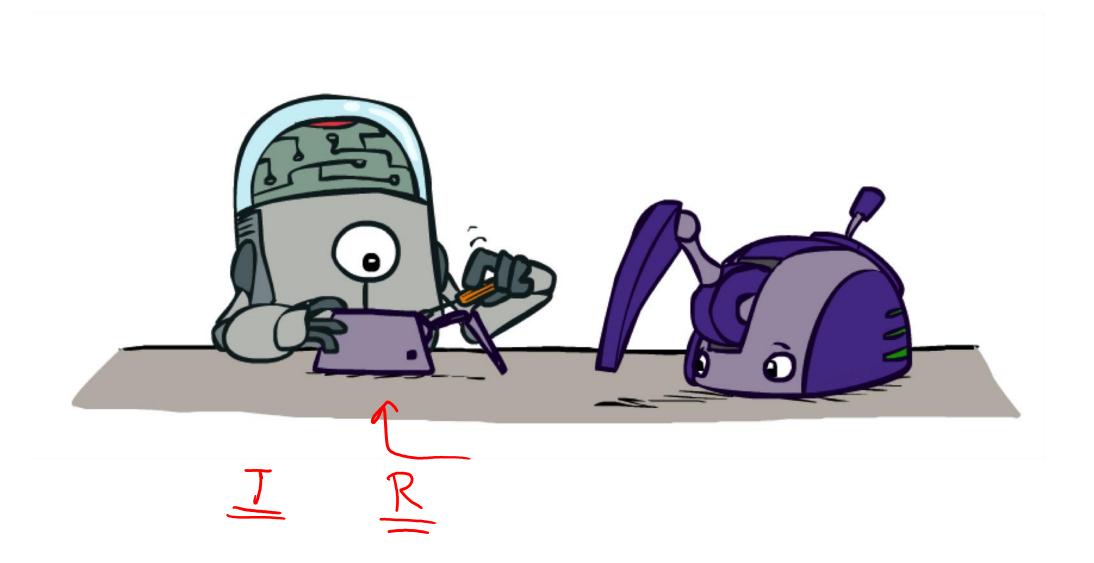
- I.e. we don't know which states are good or what the actions do
- Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)



Online Learning

Model-Based Learning



Model-Based Learning

Model-Based Idea:

- Learn an approximate model based on experiences
- Solve for values as if the learned model were correct

Step 1: Learn empirical MDP model

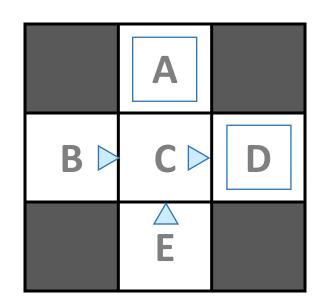
- Count outcomes s' for each s, a
- Normalize to give an estimate of $\widehat{T}(s, a, s')$
- Discover each $\widehat{R}(s, a, s')$ when we experience (s, a, s')

Step 2: Solve the learned MDP

For example, use value iteration, as before

Example: Model-Based Learning

Input Policy π



Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10 Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10 **Learned Model**

$$\widehat{T}(s, a, s')$$

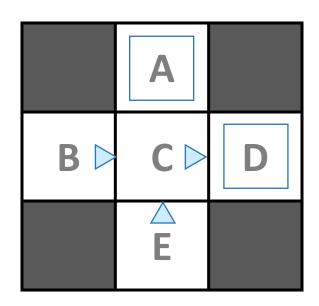
T(B, east, C) = 1,00 T(C, east, D) = 0.75 T(C, east, A) = 0.25 ...

 $\hat{R}(s, a, s')$

R(B, east, C) = -1R(C, east, D) = -1R(D, exit, x) = +10

Example: Model-Based Learning

Input Policy π



Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1

D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10 Episode 2

B, east, C, -1

C, east, D, -1

D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10 **Learned Model**

 $\longrightarrow \widehat{T}(s, a, s')$

T(B, east, C) = 1.00 T(C, east, D) = 0.75 T(C, east, A) = 0.25

...

 $\rightarrow \hat{R}(s,a,s')$

R(B, east, C) = -1 R(C, east, D) = -1 R(D, exit, x) = +10

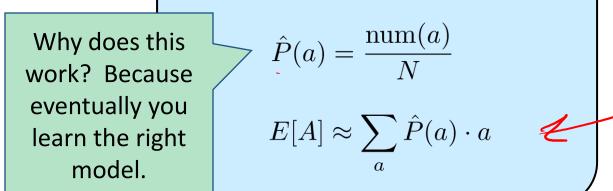
...

Example: Expected Age

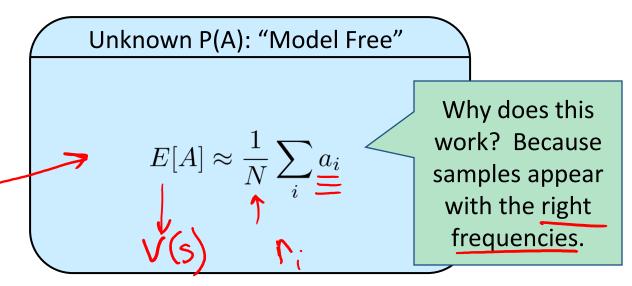
Goal: Compute expected age of 15-281 students

Known P(A) $E[A] = \sum P(a) \cdot a = 0.35 \times 20 + \dots$

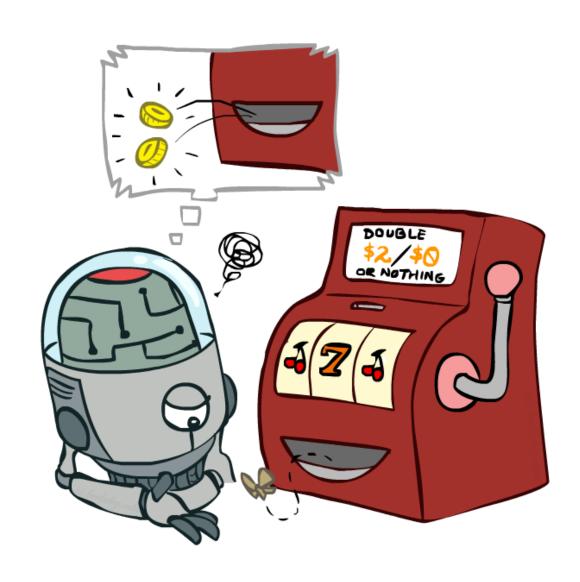
Without P(A), instead collect samples $[a_1, a_2, ... a_N]$



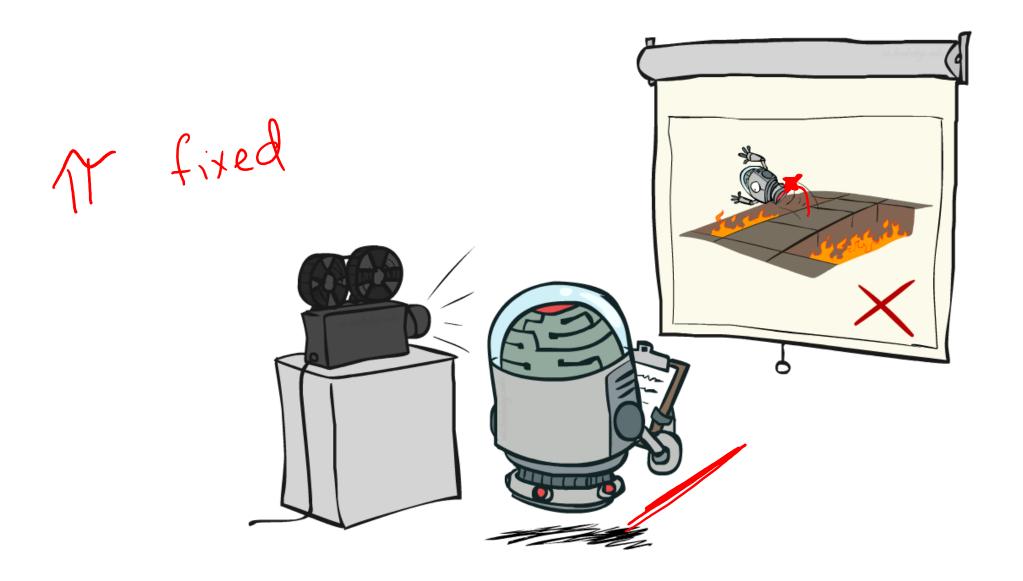
Unknown P(A): "Model Based"



Model-Free Learning



Passive Reinforcement Learning



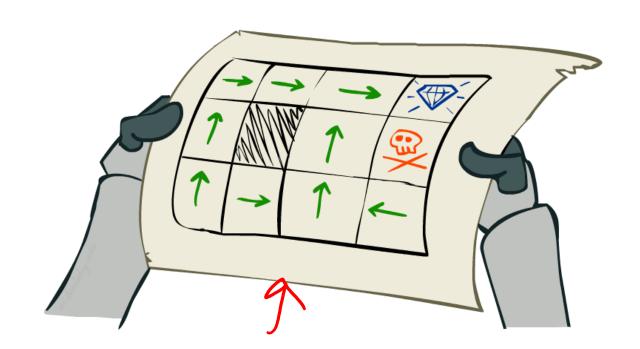
Passive Reinforcement Learning

Simplified task: policy evaluation

- Input: a fixed policy $\pi(s)$
- You don't know the transitions T(s,a,s')
- You don't know the rewards R(s,a,s')
- Goal: learn the state values

In this case:

- Learner is "along for the ride"
- No choice about what actions to take
- Just execute the policy and learn from experience
- This is NOT offline planning! You actually take actions in the world.



Direct Evaluation

Goal: Compute values for each state under π

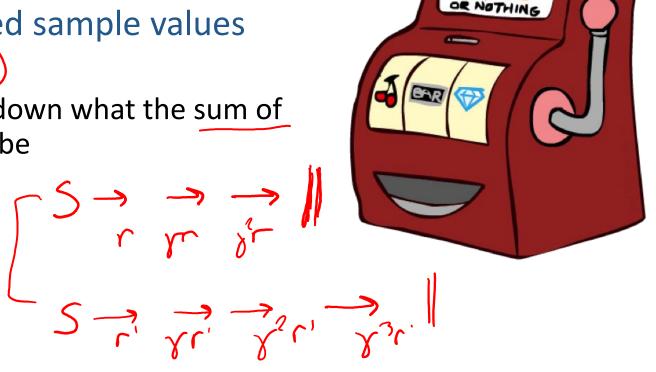
Idea: Average together observed sample values

• Act according to π \longrightarrow $V^{\uparrow \uparrow}(5)$

 Every time you visit a state, write down what the sum of discounted rewards turned out to be

Average those samples

This is called direct evaluation



Direct Evaluation

Goal: Compute values for each state under π

Idea: Average together observed sample values

• Act according to π

Every time you visit a state, write down what the sum of

discounted rewards turned out to be

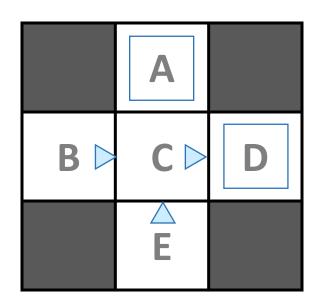
Average those samples

This is called direct evaluation

Pieces Available	Take 1	Take 2
2	0%	100%
3	2%	0%
4	75 %	2%
5	4%	68%
6	5%	6%
7	60%	5%

Example: Direct Evaluation

Input Policy π



Assume: $\gamma = 1$

Observed Episodes (Training)

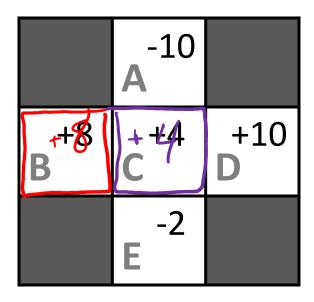
Episode 1

Episode 3

Episode 2

Episode 4

Output Values



Problems with Direct Evaluation

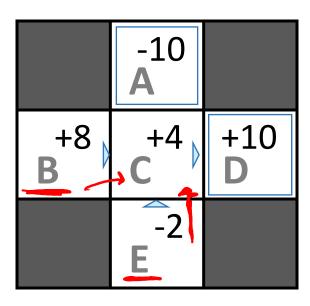
What's good about direct evaluation?

- It's easy to understand
- It doesn't require any knowledge of T, R
- It eventually computes the correct average values, using just sample transitions

What bad about it?

- It wastes information about state connections
- Each state must be learned separately
- So, it takes a long time to learn

Output Values



If B and E both go to C under this policy, how can their values be different?

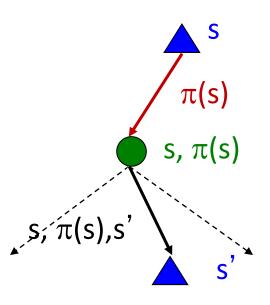
Why Not Use Policy Evaluation?

Simplified Bellman updates calculate V for a fixed policy:

■ Each round, replace V with a one-step-look-ahead layer over V

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$
 s, $\pi(s)$, s'



- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!

Key question: how can we do this update to V without knowing T and R?

■ In other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

We want to improve our estimate of V by computing these averages:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

Idea: Take samples of outcomes s' (by doing the action!) and average

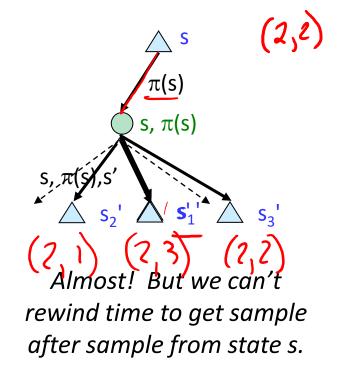
$$sample_{1} = R(s, \pi(s), s'_{1}) + \gamma V_{k}^{\pi}(\underline{s'_{1}})$$

$$sample_{2} = R(s, \pi(s), s'_{2}) + \gamma V_{k}^{\pi}(\underline{s'_{2}})$$

$$\dots$$

$$sample_{n} = R(s, \pi(s), s'_{n}) + \gamma V_{k}^{\pi}(\underline{s'_{n}})$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$



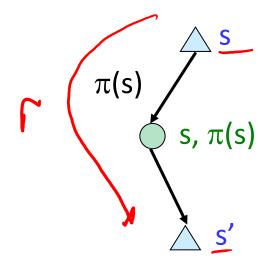
Temporal Difference Learning

Big idea: learn from every experience!

- Update V(s) each time we experience a transition (s, a, s', r)
- Likely outcomes s' will contribute updates more often

Temporal difference learning of values

- Policy still fixed, still doing evaluation!
- Move values toward value of whatever successor occurs: running average



Sample of V(s):
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$
 Update to V(s):
$$\sqrt[\Lambda]{5} \leftarrow (1-\alpha)\sqrt[\Lambda]{5} + \propto \text{Sample}$$

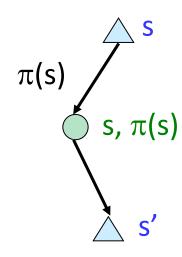
Temporal Difference Learning

Big idea: learn from every experience!

- Update V(s) each time we experience a transition (s, a, s', r)
- Likely outcomes s' will contribute updates more often

Temporal difference learning of values

- Policy still fixed, still doing evaluation!
- Move values toward value of whatever successor occurs: running average



Sample of V(s):
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

Update to V(s):
$$V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$$

Same update:
$$V^{\pi}(s) \leftarrow \underline{V^{\pi}(s)} + \alpha(\underbrace{sample} - V^{\pi}(s))$$

Exponential Moving Average

Exponential moving average

■ The running interpolation update:

$$\underline{\bar{x}_n} = (1 - \alpha) \cdot \underline{\bar{x}_{n-1}} + \alpha \cdot x_n$$

Makes recent samples more important:

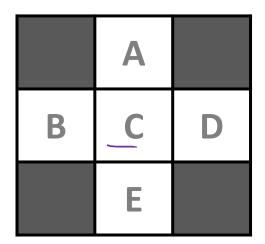
$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

(1-0x) X6

Forgets about the past (distant past values were wrong anyway)

Decreasing learning rate (alpha) can give converging averages

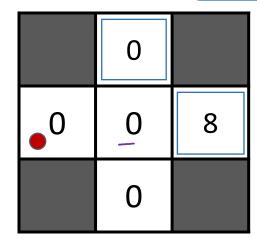
States

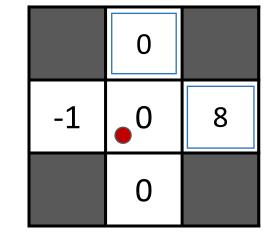


Assume: $\gamma = 1$, $\alpha = 1/2$

Observed Transitions

C, east, D, -2





	0	
-1	3	8
	0	

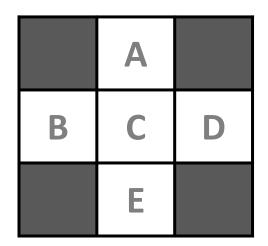
$$V(s) \leftarrow (1-\alpha)V(s) + \alpha \text{ sample}$$

$$V(B) \approx (1-\frac{1}{2}) + \frac{1}{2}(-2) = -1$$

$$V(C) \leftarrow$$

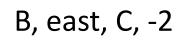
Example: Temporal Difference Learning

States

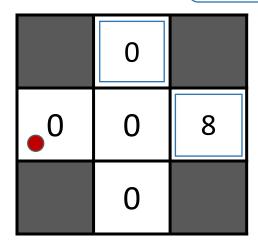


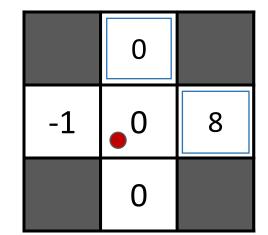
Assume: $\gamma = 1$, $\alpha = 1/2$

Observed Transitions



C, east, D, -2





$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \underline{\pi(s)}, s') + \gamma V^{\pi}(s')\right]$$

Problems with TD Value Learning

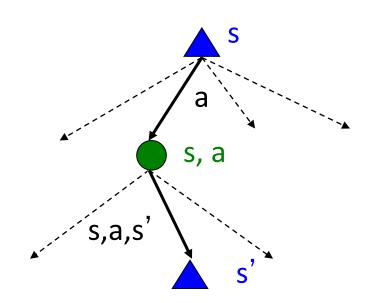
TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages

However, if we want to turn values into a (new) policy, we're sunk:

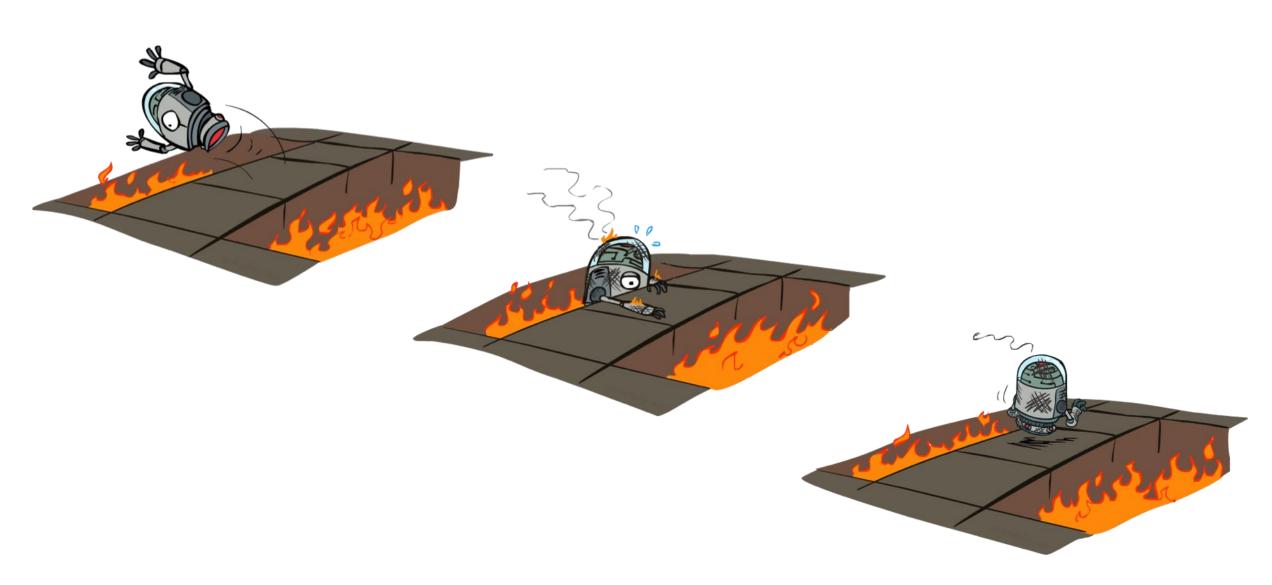
$$\pi(s) = \arg\max_{a} Q(s, a) \iff$$

$$Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]$$

Idea: learn Q-values, not values
Makes action selection model-free too!



Active Reinforcement Learning



Active Reinforcement Learning

Full reinforcement learning: optimal policies (like value iteration)

- You don't know the transitions T(s,a,s')
- You don't know the rewards R(s,a,s')
- You choose the actions now
- Goal: learn the optimal policy / values

In this case:

- Learner makes choices!
- Fundamental tradeoff: exploration vs. exploitation
- This is NOT offline planning! You actually take actions in the world and find out what happens...

Detour: Q-Value Iteration

Value iteration: find successive (depth-limited) values

- Start with $V_0(s) = 0$, which we know is right
- Given V_k, calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

But Q-values are more useful, so compute them instead

- Start with $Q_0(s,a) = 0$, which we know is right
- Given Q_k, calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Q-Learning

Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

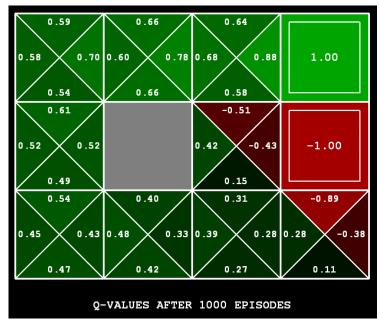
Learn Q(s,a) values as you go

- Receive a sample (s,a,s',r)
- Consider your old estimate: Q(s, a)
- Consider your new sample estimate:

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

• Incorporate the new estimate into a running average:

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) [sample]$$



[Demo: Q-learning – gridworld (L10D2)] [Demo: Q-learning – crawler (L10D3)]

Demo Q-Learning -- Gridworld

Demo Q-Learning -- Crawler

Q-Learning Properties

Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!

This is called off-policy learning

Caveats:

- You have to explore enough
- You have to eventually make the learning rate small enough
- ... but not decrease it too quickly
- Basically, in the limit, it doesn't matter how you select actions (!)

